共查询到19条相似文献,搜索用时 62 毫秒
1.
刘凤芹 《计算机光盘软件与应用》2012,(21):60-61
聚类分析在数据挖掘领域中是一个非常重要的研究课题,该文阐述了聚类算法的基本原理和性能要求,并依据算法思想的不同把聚类算法分为五类,详细介绍了每一类的算法思想、优缺点及典型算法,有利于用户对聚类算法的选择和研究者对聚类算法的改进研究,最后探讨了聚类算法今后的发展趋势。 相似文献
2.
聚类算法是数据挖掘的核心技术。介绍了几类主要的传统聚类算法,给出了每类算法的基本概念、基本原理、各类表示聚类的算法以及这些算法的特征。然后再提出了一种新的聚类算法———覆盖聚类算法,给出了该算法的具体步骤,并对模糊聚类算法和该算法用实验的方式进行比较,证明了覆盖聚类算法的可行性和有效性。最后分析了当前聚类算法存在的问题和发展方向。 相似文献
3.
朱永红 《计算机技术与发展》2007,17(1):123-125
聚类算法是数据挖掘的核心技术。介绍了几类主要的传统聚类算法,给出了每类算法的基本概念、基本原理、各类表示聚类的算法以及这些算法的特征。然后再提出了一种新的聚类算法——覆盖聚类算法,给出了该算法的具体步骤,并对模糊聚类算法和该算法用实验的方式进行比较,证明了覆盖聚类算法的可行性和有效性。最后分析了当前聚类算法存在的问题和发展方向。 相似文献
4.
5.
BTS(Best Two Step)聚类算法是结合层次聚类和划分聚类算法的两步聚类算法。层次聚类算法类与类之间不可以对象交换,很容易造成聚类质量不高的结果。而划分聚类对于初始值的设定以及异常噪声数据都很敏感,所以我们研究提出了BTS算法,实验证明BTS算法可达到高质量的聚类效果。 相似文献
6.
数据挖掘中聚类算法比较研究 总被引:16,自引:0,他引:16
聚类算法是数据挖掘的核心技术,本文结合提出了评价聚类算法好坏的5个标准,基于这5个标准,对数据挖掘中常用聚类算法作了比较分析,以便于人们更容易,更快捷地找到一种适用于特定问题的聚类算法。 相似文献
7.
8.
魏丽 《数字社区&智能家居》2007,(11):637-639
聚类分析技术是数据挖据中的一种重要技术。本文介绍了数据挖掘对聚类的典型要求和聚类方法的分类,研究分析了聚类的主要算法.并从多个方面对这些算法的性能进行比较。 相似文献
9.
10.
增量式CURE聚类算法研究 总被引:3,自引:0,他引:3
聚类是一种非常有用的数据挖掘方法 ,可用于发现隐藏在数据背后的分组和数据分布信息 .目前已经提出了许多聚类算法及其变种 ,但在增量式聚类算法研究方面所作的工作较少 .当数据集因更新而发生变化时 ,数据挖掘的结果也应该进行相应的更新 .由于数据量大 ,在更新后的数据集上重新执行聚类算法以更新挖掘结果显然比较低效 ,因此亟待研究增量式聚类算法 .通过对 CURE聚类算法的改进 ,提出了一种高效的增量式 CU RE聚类算法 .它能够很好的解决传统聚类算法在伸缩性、数据定期更新时所面临的问题 .实验结果显示本算法是一种有效的增量式聚类算法 相似文献
11.
为了克服经典K-means算法对初始聚类中心过分依赖的缺点,该文提出采用竞争神经网络和密度思想对经典k-means算法进行预处理,从而改变经典K-means算法对初始聚类中心的随机选择。实验结果表明,这两种方法是有效的。 相似文献
12.
在目前聚类方法中, k-means与势函数是最常用的算法,虽然两种算法有很多优点,但也存在自身的局限性。 k-means聚类算法:其聚类数目无法确定,需要提前进行预估,同时对初始聚类中心敏感,且容易受到异常点干扰;势函数聚类算法:其聚类区间范围有限,对多维数据进行聚类其效率低。针对以上两种算法的缺点,提出了一种基于 K-means 与势函数法的改进聚类算法。它首先采用势函数法确定聚类数目与初始中心,然后利用K-means法进行聚类,该改进算法具有势函数法“盲”特性及K-means法高效性的优点。实验对改进算法的有效性进行了验证,结果表明,改进算法在聚类精度及收敛速度方面有很大提高。 相似文献
13.
硬聚类算法HCM求解的结果通常都是局部的最优解,当模糊集合间的运算采用传统定义的时候,它的聚类结果中还会存在无意义的聚类集。本文通过研究表明,在HCM聚类算法中应用遗传算法,可以在一定程度上避免硬聚类算法收敛到局部最优解。因此,本文将遗传算法应用于硬聚类算法,并设计了相应的算法。但是,考虑到本算法实现时的开销 销和效率,又对该算法进行了改进,并最终提出一种新的算法--CHCM聚类算法。测试数据表明,采用改进后的聚类算法的结果90%以上能够取得全局的最优解,远远超过了采用硬聚类算法时所取得全局最优解的次数,证明了本算法的可推广性。 相似文献
14.
一种新型的基于密度和栅格的聚类算法* 总被引:2,自引:1,他引:1
针对网格和密度方法的聚类算法存在效率和质量问题,给出了密度和栅格相结合的聚类挖掘算法,即基于密度和栅格的聚类算法DGCA(density and grid based clustering algorithm)。该算法首先将数据空间划分为栅格单元,然后把数据存储到栅格单元中,利用DBSCAN密度聚类算法进行聚类挖掘;最后进行聚类合并和噪声点消除,并将局部聚类结果映射到全局聚类结果。实验通过人工数据样本集对该聚类算法进行理论上验证,表明了该算法在时间效率和聚类质量两方面都得到了提高。 相似文献
15.
16.
17.
优化初始聚类中心的K-means聚类算法 总被引:1,自引:0,他引:1
针对传统K-means算法对初始中心十分敏感,聚类结果不稳定问题,提出了一种改进K-means聚类算法。该算法首先计算样本间的距离,根据样本距离找出距离最近的两点形成集合,根据点与集合的计算公式找出其他所有离集合最近的点,直到集合内数据数目大于或等于[α]([α]为样本集数据点数目与聚类的簇类数目的比值),再把该集合从样本集中删除,重复以上步骤得到K(K为簇类数目)个集合,计算每个集合的均值作为初始中心,并根据K-means算法得到最终的聚类结果。在Wine、Hayes-Roth、Iris、Tae、Heart-stalog、Ionosphere、Haberman数据集中,改进算法比传统K-means、K-means++算法的聚类结果更稳定;在Wine、Iris、Tae数据集中,比最小方差优化初始聚类中心的K-means算法聚类准确率更高,且在7组数据集中改进算法得到的轮廓系数和F1值最大。对于密度差异较大数据集,聚类结果比传统K-means、K-means++算法更稳定,更准确,且比最小方差优化初始聚类中心的K-means算法更高效。 相似文献
18.
19.
针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得到的初始聚类中心非常地接近迭代聚类算法收敛的聚类中心。理论分析与实验表明,改进的K-means算法能改善算法的聚类性能,减少聚类的迭代次数,提高效率,并能得到稳定的聚类结果,取得较高的分类准确率。 相似文献