首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
采用蓝色磷光染料bis[(4,6-diflourophenyl)-pyridinato-N,C2’)](picolinato) Iridium (III)(FI rpic)和黄色磷光染料bis[2-(4-tertbutylphenyl) benzothiazolato-N,C2,]iridium(acetylacetonate)[(t-bt)2 Ir(acac)]为超薄层,制备了结构为ITO/NPB/mCP/(t-bt)2Ir (acac)/mCP/Flrpic/mCP/TPBi/Mg:Ag的白色有机电致发光器件.通过调节磷光染料双超薄层Flrpic和(t-bt)2Ir(acac)的厚度,优化了白光器件的性能.结果表明,白光器件的最高电流效率为13.08 cd/A,最高功率效率为7.21 lm/W,发光光谱稳定,在9V时得到色坐标为(0.33,o.33)的标准白光,并且在较宽的电压范围内仅有(±0.08,±0.08)变化.这是由于超薄层FIrpic和(t-bt)2Ir(acac)形成的陷阱效应直接俘获电子和空穴,从而将载流子复合区域限制在一定范围内,不仅有利于增加激子的辐射发光效率,且提高了光谱的稳定性.  相似文献   

2.
《光电技术》2009,51(2):17-20
我们研制成功了两种磷光白光有机发光器件。在1000cd/m^2的亮度下,一种器件的外部量子效率为20%。色座标CIE为(0.38,0.39),另一种器件的光效为251m/W.色座标为(O.39,0.44),在100cd/m^2的亮度下,借助于光外耦合增强技术,前者的EQE达到了37%,而后者的光效则提高到511m/W。  相似文献   

3.
采用双发光层双主体结构,制备了高效稳定的白光有机电致发光器件(WOLED)。其中蓝光层是TBADN:3 wt%DSA-Ph,红光层是[TBADN:Alq3]:1 wt%DCJTB,通过改变红光层中Alq3和TBADN的掺杂比来调节器件的发光效率和颜色。当[TBADN:Alq3]为75∶25时获得了效率最高、色度好和性能稳定的白光,在20 mA/cm2时器件的发光效率为6.27 cd/A,CIE色坐标为(0.364,0.348)。当电流密度为200 mA/cm2时,发光效率仍能保持在6.15 cd/A,色度坐标为(0.344,0.344)。由于在[TBADN:Alq3]双主体结构中,TBADN具有双极性,从而改善了器件中载流子的平衡及其在发光层中的分布,进而提高的器件的性能。  相似文献   

4.
通过将橙色荧光染料Rubrene和蓝色荧光染料BCzVBi分别掺入NPB和DPVBi中作为发光层,制备了结构为ITO/m-MTDATA(30nm)/NPB(20nm)/NPB∶0.5wt% Rubrene(10nm)/DPVBi∶5wt% BCzVBi(15nm)/Bphen(25nm)/LiF(0.6nm)/Al的双发光层结构白色有机荧光电致发光器件。器件发光主要是Rubrene直接俘获载流子和主体材料DPVBi到客体BCzVBi的能量传递两种发光机制竞争的结果。在低压下Rubrene俘获载流子发光占主导地位,导致器件的橙光相对较强,随电压升高主客体能量传递增强,使蓝光相对强度增强。器件最大电流效率为6.5cd/A,最大亮度为16 140cd/m2。亮度从1 000cd/m2增加到10 000cd/m2,器件的发光色坐标从(0.33,0.37)变化到(0.30,0.32),始终处于白光区。  相似文献   

5.
杨惠山 《半导体光电》2013,34(1):16-19,29
采用掺杂和非掺杂方法制备了一种多层白色有机电致发光器件.DPVBi为蓝光发光层,将红光[Ir(piq)2(acac)]磷光掺杂染料掺入到母体BAlq中作为红光发光层,荧光材料QAD以亚单层的方式插入Alq3中作为绿光发光层,通过改变亚单层的厚度,得到了高效率的有机发光器件,此器件的最大电流效率可达6.1 cd/A,最大功率效率达3.1 lm/W,最大亮度达25 300 cd/m2,当电压从4V变化到14V时,色坐标从(0.45,0.55)变化到(0.47,0.37),处于黄白光区.此器件的特点在于器件的性能可以通过简单地调整QAD的厚度进行控制,避免了使用多掺杂层工艺的复杂性.  相似文献   

6.
以磷光染料iridium (III) bis [(4,6-di-fluoropheny)-pyridinato-N,C2′] picolinate(Flrpic)掺在4.4′-bis (9-carbazolyl)-2,2′-dimethyl-biphenyl(CDBP)中作为蓝光发光层,tris (2-Phenylpyridine) iridium(Irlppy)3和bis (1-phenyl-isoquinoline) acetylacetonate iridium (III)(Ir(piq)2)(acac)共掺在4,4′-N,N′-dicarbazole-biphenyl(CBP)中作为绿光和红光发光层,制备了高效白光器件.通过控制染料的浓度和发光层的厚度调节颜色,实现白光发射.器件的最大亮度为17 V时37 100 cd/m2,最大效率为5 V时7.37 lm/W.当亮度从1 000 cd/m2 到30 000 cd/m2色坐标由(0.41,0.42) 变到(0.37,0.39).  相似文献   

7.
白色磷光OLEDs的制备及性能研究   总被引:3,自引:3,他引:0  
采用蓝色、黄色磷光混色的发光方式实现白光有机电致发光器件(OLEDS),其中黄色发光层由红色和绿色磷光材料混合而成,器件的结构为ITO/MoO3(30nm)/NPB(40nm)/mCP:FIrpic(8%)(50nm)/CBP:R-4B(1%):GIrl(14%)(xnm)/BCP(10nm)/AlQ(40nm)/LiF(1nm)/Al(100nm)(x=2,3,4,5,6nm)。对器件的效率、亮度等对比发现,当x=5nm时,器件的性能最佳,最大亮度为9 471cd/cm2,效率为23.5cd/A,色坐标(0.32,0.35)。实验表明,影响器件色稳定性和效率低的原因是电子和空穴迁移随驱动电压变化响应不一致引发激子复合区域的移动。  相似文献   

8.
刘丁菡  张方辉  阎洪刚  蒋谦 《半导体技术》2010,35(12):1153-1157
主要研究了NPB厚度对堆叠式白色有机电致发光器件性能的影响。实验制备了四组结构为ITO/2-TNATA(15 nm)/NPB(Tnm)/ADN(30 nm):TBPe(2%):DCJTB(1%)/Alq3(20 nm)/LiF(1 nm)/Al(100 nm)(其中T分别为15,30,35和40 nm)的OLED器件,比较了不同厚度情况下OLED器件的电致发光特性,结果表明:改变NPB(4,4-N,N-bis-N-1-naphthy1-N-pheny1-amino-bipheny1)的厚度能够明显提高器件的发光亮度和发光效率,并调节载流子复合区域的位置,有效提高载流子的注入效果。同时发光器件的颜色也可通过调节NPB层的厚度来改变,这种器件使用NPB作为空穴传输层显示出了色纯度高、亮度好、效率较高的白光发射,其具有CIE色坐标(x=0.301 6,y=0.338 5),最高亮度和最大发光效率分别达到14 020 cd/m2与2.94 lm/W。  相似文献   

9.
制作了一种白色有机电致发光器件(WOLED)。将红光[Ir(piq)2(acac)]及绿光[Ir(ppy)3]磷光掺杂染料分别掺入到母体CBP中,在2种磷光发光层间插入蓝光材料DPVBi,引入电子传输能力强的BPhen作为电子注入层和空穴阻挡层,通过改变蓝光发光层的厚度,得到了高效率的WOLED,最大电流效率可达17.6cd/A,最大功率效率达13.7lm/W,最大亮度达27525cd/m2,当电压从4V变化到12V时,色坐标从(0.54,0.35)变化到(0.30,0.31),基本处于白光区。器件的特点在于DPVBi的存在阻挡了2种磷光材料间的能量转移,色度可以通过简单地调整DPVBi的厚度,避免使用稀有的蓝光磷光材料和与其相匹配的母体材料,同时又可以保持较高的发光效率。  相似文献   

10.
利用9,10-bis(2-naphthyl) anthracene(AND)掺杂rubrene作为器件单一发光层,研制成功单层白光器件。器件在电流密度为140mA/cm2时,电流效率达到5.93cd/A;当电压为21V时,该器件达到最高亮度9300cd/m2。器件发光色坐标为(0.32,0.40),且随着电压的变化发光色度始终处于白光区。这种器件的白色发射是来源于AND(蓝色发射)和rubrene(橙色发散)的混合发射。与此同时,AND和rubrene二者之间会发生Frster能量传递。  相似文献   

11.
叠层有机发光二极管(Organic Light-Emitting Diode,OLED)白光器件具备低功耗、高亮度、高色域等性能优势。然而,由于效率、寿命及驱动电压等性能仍有较大改进空间,叠层结构的材料及电学结构仍需进一步优化。本文重点介绍叠层OLED白光器件的最新研究进展,总结了三类电荷产生层(Charge Generation Layer,CGL)在工程化应用中存在的问题以及其非破坏性检测方法;综述高效叠层OLED白光器件的“全磷光体系”、“并行通道激子收集”及“混合磷光热活性型延迟荧光(Thermally Activated Delayed Fluorescence,TADF)体系”最新研究成果,对器件寿命问题进行总结,探讨分析“分级掺杂”、“四色混合TADF体系”等从结构方面提出优化方案,并针对不同发光材料体系中的CGL材料及结构综述叠层OLED白光器件实现较低工作电压的技术方法,最后对叠层OLED白光器件的材料和结构提出改进建议。  相似文献   

12.
叠层有机发光二极管(Organic Light-Emitting Diode,OLED)白光器件具备低功耗、高亮度、高色域等性能优势。然而,由于效率、寿命及驱动电压等性能仍有较大改进空间,叠层结构的材料及电学结构仍需进一步优化。本文重点介绍叠层OLED白光器件的最新研究进展,总结了三类电荷产生层(Charge Generation Layer,CGL)在工程化应用中存在的问题以及其非破坏性检测方法;综述高效叠层OLED白光器件的“全磷光体系”、“并行通道激子收集”及“混合磷光热活性型延迟荧光(Thermally ActivatedDelayedFluorescence,TADF)体系”最新研究成果,对器件寿命问题进行总结,探讨分析“分级掺杂”、“四色混合TADF体系”等从结构方面提出优化方案,并针对不同发光材料体系中的CGL材料及结构综述叠层OLED白光器件实现较低工作电压的技术方法,最后对叠层OLED白光器件的材料和结构提出改进建议。  相似文献   

13.
DCJTB掺杂浓度对OLED器件性能的影响(英文)   总被引:1,自引:1,他引:0  
通过在发光层ADN∶TBPe∶DCJTB中改变DCJTB的掺杂浓度,得到了一种高效的白光OLED器件。考察了同一掺杂浓度TBPe下不同浓度的DCJTB的器件性能,发现当DCJTB掺杂浓度为1%(质量分数)时,器件获得最大电流效率6.6cd/A和最大功率效率3.21lm/W,此时亮度为10520cd/m2,对应的CIE坐标为(0.3186,0.3520)。通过改变DCJTB浓度,能够获得不同的器件颜色。  相似文献   

14.
杨帅  董丹  何谷峰 《半导体光电》2017,38(6):775-778
文章采用具有电子捕捉能力的橙红色磷光材料iridium(Ⅲ)bis(2-methyldibenzo-[f,h] quinoxaline) (acetylacetonate) (Ir(MDQ)2 (acac))作为超薄发光层应用于有机发光二极管中.通过对其厚度的优化,发现当发光层厚度为0.1 nm时,器件性能最好,最大电流效率达到了28.1 cd/A,明显优于采用掺杂发光层的器件.分析了发光材料的载流子捕捉作用对器件载流子平衡及器件电流效率的影响,发现超薄发光层结构几乎不改变器件的电学特性,不会进一步破坏器件载流子平衡,正因如此,大多数磷光材料都可以采用超薄发光层获得很高的效率.  相似文献   

15.
研究了2-TNATA厚度对蓝与黄二基色分离的堆叠式白色有机发光器件性能的影响。器件结构为:2-TNATA(xnm)/NPB(25nm)/ADN(30nm)∶TBPE(2%)∶DCJTB(1%)/Alq3(20nm)/LiF(1nm)/Al(100nm)。根据实验结果,2-TNATA的厚度对载流子的注入、色稳定性、热稳定性影响明显。发光器件的颜色可以通过改变加入的2-TNATA层的厚度来改变。这种器件使用2-TNATA作为空穴注入层显示出了色纯度高的白光发射,CIE色坐标x=0.3197,y=0.3496,亮度能够达到12230cd/m2。  相似文献   

16.
以mCP为主体发光材料,蓝绿色磷光染料BGIr1作为掺杂剂,制备了6种不同BGIr1掺杂量的蓝绿色磷光有机电致发光器件(OLED),研究了不同掺杂量对蓝绿色磷光OLED器件发光特性的影响。制得器件的结构为ITO/MoO3(20nm)/NPB(40nm)/mCP:BGIr1(x%,30nm)/BCP(10nm)/Alq3(20nm)/LiF/Al(100nm),其中x%为发光层中磷光染料BGIr1的掺杂量(质量分数)。结果表明,BGIr1掺杂量为18%时,获得器件的发光性能最佳。18%BGIr1掺杂器件在488nm和512nm处获得两个主发射峰,当电流密度为26.5mA/cm2时,获得最大发光效率为6.2cd/A;在15V驱动电压下,获得最大亮度为6 970cd/cm2,CIE坐标为(0.17,0.31)。这说明,BGIr1掺杂改善了器件的发光亮度和色纯度,提高了器件的发光效率。  相似文献   

17.
高效率白色有机电致发光器件   总被引:2,自引:0,他引:2  
通过引入磷光材料Ir(pPy3)作为敏化剂,制作了高效率的白色有机电致发光器件.Ir(pPy)3和荧光染料DCJTB共掺入CBP母体中.此共掺层的厚度以及浓度都影响到整个器件的效率和颜色.Alq和BCP分别用作电子传输层和激子阻挡层,NPB用作蓝光发光层和空穴传输层.器件的最大效率和亮度分别可以达到9 cd/A和12 020 cd/m2.通过调节掺杂层的厚度以及Ir(ppy)3和DCJTB的浓度,可以得到相当纯正的白光,其色坐标为(0.33,0.32),在10~19 V的范围内几乎不随驱动电压的变化而变化.  相似文献   

18.
利用Alq3掺杂在NPB中作为空穴传输层,并以DPVBi和rubrene作为发光层,制备了多层的白光有机发光器件(OLED).与在同一条件下的对比器件相比,掺杂的器件在相同电压下亮度和效率都有所增加.掺杂的器件的最大亮度在17 V时达到了19 921 cd/m2,最大效率在7 V时达到了3.69 cd/A,色坐标(CIE)在5~16 V内几乎没有改变,我们认为,掺杂器件性能的提高是由于掺杂剂Alq3分子对空穴有散射作用,阻挡了部分空穴的传输,降低了空穴的迁移率;而Alq3又是很好的电子传输材料,Alq3掺杂提高了空穴和电子在发光层中的注入平衡,有利于激子的形成,从而提高了器件的性能.  相似文献   

19.
制备了结构为:ITO/MoO3(40nm)/NPB(40nm)/TCTA(10nm)/CBP:Ir(ppy)2acac(x%)(30nm)/BCP(10nm)/Alq3(40nm)/LiF(1nm)/Al(100nm)的器件,Ir(ppy)2acac为绿色磷光染料,x分别为4%、6%、8%、10%。通过调节绿色磷光染料的掺杂浓度,对器件的发光性能进行了研究,发现在掺杂浓度为8%,亮度为490cd/m2,器件获得最高电流效率为69.43cd/A,相比4%的器件高出27.5%。分析原因是掺杂浓度越高,载流子在绿色染料上复合的几率越高;CBP与Ir(ppy)2acac的LUMO能级均为2.5eV,注入主体CBP上的电子可以直接传递给掺杂染料,避免电子对掺杂染料传递过程中的能量损失;较高的掺杂浓度更有利于载流子的传输。然而,较高的掺杂浓度会引起三线态激子的猝灭效应。另外,由于TCTA、BCP为载流子阻挡材料,具有较高的三线态能量,可以将载流子和激子限制在发光层内。  相似文献   

20.
基于三原色白光器件ITO/NPB/TCTA/Ir(MDQ)2(acac)∶TCTA/TCTA/FIrpic∶TmPyPb/Ir(ppy)3∶TmPyPb/TmPyPb/LiF/Al,通过在其绿色与蓝色发光层之间插入不同厚度的TmPyPb,研究了该插入层的厚度对器件色纯度的影响。研究表明,插入层厚度的改变能够影响能量转移及调节激子的分布,当插入层厚度为4nm时,器件色坐标为(0.33,0.36),最大发光效率达11.58cd/A。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号