首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 272 毫秒
1.
高平坦C L波段掺Er光纤超荧光光源实验研究   总被引:4,自引:0,他引:4  
报道了一种980 nm激光二极管(LD)双向泵浦的高功率、高平坦的稳定掺Er光纤(EDF)超荧光光纤光源(ED-SFS),实现了C+L波段放大的自发辐射(ASE)光的输出。光源采用双向LD泵浦11 m高浓度的EDF串接普通EDF。通过数值模拟,得到了一定泵浦功率下优化输出光谱带宽的合适光纤长度为70 m。实验得到系统输出接近70 nm的C+L平坦增益谱,输出最大功率达28 mW,输出功率稳定性优于±0.02 dB。  相似文献   

2.
三级双泵结构光纤ASE光源输出光谱平坦度的改善   总被引:1,自引:1,他引:0  
为满足光纤布拉格光栅(FBG)传感和波分复用(WDM)光纤通信系统对光源光谱平坦度与带宽的要求,利用调整优化结构参数和增益均衡滤波方法,对三级双泵浦结构掺铒光纤(EDF)放大自发辐射(ASE)光源输出光谱进了行平坦化处理。通过对三段EDF长度优化和两级正反向泵浦功率的调整,使得光源输出光谱覆盖C+L波段,消除了1 570nm附近的光谱凸起;并根据输出光谱特性设计了一种基于长周期光纤光栅(LPFG)的增益平坦滤波器(GFF),对输出光谱进行二次平坦处理,进一步消除了EDF峰值吸收波长1 532nm处的光谱凸起。在C+L波段内获得了0.76dBm的光谱平坦度,光谱3dB带宽达80nm以上。  相似文献   

3.
一种高性能光纤ASE光源的优化与研究   总被引:1,自引:1,他引:0  
根据光纤Bragg光栅(FBG)传感系统光源应用需求,研制了一种双级双程结构的掺Er光纤(EDF)ASE(amplifiedspontaneous emission)光源,并对光源结构、输出方式、EDF长度以及泵浦功率进行了优化研究。结果表明,在最佳条件下实现了输出中心波长为1564.5nm、功率高达35.8mw和带宽...  相似文献   

4.
皮秒脉冲在色散位移光纤中产生的超连续谱   总被引:4,自引:4,他引:0  
利用1.5ps高峰值功率脉冲泵浦色散位移光纤(DSF)得到的超连续(SC)谱实验结果:大于泵浦波长一侧的20dB带宽大于266.8nm,其中200nm范围内不平坦度<±2dB,1690~1780nm的不平坦度<±0.25dB;小于泵浦波长一侧的10dB带宽232nm,其中145nm范围内不平坦度<±2dB,1306nm~1368nm的不平坦度<±0.25dB。利用F P滤波器进行谱切片,在大于泵浦波长一侧和小于泵浦波长一侧分别得到顶部平坦的间隔2.52nm的95和57个波长输出。  相似文献   

5.
设计并实现了一种多波长超宽带铒铥混合掺杂光纤光源,用一个980nm激光二极管(LD)泵浦掺铒光纤(EDF),输出C+L波段光谱,用980nm LD、1400nm LD和C+L波段光泵浦掺铥光纤(TDF),产生S波段光谱。用耦合器制作光纤反射器(FLM),形成双程后向结构提高转化效率。光谱仪测试S+C+L波段的总功率为34.18mW(15.34dBm),带宽为1460~1610nm,达到150nm。  相似文献   

6.
提出并设计了一种双向泵浦、双程结构的掺铒光纤放大自发辐射宽带光源。对该光源的实现方案和优化效果进行了实验研究,并分析了该光源的输出功率转化效率、光谱平坦度以及工作稳定性。结果表明,和前向泵浦ASE输出相比,该结构所产生的宽带光源泵浦转化效率提高8.24%,在不加任何滤波器条件下1 525~1 557 nm之间光谱平坦度提升1 dB,3 dB线宽增加24.56 nm。实现了1 h内光功率和光谱的稳定输出,可为光纤传感、光谱分析等领域提供光源。  相似文献   

7.
基于LPFG滤噪和混合放大的长距离FBG传感器系统   总被引:1,自引:1,他引:1  
设计的基于长周期光纤光栅(LPFG)滤噪和掺Er光纤(EDF)/喇曼混合放大的长距离光纤布拉格光栅(FBG)传感器系统,不但优化了系统的信噪比(SNR),而且使传感距离提高到50 km.该系统以高功率扫描激光器作为传感光源和解调系统,加入的LPFG减小了双向喇曼放大的自发辐射(ASE)噪声和FBG后向反射噪声,同时双环形器的EDF结构利用剩余的泵浦功率产生ASE光和放大传感信号,为后端FBG提供了光源以及提高了后端FBG的SNR.带LPFG的混合放大与EDF/喇漫混合放大相比,实验表明,FBG 1和FBG 2的SNR分别提高了4.40 dB和4.38 dB,而且分布在50 km光纤上的4个FBG均获得了大于15 dB的SNR.  相似文献   

8.
简要介绍了掺铒超荧光光纤光源的工作原理、基本结构.研制了一种采用单程后向结构、以980 nm激光二极管作泵浦源的小体积掺铒光纤光源.其输出功率大于5 mW,中心波长为1 544 nm,光谱3 dB带宽为41 nm,光谱平坦度小于等于±1 dB.  相似文献   

9.
常金龙  谭满清 《半导体学报》2011,32(10):104007-5
本文通过光功率分配器仅用一支980 nm激光器对同一段掺铒光纤进行双向泵浦,且通过在光纤端面镀膜实现光源双程化,将双程前向和双程后向结构结合在一种结构中。首先初步优化光纤长度,获得输出光波长随泵浦功率的高稳定性,之后采用1530/1550光波分复用器进行光谱平坦处理,拓展带宽到大于22 nm,并在此基础上做温度稳定性实验,结果显示,在0~60 ℃温度范围内,中心波长稳定性保持在4 ppm/℃以下,在20~30 ℃范围内,波长稳定性可达1~2 ppm/℃。综合考虑光纤陀螺应用需要的三个指标,实验优化得泵浦电流为80 mA时,光源中心波长温度稳定性计算为2.70 ppm/℃,3dB带宽为22.85 nm,光谱平坦度为0.2 dB,输出功率为5.17 mW,此时功率效率为9.92%。该工作条件对满足高精度光纤陀螺有很好的参考价值。  相似文献   

10.
一种双抽运结构C+L波段掺铒光纤宽带光源   总被引:1,自引:0,他引:1  
介绍了一种结构简单、工作在C+L波段掺铒宽带光源。实验中用3dB宽带耦合器作为光纤反射镜,同时利用功率控制电路让光源输出光稳定,先用两个980nm二极管作为抽运源,将后向的C波段ASE重新引回光纤中,提高了抽运源的利用效率和光纤输出光的稳定性,优化掺铒光纤长度,获得了功率高达26.67mW(14.26dBm)的C+L波段ASE光输出,平均波长1550.887nm。之后采用一个980nm和一个1480nm的激光二极管,在输出相对平坦的情况下,得到了最高功率为23.23mW(13.66dBm),平均波长为1556.46nm的C+L波段ASE光输出,光纤环形镜的使用,不仅改善了光源的平坦度,并且大大提高了光光转化效率。  相似文献   

11.
为了实现高平坦的C+L波段放大的自发辐射光(AS E)光输出,提出并设计了一种 基于LD单泵浦源,并且采用两段掺杂浓度完全相同的掺Er3+光纤(EDF)作为增 益介质的宽 带光源。对光源的基本原理及实现方案进行了理论分析和实验验证。首先,根据Er3+ 能级 结构介绍C+L波段宽带光源 的产生原理。然后,设计系统结构,在结构中采用976nm LD作泵 浦源,通过耦合器将泵浦光按照一定比 例分为两路对EDF泵浦;采用两支波分复用器(WDM)将泵浦光耦合进入EDF,并通过 熔接环形镜(FLM)提高转换效率;输出端熔 接隔离器(ISO)防止端面回波对输出造成影响。最后,根据EDF的ASE增益 数学模型对EDF长度进行了分析和优 化。实验结果表明,用于调整C波段ASE光输出的EDF1长选用2m,用于调整L波段ASE光输出 EDF2长选为16m, 获得平坦C+L波段ASE光输出,在不使用任何滤波器的条件下,在1540~1610nm波段范围内光谱平坦度为±0.525dB,在 1520~1610nm范围内光 谱平坦度为±1.119dB。本文方法使用1支976nm LD实现了C+L波段的高平坦输出,简化了系统结构,并降低了系统成本。  相似文献   

12.
双级双抽运结构掺铒光纤光源的分析研究   总被引:1,自引:0,他引:1  
李丽  贾振安  白阿宁  孟江 《激光技术》2012,36(4):524-526
为了研究双级双抽运结构C+L波段放大自发辐射宽带光源的两级光纤长短搭配不同对输出光谱特性的影响,采用软件模拟仿真和实验验证相结合的方法,进行了理论分析和实验对比。结果表明,当第1级光纤较短、第2级光纤较长时,可实现功率为18.04mW(12.56dBm)、抽运光利用效率为13.9%、平坦度小于±3.97dB(1525nm~1600nm)的C+L波段放大自发辐射输出;当第1级光纤较长、第2级光纤较短时,可实现功率为20.07mW(13.02dBm)、抽运光利用效率为16.7%、平坦度小于±1.89dB(1525nm~1600nm)的C+L波段放大自发辐射输出。采用第1级光纤较长、第2级光纤较短的双级双抽运是一种更为理想的C+L波段放大自发辐射光源结构。  相似文献   

13.
高性能低成本的C+L波段掺铒光纤光源   总被引:1,自引:0,他引:1       下载免费PDF全文
习聪玲 《激光技术》2012,36(1):138-140
为了得到一种高性能的C+L波段的宽带掺铒光纤光源,用一个980nm和一个1480nm激光二极管作为抽运源,用两个3dB宽带耦合器作为光纤反射镜,同时利用功率控制电路让光源输出光稳定,对设计的光源进行了实验和理论验证,获得了功率为168.67mW(22.27dBm)、带宽达到80.701nm(1525.112nm~1605.813nm)的C+L波段宽带光源。结果表明,开始用两个980nm和一个1480nm二极管作为抽运源,之后改为一个980nm和一个1480nm二极管作为抽运源,并没有减少光源的输出功率,也没有改变稳定性。这一结果对减少光源的成本、提高光光转换效率,具有实际价值。  相似文献   

14.
报道了基于双程后向单级泵浦结构的宽带Er^3+/Yb^3+共掺双包层光纤超荧光光源的实验研究结果。采用980nm泵浦源,通过优化泵浦功率和光纤长度,在波长1550nm处,实验仅用1mEr^3+/Yb^3+共掺双包层光纤获得了30.8mW的超荧光输出,泵浦斜效率为28%,光谱3dB带宽为35nm。  相似文献   

15.
文章通过优化掺铒光纤的各种参量,用两个980nm激光二极管做抽运源,用一个3dB耦合器制作成光环形镜,采用双级双程前向泵浦结构,实现了功率最高达52.8mw(17.15dB)的稳定的高功率宽带超荧光光源。在未加任何滤波器的情况下,其3dB带宽可迭40nm。该光源已成功用于油气管线检测工程实践中。  相似文献   

16.
从耦合模理论出发,分析了980/1550熔融拉锥(FBT)型保偏光纤(PMF)波分复用器(WDM)的工作原理,设计了WDM的制作方法。在FBT台上,通过控制火焰的温度和宽度以及拉伸速度,有效控制WDM的拉伸长度和耦合区结构,用1550nm的PMF和H11060单模光纤(SMF)成功研制了高性能的980/1550PMFWDM。测试结果表明:在1550nm波长上,该WDM具有0.2dB的插入损耗、32dB的隔离度和22.8dB的消光比偏振特性;在980nm波长上,具有0.2dB的插入损耗、14_8dB的隔离度。该器件除了具有SMFWDM的特性外,1550nm端口还具有偏振保持特性,它将促进PMF激光器和放大器快速发展。  相似文献   

17.
蒋俏峰  刘小明  倪屹  王青 《中国激光》2004,31(6):09-712
采用掺铒光纤在L-波段的放大自发辐射(ASE)构成的宽带光信号源在光纤传感、器件测试等方面有着广泛的应用需求,而抽运转换是制作这种光源的关键技术之一.基于C-波段放大自发辐射对L-波段信号具有二次抽运作用的机理,在光纤的一端采用Sagnac反馈环将输出的C-波段放大自发辐射反馈回到掺铒光纤中,这些被反馈的C-波段放大自发辐射像注入的信号光一样消耗上能级粒子数而受到放大并沿光纤的同一方向传输,同时成为L-波段放大自发辐射的抽运源.由于Sagnac反馈环减少了泄漏的C-波段放大自发辐射功率,因而抽运转换效率大大提高.实验中,在不加平坦滤波器的情况下,在125 mW 980 nm抽运光输入时输出L-波段放大自发辐射宽谱功率达到14 dBm,抽运转换效率(PCE)达到20%,1 dB带宽达到31.1 nm(1568.9~1600 nm),获得了高转换效率且宽带平坦的L-波段放大自发辐射谱输出.  相似文献   

18.
研制出一种适用于光纤放大器的Er^3+-Yb^3+共掺双包层光纤(EYDCF),它在980nm和1530nm的吸收分别达到16.8dB/m和20.6dB/m,980nm吸收带半高宽达到200nm。在波长为980nm、泵浦功率为2w的条件下,可以得到28.8dBm(760mW)的输出,相比掺Er^3+光纤(EDF),EYDCF的增益高,所需光纤长度短,所以非线性效应的发生得到抑制。  相似文献   

19.
一种高稳定DBR 型掺铒光纤激光器研究   总被引:2,自引:0,他引:2       下载免费PDF全文
研制了一种高功率高边模抑制比及高波长稳定性的DBR型掺铒光纤激光器。该激光器使用980nmLD作为泵浦源,并使用长度为2.75m的高掺杂浓度的掺饵光纤作为增益介质,在1.55μm波段获得了3dB线宽为0.2nm,25dB线宽为0.4nm的激光输出。最大输出光功率25mW,输出功率稳定性±0.01dB,边模抑制比60dB,波长稳定性0.01dB(受光功率计精度的限制),阈值泵浦光功率8.6mW,斜率效率21.7%。  相似文献   

20.
基于全光纤M-Z干涉仪的ASE光源增益谱平坦滤波器研究   总被引:4,自引:2,他引:2  
基于马赫-曾德尔干涉仪(MZI)结构,在Matlab软件中,利用优化的迭代算法、Least Pth-norm算法和AMPSO算法,提出一种用于平坦掺Er光纤(EDF)放大自发辐射(ASE)光源增益谱的级联MZI型全光纤滤波器的优化设计方法,并进行了实验研究。结果表明:采用该方法设计的级联MZI型全光纤滤波器可以有效改善ASE宽带光源输出光谱的平坦度,被平坦波段(1525~1540nm)范围内输出光谱的不平坦度小于±0.73dB,整个C波段光谱3dB带宽为36.344nm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号