首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用传统固相法制备(Na Bi)_(0.5-x)(KCe)_xBi_2Ta_2O_9(NBTO-x,0≤x≤0.15)无铅压电陶瓷,研究K/Ce离子含量对NBTO陶瓷结构和电学性能的影响。结果表明:所有陶瓷样品均生成了m=2的铋层状结构化合物,且未发现其他明显杂峰;随着K/Ce离子含量的增加,样品的Curie温度T_C逐渐降低;K/Ce离子掺杂提高了样品的压电性能,压电常数d_(33)随掺杂量提高呈现出先升高后降低趋势,当x=0.075时,样品的综合性能达到最佳:d_(33)=19.0 p C/N,Curie温度T_C=735℃,介电损耗tanδ=0.137%,体积密度r=9.113 g·cm~(-3);NBTO (x=0.075)陶瓷在600℃退火2 h,其d_(33)仍高达17.8 p C/N,约为初始值(d_(33)=19.0 p C/N)的93.7%,表现出良好的温度稳定性。  相似文献   

2.
采用固相法制备了CaBi_8Ti_7O_(27–x) Ce(CBT–BIT–x Ce,x=0.00,0.02,0.04,0.06,0.08,0.10)共生铋层状结构陶瓷。利用X射线衍射、高分辨率透射电子显微镜、Raman光谱、介电谱、阻抗谱对其结构和电学性能进行表征。Ce主要是以Ce~(3+)的形式占据类钙钛矿层的A位,也存在少量Ce~(4+)进入B位。Ce掺杂导致陶瓷晶格畸变增加从而提升了Curie温度。在高温区域陶瓷的晶粒对电传导起主要作用,Ce掺杂使陶瓷电导活化能增加是因为氧空位浓度的减少,进而导致介电损耗tanδ减小和压电常数d_(33)的提升。CBT–BIT–0.06Ce陶瓷样品具有最佳电性能:T_c=746℃,d_(33)=22 pC/N,tanδ=0.40%。  相似文献   

3.
采用微波烧结法制备了锑掺杂改性K_(0.48)Li_(0.02)Na_(0.5)NbO_3(KLNN)压电陶瓷,研究了锑掺杂量(x=0,0.02,0.04,0.06,0.08)对陶瓷的微观结构、表面形貌、介电性能、压电性能和铁电性能的影响。结果表明:在掺杂范围内,各组分的陶瓷样品均形成了单一的钙钛矿结构,结晶良好,晶粒均匀,说明金属锑在KLNN晶格中可以形成均匀固溶体,改善了KLNN基无铅压电陶瓷的微观结构,提高了其压电性能和铁电性能。在x=0.06时,K_(0.48)Li_(0.02)Na_(0.5)(Nb_(0.94)Sb_(0.06))O_3陶瓷样品的Curie温度介电常数峰(ε_r)、单向电致应变(ε)、压电系数(d_(33))均达到最大值,分别为ε_r=5 557,ε=0.08%,d_(33)=208 pC/N。  相似文献   

4.
采用固相法制备了Ce和Sr复合掺杂的Bi4Ti2.92Nb0.08O12.04(BTN+0.5x%CeO2+0.5x%SrCO3,0≤x≤1.5,质量分数)铋层状高温无铅压电陶瓷,研究了不同含量的Ce和Sr掺杂对BTN系陶瓷微观结构及电性能的影响。结果表明:样品均为单一的铋层状结构相,Ce和Sr的引入明显提高了陶瓷的压电性能。当掺杂量x=0.9时,样品具有最佳性能:压电常数d33=29pC/N,平面机电耦合系数kp=8.77%,介电损耗tanδ=0.13%,剩余极化强度Pr=15.87μC·cm-2和Curie温度TC=627℃。此外,该组分陶瓷样品具有良好的压电稳定性,表明该材料在高温领域下具有良好的应用前景。  相似文献   

5.
采用传统固相法制备Na_(0.25)K_(0.25)Bi_(2.5)Nb_2O_9-x mol%CaTiO_3(NKBN-CT,x=0,0.7,1.0,2.0,3.0,4.0)铋层状无铅压电陶瓷材料。本文系统研究了CaTiO_3掺杂对Na_(0.25)K_(0.25)Bi_(2.5)Nb_2O_9基陶瓷物相结构、微观结构以及电性能的影响。结果表明:所有陶瓷材料样品均为单一的铋层状结构。随着CaTiO_3掺量的增加,Curie温度T_c呈增高趋势(653~665°C),压电常数d_(33)先增大后减小;当x=1.0时,样品的电性能达到最佳值,即d_(33)=25pC/N,介电损耗tanδ=0.42%,机械品质因数Q_m=2845,T_c=659℃。退极化研究表明NKBN-CT陶瓷样品的压电性能具有良好的热稳定性,说明CaTiO_3掺杂改性Na_(0.25)K_(0.25)Bi_(2.5)Nb_2O_9基系列陶瓷具有高温领域应用的潜力。  相似文献   

6.
《陶瓷》2017,(4)
采用固相烧结法制备无铅压电陶瓷K_(0.5)Na_(0.52)Nb_(1-x)Sb_xO_3,其掺杂量x取值分别为0、0.02、0.03、0.04、0.05、0.06,对其进行相关性能和常数测定。通过相关试验及测定得出结论:烧结温度为1 140℃时,掺杂水平x为0.02,样品的压电常数d_(33)=111pC/N,介电常数ε_r=1 200,机械品质因数Q_m=10,机电耦合系数kp=0.387,介电损耗tanδ=0.11,该压电陶瓷具有良好的压电性能和铁电性。  相似文献   

7.
采用传统固相法制备了Na_(0.25)K_(0.25)Bi_(2.5–x)Ho_xNb_2O_9(NKBN–x Ho~(3+),0.000≤x≤0.030)铋层状陶瓷,研究了Ho~(3+)掺杂对NKBN陶瓷结构、电学和上转换发光性能的影响。X射线衍射谱表明Ho~(3+)进入NKBN晶格形成了固溶体。随着Ho3+掺杂量的增加,NKBN陶瓷的晶粒尺寸降低,当x=0.020时,样品的压电和铁电性能均达到最佳:d_(33)=21.8pC/N2Pr=1.84μC/cm。(d_(33)为压电常数,Pr为剩余极化强度)所有样品在400℃均未出现明显的退极化现象,在高温下表现出良好的压电稳定性。在980 nm激光激发下,所有陶瓷样品均表现出上转换荧光发光特性,表明NKBN–x Ho~(3+)陶瓷在光电多功能材料领域具有潜在的应用价值。随着极化电压的增加,陶瓷样品的晶格结构对称性提高,上转换荧光发光强度降低。  相似文献   

8.
采用传统固相合成法制备了SrCaBi_(4-x)Er_xTi_5O_(18)(SCBT-xEr,x=0.00,0.02,0.04,0.06)无铅压电陶瓷,研究了Er~(3+)掺杂量对陶瓷物相、微观结构、电学性能及高温稳定性的影响。XRD表明,Er~(3+)掺杂并没有改变SCBT-xEr陶瓷的晶体结构,所有样品均为单一的铋层状结构;通过电学性能分析,随着Er~(3+)掺杂量的增加,在室温下介电常数先增加后减小,居里温度(T_c)逐渐减小。当x=0.02,烧结温度为1180℃时,陶瓷的综合性能最佳,压电常数(d33)=23 pC/N,居里温度(T_c)=427℃;当退火温度达到300℃时,压电常数(d_(33))依旧保持在20 pC/N左右,说明材料具有较好的温度稳定性,材料可以在300℃的高温环境中应用。  相似文献   

9.
采用固相法制备Er~(3+)掺杂铋层状结构陶瓷Bi_(4-x)Er_xTi_3O_(12)-4%Nb_2O_5(BITN-xEr,0≤x≤0.25)。研究了不同Er~(3+)含量对样品的结构、上转换发光与电性能的影响。XRD表明,所有样品均为正交相铋层状结构,并存在第二相Bi_2Ti_2O_7。Raman光谱表明,Er~(3+)取代了类钙钛矿层A位中的Bi~(3+),导致Ti06八面体的结构畸变。在980nm近红外光源激发下,所有掺杂样品均存在2个绿光和1个红光发射峰,当x=0.20时样品荧光强度达到最佳。随着掺杂量x的增加,Curie温度逐渐升高,压电系数(d_(33))和剩余极化强度(P_r)逐渐下降。当温度升高到500℃时,BITN-O.10Er样品仍有较高的压电活性(d_(33)=21 pC/N)和较好的热稳定性,表明该材料是一种具有潜在应用价值的多功能材料。  相似文献   

10.
采用微波烧结法制备了锑掺杂改性K0.48Li0.02Na0.5NbO3(KLNN)压电陶瓷,研究了锑掺杂量(x=0,0.02,0.04,0.06,0.08)对陶瓷的微观结构、表面形貌、介电性能、压电性能和铁电性能的影响。结果表明:在掺杂范围内,各组分的陶瓷样品均形成了单一的钙钛矿结构,结晶良好,晶粒均匀,说明金属锑在KLNN晶格中可以形成均匀固溶体,改善了KLNN基无铅压电陶瓷的微观结构,提高了其压电性能和铁电性能。在x=0.06时,K0.48Li0.02Na0.5(Nb0.94Sb0.06)O3陶瓷样品的Curie温度介电常数峰(εr)、单向电致应变(ε)、压电系数(d33)均达到最大值,分别为εr=5557,ε=0.08%,d33=208 pC/N。  相似文献   

11.
利用常规烧结方法制备出了多种A位离子掺杂的钛酸铋纳[(Bi1/2Na1/2)TiO3,BNT]无铅压电陶瓷.对BNT基陶瓷的电学性能和力学性能进行了研究.在(1-x)(Bi1/2Na1/2)0.900Ba0.088Sr0.012TiO3-x(Bi1/2K1/2)TiO3(x=0-0.14)陶瓷体系中,当x=0.10时,可获得最大压电常数(168pC/N).在1 kHz,这种陶瓷的介电常数、介电损耗和平面机电耦合系数分别为1 221,0.0361和0.2281.Curie温度随x的增加先增加,当x=0.12时,达到最高值(300℃),随后,当x值进一步增加,Curie温度降低.该种无铅压电陶瓷的Vickers硬度和断裂韧性分别为5.0GPa和2.0MP·m1/2,均高于Pb(Zr,Ti)O3陶瓷.  相似文献   

12.
采用固相法制备了(Na0.5Bi0.5)TiO3+xmol%Y2O3+xmol%Fe2O3(0≤x≤1.25)(简称NBTYF)无铅压电陶瓷。XRD衍射结果表明,所有陶瓷样品均为单一的钙钛矿结构。SEM表明,掺杂后陶瓷的晶粒尺寸增大。介电温谱表明该体系陶瓷具有弛豫特性,随掺杂量的增加,退极化温度Td向低温方向移动,而居里温度Tc向高温方向移动。陶瓷的密度和压电常数d33和随x的增加先增大后减小,而机械品质因子Qm一直下降。当x=1.00时,该体系陶瓷具有最佳压电性能,d33=106pC/N,Qm=93,kp=16.08%,εr=594,tanδ=5.33%,ρ=5.699g/cm3。  相似文献   

13.
采用固相法制备了Na0.25K0.25Bi2.5Nb2O9-0.4wt%Cr2O3-xwt%CeO2(x=0.00~1.00)高温无铅压电陶瓷,研究了Ce掺杂对该系列陶瓷微观结构及电性能的影响。结果表明所有样品均为单一的铋层状结构陶瓷,适量的Ce掺杂明显改善了陶瓷的压电与铁电性能,降低了陶瓷的电导率和介电损耗。当掺杂量x=0.50时,样品具有最佳性能:d33=27 pC/N,tanδ=0.09%,kp=7.97%,Qm=2637,Tc=656℃,Ec=46 kV/cm和Pr=4.4μC/cm2,表明该材料在高温领域内具有良好的应用前景。  相似文献   

14.
采用传统固相法制备Li、Ta和Sb共同掺杂铌酸钾钠(KNN)的(K0.44Na0.52Li0.04)(Nb0.86Ta0.10Sb0.04)O3(KNLNTS)无铅压电陶瓷。研究不同烧结温度对该陶瓷的结构、形貌、致密度以及电学性能的影响。结果表明:不同温度下烧结的陶瓷样品均为钙钛矿相结构;在1 050~1 150℃之间烧结均可获得性能良好的陶瓷样品;1 050℃烧结的样品表现出最佳的综合电学性能,即相对介电常数和压电系数均较大,分别为1 120pC/N和193pC/N,介电损耗较小为2.55%,机械品质因子较大为85,密度较大为4.65g/cm3,且该样品具有饱和的电滞回线。随着烧结温度的升高,陶瓷样品电学性能下降和晶粒增大均与样品中存在着碱金属离子挥发有关。KNLNTS陶瓷样品的Curie温度由不掺杂的KNN陶瓷样品的420℃下降为301℃。  相似文献   

15.
在A位和B位同时分别加入Ca~(2+)、Zr~(4+)和Sn~(4+),采用传统的固相烧结法在1 480℃烧结4 h制备了(Ba_(1-x)Ca_x(Ti_(0.94)Zr_(0.056)Sn_(0.004))O_3(BC_xTZS)压电陶瓷。研究了Ca~(2+)含量x对BC_xTZS陶瓷微观形貌、相结构和电学性能的影响。结果表明:少量Ca~(2+)有利于晶粒长大,x=0.05的样品具有最大的晶粒尺寸12.88μm,Ca~(2+)、Zr~(4+)和Sn~(4+)全部固溶到BaTiO_3晶格中形成单一固溶体。当0.00≤x≤0.03时,BC_xTZS陶瓷的室温相结构为正交相(O)-四方相(T)两相共存;x=0.05时,O-菱方相(R)-T三相共存;x=0.07时,O相消失,R-T两相共存。所有样品具有较高的Curie温度(T_C104℃)和良好的电学性能(d_(33)=325 pC/N、k_p=34%、Q_m=151),实现了电学性能和Curie温度的协同调控。  相似文献   

16.
采用传统固相法制备了(Li_(0.5)Bi_(0.5))_xBa_(1–x)Bi_8Ti_7O_(27)共生铋层状结构无铅压电陶瓷,采用(Li_(0.5)Bi_(0.5))~(2+)复合掺杂取代A位的Ba~(2+)以调节其晶体结构,提升其Curie温度及综合电学性能,从而达到拓宽该体系高温应用领域的研究目标。(Li_(0.5)Bi_(0.5))~(2+)的引入使陶瓷的压电常数d_(33)从8 pC/N最高提升至18.5 pC/N,Curie温度从480℃提升至633℃。体系正交畸变程度增加,体系剩余极化强度与结构畸变有关,且与压电常数的变化规律一致。(Li_(0.5)Bi_(0.5))_(0.6)Ba_(0.4)Bi_8Ti_7O_(27)陶瓷的综合电性能最佳,为高温压电领域提供了潜在的候选材料。  相似文献   

17.
采用固相法制备Na_(0.25)K_(0.25)Bi_(2.5–x)Nd_xNb_2O_9(NKBN–xNd~(3+),0≤x≤0.40,x为摩尔分数)铋层状无铅压电陶瓷,研究了不同Nd~(3+)掺杂量对NKBN–x Nd陶瓷显微结构、电学性能的影响及NKBN–0.20Nd~(3+)陶瓷高温下的电导行为。结果表明:所有样品均为单一的铋层状结构;当Nd~(3+)的掺杂量x为0.02时,样品的晶粒尺寸减小并趋于均匀,致密度提高;适量的Nd~(3+)掺杂能降低样品的介电损耗,提高NKBN陶瓷的压电常数d33。NKBN–0.20Nd~(3+)陶瓷样品的电学性能最佳:压电常数d_(33)=24 p C/N,机械品质因数Q_m=2 449,tanδ=0.40%,2P_r=1.11μC/cm~2。NKBN–0.20Nd~(3+)样品的阻抗谱表明:在高温区域陶瓷的晶粒对电传导起主要作用,当温度高于600℃时,样品主要表现为本征电导,NKBN–0.20Nd~(3+)和NKBN的电导活化能分别为1.85和1.64 e V。  相似文献   

18.
采用固相法制备Na_(0.25)K_(0.25)Bi_(2.5–x)Nd_xNb_2O_9(NKBN–xNd^(3+),0≤x≤0.40,x为摩尔分数)铋层状无铅压电陶瓷,研究了不同Nd^(3+)掺杂量对NKBN–x Nd陶瓷显微结构、电学性能的影响及NKBN–0.20Nd^(3+)陶瓷高温下的电导行为。结果表明:所有样品均为单一的铋层状结构;当Nd^(3+)的掺杂量x为0.02时,样品的晶粒尺寸减小并趋于均匀,致密度提高;适量的Nd^(3+)掺杂能降低样品的介电损耗,提高NKBN陶瓷的压电常数d33。NKBN–0.20Nd^(3+)陶瓷样品的电学性能最佳:压电常数d_(33)=24 p C/N,机械品质因数Q_m=2 449,tanδ=0.40%,2P_r=1.11μC/cm^2。NKBN–0.20Nd^(3+)样品的阻抗谱表明:在高温区域陶瓷的晶粒对电传导起主要作用,当温度高于600℃时,样品主要表现为本征电导,NKBN–0.20Nd^(3+)和NKBN的电导活化能分别为1.85和1.64 e V。  相似文献   

19.
利用常规烧结方法制备出了多种A位离子掺杂的钛酸铋纳[(Bi1/2Na1/2)TiO3,BNT]无铅压电陶瓷。对BNT基陶瓷的电学性能和力学性能进行了研究。在(1-x)(Bi1/2Na1/2)0.900Ba0.088Sr0.012TiO3-x(Bi1/2K1/2)TiO3(x=0-0.14)陶瓷体系中,当x=0.10时,可获得最大压电常数(168 pC/N)。在1 kHz,这种陶瓷的介电常数、介电损耗和平面机电耦合系数分别为1 221,0.036 1和0.228 1。Curie温度随x的增加先增加,当x=0.12时,达到最高值(300℃),随后,当x值进一步增加,Curie温度降低。该种无铅压电陶瓷的Vickers硬度和断裂韧性分别为5.0 GPa和2.0 MPa.m1/2,均高于Pb(Zr,Ti)O3陶瓷。  相似文献   

20.
采用标准电子陶瓷制备工艺制备了Na_(0.5)K_(0.5)NbO_3陶瓷和高组分碱土金属钛酸盐0.06AETiO_3(AE=Mg、Ca、Sr和Ba)掺杂(K_(0.5)Na_(0.5))NbO_3陶瓷,研究了不同的碱土金属离子对NKN陶瓷的烧结特性和电学性能的影响。研究表明,1130℃烧结成瓷的NKN-CaT和NKN-SrT陶瓷获得了高的相对密度(96%);室温下,XRD图谱显示,NKN-CaT、NKN-SrT和NKN-BaT陶瓷均为四方钙钛矿结构;介电温谱显示NKN-CaT、NKN-SrT和NKN-BaT陶瓷的正交-四方相变温度T_(o-t)移到了室温以下;室温下NKN-CaT、NKN-SrT陶瓷表现出了明显的"软"性掺杂的性能,并获得了高的压电系数d_(33)(171 pC/N和135 pC/N)与机电耦合系数k_p(0.275和0.240)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号