首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the context of geological carbon sequestration (GCS), carbon dioxide (CO2) is often injected into deep formations saturated with a brine that may contain dissolved light hydrocarbons, such as methane (CH4). In this multicomponent multiphase displacement process, CO2 competes with CH4 in terms of dissolution, and CH4 tends to exsolve from the aqueous into a gaseous phase. Because CH4 has a lower viscosity than injected CO2, CH4 is swept up into a ‘bank’ of CH4‐rich gas ahead of the CO2 displacement front. On the one hand, this may provide a useful tracer signal of an approaching CO2 front. On the other hand, the emergence of gaseous CH4 is undesirable because it poses a leakage risk of a far more potent greenhouse gas than CO2 if the cap rock is compromised. Open fractures or faults and wells could result in CH4 contamination of overlying groundwater aquifers as well as surface emissions. We investigate this process through detailed numerical simulations for a large‐scale GCS pilot project (near Cranfield, Mississippi) for which a rich set of field data is available. An accurate cubic‐plus‐association equation‐of‐state is used to describe the non‐linear phase behavior of multiphase brine‐CH4‐CO2 mixtures, and breakthrough curves in two observation wells are used to constrain transport processes. Both field data and simulations indeed show the development of an extensive plume of CH4‐rich (up to 90 mol%) gas as a consequence of CO2 injection, with important implications for the risk assessment of future GCS projects.  相似文献   

2.
One of the main concerns of geological carbon storage (GCS) systems is the risk of leakage through “weak” permeable areas of the sealing formation or caprock. Since the fluid pressure pulse travels faster than the carbon dioxide (CO2) plume across the storage reservoir, the fluid overpressure transmitted into overlying permeable formations through caprock discontinuities is potentially detectable sooner than actual CO2 leakage occurs. In this work, an inverse modeling method based on fluid pressure measurements collected in strata above the target CO2 storage formation is proposed, which aims at identifying the presence, the location, and the extent of possible leakage pathways through the caprock. We combine a three-dimensional subsurface multiphase flow model with ensemble-based data assimilation algorithms to recognize potential caprock discontinuities that could undermine the long-term safety of GCS. The goal of this work is to examine and compare the capabilities of data assimilation algorithms such as the ensemble smoother (ES) and the restart ensemble Kalman filter (REnKF) to detect the presence of brine and/or CO2 leakage pathways, potentially in real-time during GCS operations. For the purpose of this study, changes in fluid pressure in the brine aquifer overlying to CO2 storage formation aquifer are hypothetically observed in monitoring boreholes, or provided by time-lapse seismic surveys. Caprock discontinuities are typically characterized locally by higher values of permeability, so that the permeability distribution tends to fit to a non-Gaussian bimodal process, which hardly complies with the requirements of the ES and REnKF algorithms. Here, issues related to the non-Gaussianity of the caprock permeability field are investigated by developing and applying a normal score transform procedure. Results suggest that the REnKF is more effective than the ES in characterizing caprock discontinuities.  相似文献   

3.
Geological sequestration of CO2 (carbon dioxide) shows great potential to reduce Greenhouse gas emissions. However, CO2 injection into geological formations may give rise to a variety of coupled chemical and physical processes. The thermo-hydro-mechanical (THM) impact of CO2 injection can induce fault instability, even possibly lead to seismic activities in and around the disposal reservoir. A sequential coupling approach under some assumptions was proposed in the numerical study to investigate the THM behavior of the CO2 sequestration system concerning the temperature, initial geological stress, injection pressure and CO2 buoyancy. The fault was treated as a flexible contact model. The effects of CO2 injection on the mechanical behavior of the faults were investigated. The Drucker-Prager model and the cap model were used to model the constitutive relationship of formations. The numerical results show that injection pressure sensitively affects the relative slip change of the fault. At the initial stage of the sequestration process, the injection pressure plays a key role in affecting the pore pressure of the formations. However, as time continues, the influence of CO2-induced buoyancy becomes obvious on the pore pressure of the formations. In general, The THM effects of CO2 geosequestration do not affect the mechanical stability of formations and faults.  相似文献   

4.
Predicting and quantifying impacts of potential carbon dioxide (CO2) leakage into shallow aquifers that overlie geologic CO2 storage formations is an important part of developing reliable carbon storage techniques. Leakage of CO2 through fractures, faults or faulty wellbores can reduce groundwater pH, inducing geochemical reactions that release solutes into the groundwater and pose a risk of degrading groundwater quality. In order to help quantify this risk, predictions of metal concentrations are needed during geologic storage of CO2. Here, we present regional-scale reactive transport simulations, at relatively fine-scale, of CO2 leakage into shallow aquifers run on the PFLOTRAN platform using high-performance computing. Multiple realizations of heterogeneous permeability distributions were generated using standard geostatistical methods. Increased statistical anisotropy of the permeability field resulted in more lateral and vertical spreading of the plume of impacted water, leading to increased Pb2+ (lead) concentrations and lower pH at a well down gradient of the CO2 leak. Pb2+ concentrations were higher in simulations where calcite was the source of Pb2+ compared to galena. The low solubility of galena effectively buffered the Pb2+ concentrations as galena reached saturation under reducing conditions along the flow path. In all cases, Pb2+ concentrations remained below the maximum contaminant level set by the EPA. Results from this study, compared to natural variability observed in aquifers, suggest that bicarbonate (HCO3) concentrations may be a better geochemical indicator of a CO2 leak under the conditions simulated here.  相似文献   

5.
Peatlands are among the largest long‐term soil carbon stores, but their degradation can lead to significant carbon losses. This study considers the carbon budget of peat‐covered sites after restoration, following degradation by past wildfires. The study measured the carbon budget of eight sites: four restored‐revegetated sites, two unrestored bare soil control sites, and two intact vegetated controls over two years (2006–2008). The study considered the following flux pathways: dissolved organic carbon (DOC); particulate organic carbon (POC); dissolved carbon dioxide (CO2); primary productivity; net ecosystem respiration, and methane (CH4). The study shows that unrestored, bare peat sites can have significant carbon losses as high as 522 ± 3 tonnes C/km2/yr. Most sites showed improved carbon budgets (decreased source and/or increased sink of carbon) after restoration; this improvement was mainly in the form of a reduction in the size of the net carbon source, but for one restored site the measured carbon budget after four years of restoration was greater than observed for vegetated controls. The carbon sequestration benefit of peatland restoration would range between 122 and 833 tonnes C/km2/yr. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
Geophysical techniques play key roles in the measuring, monitoring, and verifying the safety of CO2 sequestration and in identifying the efficiency of CO2-enhanced oil recovery. Although geophysical monitoring techniques for CO2 sequestration have grown out of conventional oil and gas geophysical exploration techniques, it takes a long time to conduct geophysical monitoring, and there are many barriers and challenges. In this paper, with the initial objective of performing CO2 sequestration, we studied the geophysical tasks associated with evaluating geological storage sites and monitoring CO2 sequestration. Based on our review of the scope of geophysical monitoring techniques and our experience in domestic and international carbon capture and sequestration projects, we analyzed the inherent difficulties and our experiences in geophysical monitoring techniques, especially, with respect to 4D seismic acquisition, processing, and interpretation.  相似文献   

7.
Geologic carbon sequestration (GCS) is being considered as a climate change mitigation option in many future energy scenarios. Mathematical modeling is routinely used to predict subsurface CO2 and resident brine migration for the design of injection operations, to demonstrate the permanence of CO2 storage, and to show that other subsurface resources will not be degraded. Many processes impact the migration of CO2 and brine, including multiphase flow dynamics, geochemistry, and geomechanics, along with the spatial distribution of parameters such as porosity and permeability. In this article, we review a set of multiphase modeling approaches with different levels of conceptual complexity that have been used to model GCS. Model complexity ranges from coupled multiprocess models to simplified vertical equilibrium (VE) models and macroscopic invasion percolation models. The goal of this article is to give a framework of conceptual model complexity, and to show the types of modeling approaches that have been used to address specific GCS questions. Application of the modeling approaches is shown using five ongoing or proposed CO2 injection sites. For the selected sites, the majority of GCS models follow a simplified multiphase approach, especially for questions related to injection and local‐scale heterogeneity. Coupled multiprocess models are only applied in one case where geomechanics have a strong impact on the flow. Owing to their computational efficiency, VE models tend to be applied at large scales. A macroscopic invasion percolation approach was used to predict the CO2 migration at one site to examine details of CO2 migration under the caprock.  相似文献   

8.
The concentration of greenhouse gases – particularly carbon dioxide (CO2) – in the atmosphere has been on the rise in the past decades. One of the methods which have been proposed to help reduce anthropogenic CO2 emissions is the capture of CO2from large, stationary point sources and storage in deep geological formations. The caprock is an impermeable geological layer which prevents the leakage of stored CO2, and its integrity is of utmost importance for storage security. Due to the high pressure build-up during injection, the caprock in the vicinity of the well is particularly at risk of fracturing. Biofilms could be used as biobarriers which help prevent the leakage of CO2 through the caprock in injection well vicinity by blocking leakage pathways. The biofilm could also protect well cement from corrosion by CO2-rich brine.  相似文献   

9.
M. F. Billett  T. R. Moore 《水文研究》2008,22(12):2044-2054
Carbon dioxide (CO2) and methane (CH4) concentrations and evasion rates were measured in surface waters draining Mer Bleue peatland (Ontario, Canada) between spring and autumn 2005. All sites exhibit a consistent pattern of supersaturation throughout the year, which is broadly related to hydrological and temperature changes between spring snowmelt and autumn freezing. Both measurements and estimates of CO2 and CH4 evasion from open water to the atmosphere suggest that parts of the catchment (including beaver dams) are significant degassing hot spots. We present data showing how vertical gaseous carbon fluxes compare with lateral carbon fluxes and make an initial estimate of the importance to the overall carbon budget of CO2 and CH4 evasion to the atmosphere from water surfaces at Mer Bleue. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The study by the eddy covariance technique in the alpine shrub meadow of the Qinghai-Tibet Plateau in 2003 and 2004 showed that the net ecosystem carbon dioxide exchange (NEE) exhibited noticeable diurnal and annual variations, with more distinct daily changes during the warmer seasons. The CO2 emission of the shrub ecosystem culminated in April and September while the CO2 absorption capacity reached a maximum in July and August. The absorbed carbon dioxide during the two consecutive years was 231.4 and 274.8 g CO2·m?2 respectively, yielding an average of 253.1 gCO2·m?2 per year: that accounts for a large proportion of absorbed CO2 in the region. Obviously, the diurnal carbon flux was negatively related to temperature, radiation and other atmospheric factors. Still, minute discrepancies in kurtosis and duration of carbon emission/absorption were detected between 2003 and 2004. It was found that the CO2 flux in the daytime was similarly affected by photosynthetic photon flux density in both years. Temperature appears to be the most important determinant of CO2 flux: specifically, the high temperature during the plant growing season inhibits the carbon absorption capacity. One potential explanation is that soil respiration is enhanced under such condition. Analysis of biomass revealed that the annual net carbon fixed capacity of aboveground and belowground biomass was 544.0 in 2003 and 559.4 g C·m?2 in 2004, which coincided with the NEE absorption capacity (63.1 g C·m?2 in 2003 and 74.9 g C·m?2 in 2004) in the corresponding plant growing season.  相似文献   

11.
Deep saline aquifers are one of the most suitable geologic formations for carbon sequestration. The linear and global stability analysis of the time-dependent density-driven convection in deep saline aquifers is presented for long-term storage of carbon dioxide (CO2). The convective mixing that can greatly accelerate the CO2 dissolution into saline aquifers arises because the density of brine increases upon the dissolution of CO2 and such a density difference may induce instability. The effects of anisotropic permeability on the stability criteria, such as the critical time for the appearance of convective phenomena and the critical wavelength of the most unstable perturbation, are investigated with linear and global stability analysis. The linear stability analysis provides a sufficient condition for instability while the global stability analysis yields a sufficient condition for stability. The results obtained from these two approaches are not exactly the same but show a consistent trend, both indicating that the anisotropic system becomes more unstable when either the vertical or horizontal permeability increases.  相似文献   

12.
During geologic storage of carbon dioxide (CO2), trapping of the buoyant CO2 after injection is essential in order to minimize the risk of leakage into shallower formations through a fracture or abandoned well. Models for the subsurface behavior of the CO2 are useful for the design, implementation, and long-term monitoring of injection sites, but traditional reservoir-simulation tools are currently unable to resolve the impact of small-scale trapping processes on fluid flow at the scale of a geologic basin. Here, we study the impact of solubility trapping from convective dissolution on the up-dip migration of a buoyant gravity current in a sloping aquifer. To do so, we conduct high-resolution numerical simulations of the gravity current that forms from a pair of miscible analogue fluids. Our simulations fully resolve the dense, sinking fingers that drive the convective dissolution process. We analyze the dynamics of the dissolution flux along the moving CO2–brine interface, including its decay as dissolved buoyant fluid accumulates beneath the buoyant current. We show that the dynamics of the dissolution flux and the macroscopic features of the migrating current can be captured with an upscaled sharp-interface model.  相似文献   

13.
The present work describes the results of a modeling study addressing the geological sequestration of carbon dioxide (CO2) in an offshore multi-compartment reservoir located in Italy. The study is part of a large scale project aimed at implementing carbon capture and storage (CCS) technology in a power plant in Italy within the framework of the European Energy Programme for Recovery (EEPR). The processes modeled include multiphase flow and geomechanical effects occurring in the storage formation and the sealing layers, along with near wellbore effects, fault/thrust reactivation and land surface stability, for a CO2 injection rate of 1 × 106 ton/a. Based on an accurate reproduction of the three-dimensional geological setting of the selected structure, two scenarios are discussed depending on a different distribution of the petrophysical properties of the formation used for injection, namely porosity and permeability. The numerical results help clarify the importance of: (i) facies models at the reservoir scale, properly conditioned on wellbore logs, in assessing the CO2 storage capacity; (ii) coupled wellbore-reservoir flow in allocating injection fluxes among permeable levels; and (iii) geomechanical processes, especially shear failure, in constraining the sustainable pressure buildup of a faulted reservoir.  相似文献   

14.
Soils release more carbon, primarily as carbon dioxide (CO2), per annum than current global anthropogenic emissions. Soils emit CO2 through mineralization and decomposition of organic matter and respiration of roots and soil organisms. Given this, the evaluation of the effects of abiotic factors on microbial activity is of major importance when considering the mitigation of greenhouse gases emissions. Previous studies demonstrate that soil CO2 emission is significantly affected by temperature and soil water content. A limited number of studies have illustrated the importance of bulk density and soil surface characteristics as a result of exposure to rain on CO2 emission, however, none examine their relative importance. Therefore, this study investigated the effects of soil compaction and exposure of the soil surface to rainfall and their interaction on CO2 release. We conducted a factorial laboratory experiment with three soil types after sieving (clay, silt and sand soil), three different bulk densities (1·1 g cm–3, 1·3 g cm–3, 1·5 g cm–3) and three different exposures to rainfall (no rain, 30 minutes and 90 minutes of rainfall). The results demonstrated CO2 release varied significantly with bulk density, exposure to rain and time. The relationship between rain exposure and CO2 is positive: CO2 emission was 53% and 42% greater for the 90 minutes and 30 minutes rainfall exposure, respectively, compared to those not exposed to rain. Bulk density exhibited a negative relationship with CO2 emission: soil compacted to a bulk density of 1·1 g cm–3 emitted 32% more CO2 than soil compacted to 1·5 g cm–3. Furthermore we found that the magnitude of CO2 effluxes depended on the interaction of these two abiotic factors. Given these results, understanding the influence of soil compaction and raindrop impact on CO2 emission could lead to modified soil management practices which promote carbon sequestration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.
Time‐lapse seismic analysis is utilized in CO2 geosequestration to verify the CO2 containment within a reservoir. A major risk associated with geosequestration is a possible leakage of CO2 from the storage formation into overlaying formations. To mitigate this risk, the deployment of carbon capture and storage projects requires fast and reliable detection of relatively small volumes of CO2 outside the storage formation. To do this, it is necessary to predict typical seepage scenarios and improve subsurface seepage detection methods. In this work we present a technique for CO2 monitoring based on the detection of diffracted waves in time‐lapse seismic data. In the case of CO2 seepage, the migrating plume might form small secondary accumulations that would produce diffracted, rather than reflected waves. From time‐lapse data analysis, we are able to separate the diffracted waves from the predominant reflections in order to image the small CO2 plumes. To explore possibilities to detect relatively small amounts of CO2, we performed synthetic time‐lapse seismic modelling based on the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC) Otway project data. The detection method is based on defining the CO2 location by measuring the coherency of the signal along diffraction offset‐traveltime curves. The technique is applied to a time‐lapse stacked section using a stacking velocity to construct offset‐traveltime curves. Given the amount of noise found in the surface seismic data, the predicted minimum detectable amount of CO2 is 1000–2000 tonnes. This method was also applied to real data obtained from a time‐lapse seismic physical model. The use of diffractions rather than reflections for monitoring small amounts of CO2 can enhance the capability of subsurface monitoring in CO2 geosequestration projects.  相似文献   

16.
Accurate modeling of storage of carbon dioxide (CO2) in heterogeneous aquifers requires experiments of the capillary pressure as function of temperature and pressure. We present a method with which static drainage and imbibition capillary pressures can be measured continuously as a function of saturation at various temperature (T) and pressure (P) conditions. The measurements are carried out at (TP) conditions of practical interest. Static conditions can be assumed as small injection rates are applied. The capillary pressure curves are obtained for the unconsolidated sand–distilled water–CO2 system. The experimental results show a decrease of drainage and imbibition capillary pressure for increasing CO2 pressures and pronounced dissolution rate effects for gaseous CO2. Significant capillary pressure fluctuations and negative values during imbibition are observed at near critical conditions. The measurement procedure is validated by a numerical model that simulates the experiments.  相似文献   

17.
Simulations are routinely used to study the process of carbon dioxide (CO2) sequestration in saline aquifers. In this paper, we describe the modeling and simulation of the dissolution–diffusion–convection process based on a total velocity splitting formulation for a variable-density incompressible single-phase model. A second-order accurate sequential algorithm, implemented within a block-structured adaptive mesh refinement (AMR) framework, is used to perform high-resolution studies of the process. We study both the short-term and long-term behaviors of the process. It is found that the onset time of convection follows closely the prediction of linear stability analysis. In addition, the CO2 flux at the top boundary, which gives the rate at which CO2 gas dissolves into a negatively buoyant aqueous phase, will reach a stabilized state at the space and time scales we are interested in. This flux is found to be proportional to permeability, and independent of porosity and effective diffusivity, indicative of a convection-dominated flow. A 3D simulation further shows that the added degrees of freedom shorten the onset time and increase the magnitude of the stabilized CO2 flux by about 25%. Finally, our results are found to be comparable to results obtained from TOUGH2-MP.  相似文献   

18.
Two stations monitoring concentrations of carbon dioxide and radon in soil gas (Oldřišská and Novy Kostel) and one station monitoring flow of carbon dioxide at a mofette (Soos) have been operated in the area of the West Bohemian earthquake swarms. We present preliminary results obtained on the base of four-year observations. We found that data are not influenced considerably by barometric pressure. Although the CO2 concentration varies greatly, the long-term trends at stations Oldřišská and Novy Kostel are similar, which indicates that the CO2 flow is controlled by common geogenic processes. Also temporal trends of CO2 and Rn concentrations in soil gas at individual stations are analogous. We found diurnal variations of both CO2 concentration in soil gas and the CO2 flow at mofettes due to the earth tides. A response to tides of semi-diurnal period is insignificant in CO2 concentration and only weak in the CO2 flow. We also examined possible pre-seismic, co-seismic and post-seismic effects of the intensive 2008 earthquake swarm on the CO2 concentration at Oldřišská and Novy Kostel, and on the CO2 flow at Soos. However, all potential indications were insignificant and there has not been proven any influence of the swarm on the CO2 concentration as well as on the CO2 flow. Nevertheless, a gradual decrease of amplitudes of diurnal variations before the swarm and the lowest amplitudes during the swarm is a noteworthy phenomenon, which might indicate the strain changes of the rock associated with earthquake swarm.  相似文献   

19.
The typical shape of a capillary-pressure curve is either convex (e.g., Brooks–Corey model) or S-shaped (e.g., van Genuchten model). It is not universally agreed which model reflects natural rocks better. The difference between the two models lies in the representation of the capillary entry pressure. This difference does not lead to significantly different simulation results for modeling CO2 sequestration in aquifers without considering CO2 dissolution. However, we observe that the van-Genuchten-type capillary-pressure model accelerates CO2 solubility trapping significantly compared with the Brooks–Corey-type model. We also show that the simulation results are very sensitive to the slope of the van-Genuchten-type curve around the entry-pressure region. For the representative examples we study, the differences can be so large as to have complete dissolution of the CO2 plume versus persistence of over 50% of the plume over a 5000-year period.The cause of such sensitivity to the capillary-pressure model is studied. Particularly, we focus on how the entry pressure is represented in each model. We examine the mass-transfer processes under gravity-capillary equilibrium, molecular diffusion, convective mixing, and in the presence of small-scale heterogeneities. Laboratory measurement of capillary-pressure curves and some important implementation issues of capillary-pressure models in numerical simulators are also discussed. Most CO2 sequestration simulations in the literature employ one of the two capillary-pressure models. It is important to recognize that these two representations lead to very different predictions of long-term CO2 sequestration.  相似文献   

20.
Seismic monitoring of reservoir and overburden performance during subsurface CO2 storage plays a key role in ensuring efficiency and safety. Proper interpretation of monitoring data requires knowledge about the rock physical phenomena occurring in the subsurface formations. This work focuses on rock stiffness and elastic velocity changes of a shale overburden formation caused by both reservoir inflation induced stress changes and leakage of CO2 into the overburden. In laboratory experiments, Pierre shale I core plugs were loaded along the stress path representative for the in situ stress changes experienced by caprock during reservoir inflation. Tests were carried out in a triaxial compaction cell combining three measurement techniques and permitting for determination of (i) ultrasonic velocities, (ii) quasistatic rock deformations, and (iii) dynamic elastic stiffness at seismic frequencies within a single test, which allowed to quantify effects of seismic dispersion. In addition, fluid substitution effects connected with possible CO2 leakage into the caprock formation were modelled by the modified anisotropic Gassmann model. Results of this work indicate that (i) stress sensitivity of Pierre shale I is frequency dependent; (ii) reservoir inflation leads to the increase of the overburden Young's modulus and Poisson's ratio; (iii) in situ stress changes mostly affect the P‐wave velocities; (iv) small leakage of the CO2 into the overburden may lead to the velocity changes, which are comparable with one associated with geomechanical influence; (v) non‐elastic effects increase stress sensitivity of an acoustic waves; (iv) and both geomechanical and fluid substitution effects would create significant time shifts, which should be detectable by time‐lapse seismic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号