首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Effects of Schisandrin B (Sch B) and -tocopherol (-TOC) on ferric chloride (Fe3+) induced oxidation of erythrocyte membrane lipids in vitro and carbon tetrachloride (CCl4) induced lipid peroxidation in vivo were examined. While -TOC could produce prooxidant and antioxidant effect on Fe3+-induced lipid peroxidation, Sch B only inhibited the peroxidation reaction. Pretreatment with -TOC (3 mmol/kg/day × 3) did not protect against CCl4-induced lipid peroxidation and hepatocellular damage in mice, whereas Sch B pretreatment (0.3 mmol/3.0 mmol/kg/day × 3) produced a dose-dependent protective effect on the CCl4-induced hepatotoxicity. The ensemble of results suggests that the ability of Sch B to inhibit lipid peroxidation, while in the absence of pro-oxidant activity, may at least in part contribute to its hepatoprotective action.Abbreviations ALT alanine aminotransferase - CCl4 carbon tetrachloride - Fe3+ ferric chloride - MDA malondialdehyde - Sch B Schisandrin B - TBA 2-thiobarbituric acid - TBARS thiobarbituric acid reactive substances - -TOC dl--tocopherol  相似文献   

2.
A methyl viologen (MV)* mediated Mehler reaction was studied using Type C and D chloroplasts (thylakoids) from spinach. The extent of photooxidative reactions were measured as (a) rate of ethylene formation from methional oxidation indicating the production of oxygen radicals, and (b) rate of malondialdehyde (MDA) formation as a measure of lipid peroxidation. Without added ascorbate, 1 M FerricEDTA increased ethylene formation by greater than 4-fold, but had no effect on MDA production. Ascorbate (1 mM) produced a tripling of ethylene while it reduced MDA formation in the presence of iron. Radical scavengers diethyldithiocarbamate (DDTC), formate, 1,4-diazabicyclo (2.2.2octane) (DABCO), inhibited ethylene formation. Using 0,4 M mannitol to scavenge hydroxyl radicals, the rates of ethylene formation were reduced 40 to 60% with or without 1 M Fe(III) EDTA. The strong oxidant(s) not scavenged by mannitol are hypothesized to be either alkoxyl radicals from lipid peroxidation, or site specific formation of hydroxyl radicals in a lipophillic environment not exposed to mannitol. Singlet oxygen does not appear to be a significant factor in this system. Catalase strongly inhibited both ethylene and MDA synthesis under all conditions; 1 mM ascorbate did not reverse this inhibition. However, the strong superoxide dismutase (SOD) inhibition of ethylene and MDA formation was completely reversed by 1 mM ascorbate. This suggests that superoxide was functioning as an iron reducing agent and that in its absence, ascorbate was similarly promoting oxidations. Therefore, these oxidative processes were dependent on the presence of H2O2 and a reducing agent, suggesting the involvement of a Fenton-type reaction.Abbreviation DABCO 1,4-diazabicyclo(2.2.2.octane) - DCMU 3-(3,4 Dichlorophenyl). 1,1-dimethyl urea - DDTC diethyldithiocarbamate - EDTA ethylenediamine-tetraacetic acid - MDA malondialdehyde - MV methyl viologen - SOD superoxide dismutase - TBA thiobarbituric acid - TCA trichloroacetic acid Scientific contribution number 1315 from the New Hampshire Agriculture Experiment Station.  相似文献   

3.
The study was undertaken to evaluate the effect of prior treatment of rats with the antimalarial drugs amodiaquine (AQ) mefloquine (MQ) and halofantrine (HF) on rat liver microsomal lipid peroxidation in the presence of 1 mM FeSO4, 1 mM ascorbate and 0.2 mM H2O2 (oxidants). Ingestion of -tocopheral, a radical chain-breaking antioxidant was also included to assess the role of antioxidants in the drug treatment. In the presence of oxidants AQ, MQ and HF elicited 288%, 175% and 225% increases in malondialdehyde (MDA) formation while the drugs induced 125%, 63% and 31% increases in the absence of oxidants respectively. Similarly, AQ, MQ and HF induced lipid hydroperoxide formation by 380%, 256%, 360% respectively in the presence of oxidants and 172%, 136% and 92% in the absence of exogenously added oxidants respectively. -tocopherol reduced AQ, MQ and HF-induced MDA formation by 40%, 55% and 52% respectively and lipid hydroperoxide formation by 53%, 59% and 54% respectively. Similarly, -tocopherol attenuated the AQ, MQ and HF-induced MDA formation by 49%, 51% and 51% in the presence of oxidants and lipid hydroperoxide formation by 61%, 62% and 47% respectively. The results indicate that rat liver microsomal lipid peroxidation could be enhanced by antimalarial drugs in the presence of reactive oxygen species and this effect could be ameliorated by treatment with antioxidants.  相似文献   

4.
The ability of sodium arsenite at concentrations of 10–2, 10–4, and 10–6 M to induce lipid peroxidation in Saccharomyces cerevisiae cells was studied. Arsenite at the concentrations 10–2 and 10–4 M enhanced lipid peroxidation and inhibited the growth of yeast cells. Enhanced lipid peroxidation likely induced oxidative damage to various cellular structures, which led to suppression of the metabolic activity of cells. Arsenite at the concentration 10–6 M did not activate lipid peroxidation in cells. All of the tested arsenite concentrations inhibited the activity of -ketoglutarate dehydrogenase and pyruvate dehydrogenase in cells. The inference is made that the toxicity of arsenite may be related to its stimulating effect on intracellular lipid peroxidation.  相似文献   

5.
The present study investigates the inhibition of lipid peroxidation by dehydrozingerone and curcumin in rat brain homogenates. Both the test compounds inhibited the formation of conjugated dienes and spontaneous lipid peroxidation. These compounds also inhibited lipid peroxidation induced by ferrous ions, ferric-ascorbate and ferric-ADP-ascorbate. In all these cases, curcumin was more active than dehydrozingerone and dl--tocopherol.  相似文献   

6.
This study has examined whether elevated glucose can induce lipid peroxidation and contribute to the inhibition of cell growth in human kidney proximal tubule(HPT) cells. HPT cells were cultured in media containing glucose concentrations of 8 mM (control), 25 mM, and 50 mM. Lipid peroxidation was assessed by the thiobarbituric acid reactivity and cell growth was assessed by 3H-thymidine uptake. Results show decreased (59%, p < 0.01) growth of HPT cells cultured in 50 mM glucose. Cells cultured in 50 mM mannitol did not show any growth inhibition, suggesting that the decreased cell growth associated with glucose is not due to osmolarity changes. There was an increase (108%, p < 0.02) in lipid peroxidation in cells cultured with high levels of glucose (50 mM) compared with controls and cells cultured with 50 mM mannitol. To examine if membrane lipid peroxidation or malondialdehyde (MDA, an end product of lipid peroxidation) has any role in the inhibition of cell growth, we examined the effect of tertiary butylhydroperoxide (TBH, known to cause lipid peroxidation and generate MDA) on the growth of HPT cells. TBH decreased cell growth (49, 17 and 3% of controls at 0.1, 0.25, and 0.5 [mole TBH/ml medium). Similarly, a marked reduction in the growth was observed with exogenous MDA (72, 69 and 34% of controls at 0.1, 0.25, and 0.5 mole MDA/ml medium). This suggests that elevated glucose can induce membrane lipid peroxidation and accumulation of MDA, which in turn can inhibit cellular growth and contribute to the altered structure and function of HPT cells in diabetes.  相似文献   

7.
  • 1.1. The effects of carotenes (α- and β-) on edema, MDA contents and peroxidizability ofcroton oil-treated mouse skin epidermis, hydroperoxide production and enzymatic lipid peroxidation of epidermal homogenates were studied. Edema was determined as ear punch weight and the intensity of lipid peroxidation was measured using malondialdehyde formation.
  • 2.2. Carotenes (α- and β-) significantly suppressed edema formation, hydroperoxide production, lipid peroxidation caused by croton oil, Fe + 3-ADP/NADPH or paraquat/NADPH in vivo as well as in vitro.
  • 3.3. These results indicate that both α- and β-carotene have chemopreventive effects on croton oil-induced tumor promotion in skin tumorigenesis by scavenging oxygen free radicals, indirectly determined as carotene inhibition of lipid peroxidation and hydroperoxide formation.
  相似文献   

8.
Paraquat-Induced Free Radical Reaction in Mouse Brain Microsomes   总被引:5,自引:0,他引:5  
Paraquat has been implicated as an environmental toxin which may induce the syndrome of Parkinson's disease after exposure to this agent. However, the biochemical mechanism by which paraquat causes cell death and neurodegeneration has not been extensively studied. Paraquat was rapidly taken up by nerve terminals isolated from mouse cerebral cortices. It induced lipid peroxidation in a concentration dependent manner in the presence of NADPH and ferrous ion. The maximal stimulation effect was obtained at a paraquat concentration around 100 M and the Kmvalue for paraquat was 46.7 M. The lipid peroxidation required microsomal enzymes. Antioxidants, such as superoxide dismutase, catalase and promethazine significantly inhibited paraquat-induced lipid peroxidation. Due to its structural similarity to the pyridinium compound MPP+(N-methyl-4-phenyl pyridium ion), it may be taken up by dopamine neurons and cause lipid peroxidation and cell death resulting in the manifestation of Parkinsonian syndrome.  相似文献   

9.
We have investigated doxorubicin-induced lipid peroxidation by the measure of malondialdehyde (MDA) formation in rat glioblastoma cells and human breast carcinoma cells in culture. There was a significant production of MDA when the cells were incubated with pharmacologically relevant doxorubicin concentrations, i.e., concentrations that produce a significant cytotoxicity (0.1 micrograms/ml). At equitoxic doses, vincristine provided no lipid peroxidation, indicating that MDA formation is not a consequence of cell death. Doxorubicin-induced lipid peroxidation was maximal 24 h after incubation of the cells with doxorubicin, indicating that a delay was necessary for the free radical-mediated membrane damage induced by doxorubicin. In the presence of alpha-tocopherol in the culture medium, the doxorubicin-induced MDA formation was inhibited. The development of this method will help in defining the role of free radicals and lipid peroxidation in the cytotoxicity of doxorubicin.  相似文献   

10.
Flavonoids and urate antioxidant interplay in plasma oxidative stress   总被引:4,自引:0,他引:4  
Flavonoids are naturally occurring plant compounds with antioxidant properties. Their consumption has been associated with the protective effects of certain diets against some of the complications of atherosclerosis. Lowdensity lipoprotein (LDL) oxidative modification is currently thought to be a significant event in the atherogenic process. Most of the experiments concerning the inhibition of LDL oxidation used isolated LDL. We used diluted human whole plasma to study the influence of flavonoids on lipid peroxidation (LPO) promoted by copper, and their interaction with uric acid, one of the most important plasma antioxidants. Lipid peroxidation was evaluated by the formation of thiobarbituric acid reactive substances (TBARS) and of free malondialdehyde (MDA). The comparative capability of the assayed flavonoids on copper (II) reduction was tested using the neocuproine colorimetric test. In our assay system, urate disappears and free MDA and TBARS formation increase during the incubation of plasma with copper. Most of the tested flavonoids inhibited copperinduced LPO. The inhibition of LPO by flavonoids correlated positively with their capability to reduce copper (II). The urate consumption during the incubation of plasma with copper was inhibited by myricetin, quercetin and kaempferol. The inhibition of urate degradation by flavonoids correlated positively with the inhibition of LPO. Urate inhibited the copperinduced LPO in a concentrationdependent mode. Luteolin, rutin, catechin, quercetin had an antioxidant synergy with urate. Our results show that some flavonoids could protect endogenous urate from oxidative degradation, and demonstrate an antioxidant synergy between urate and some of the flavonoids.  相似文献   

11.
In this paper we demonstrate that ascorbic acid specifically prevents NADPH-initiated cytochrome P450 (P450)-mediated microsomal lipid peroxidation in the absence of free iron. Lipid peroxidation has been evidenced by the formations of conjugated dienes, lipid hydroperoxide and malondialdehyde. Other scavengers of reactive oxygen species including superoxide dismutase, catalase, glutathione, -tocopherol, uric acid, thiourea, mannitol, histidine, -carotene and probucol are ineffective to prevent the NADPH-initiated P450-mediated free iron-independent microsomal lipid peroxidation. Using a reconstituted system comprised of purified NADPH-P450 reductase, P450 and isolated microsomal lipid or pure L--phosphatidylcholine diarachidoyl, a mechanism has been proposed for the iron-independent microsomal lipid peroxidation and its prevention by ascorbic acid. It is proposed that the perferryl moiety P450 Fe3+. O2 initiates lipid peroxidation by abstracting methylene hydrogen from polyunsaturated lipid to form lipid radical, which then combines with oxygen to produce the chain propagating peroxyl radical for subsequent formation of lipid peroxides. Apparently, ascorbic acid prevents initiation of lipid peroxidation by interacting with P450 Fe3+. O2. (Mol Cell Biochem 166: 35-44, 1997)  相似文献   

12.
A better understanding of the mechanism of lipid peroxidation during the metabolism of cyclosporine A (CsA) might help explain the toxicities of this immunosuppressive drug on various organs. Ourin vitro work used microsomes prepared from livers of phenobarbital-induced male rats. The incubations (total volume 1ml) also contained a NADPH regenerating system and substrate (i.e., CsA, carbon tetrachloride, or aminopyrine) dissolved in ethanol. Lipid peroxidation was inferred from the presence of malondialdehyde (MDA) which was detected by the thiobarbituric acid assay. The formation of CsA hydroxylated metabolites (AM9 and AM1) was monitored by liquid chromatography. The activity of the microsomal incubation was confirmed by measurements of MDA and formaldehyde production caused by increasing concentrations of CsA, carbon tetrachloride, and aminopyrine. The occurrence of hydroxylated metabolites was not coupled to the production of MDA. Aminopyrine could inhibit MDA production by CsA, but CsA could not reduce the formation of formaldehyde by aminopyrine. Erythromycin, a competitor for the binding site of CsA on cytochrome P450, reduced MDA production by CsA, and CsA inhibited formaldehyde production by erythromycin. Interaction studies with SKF 525A, ketoconazole, superoxide dismutase, catalase, -tocopherol, and reduced glutathione confirmed the role of cytochrome P450 and the presence of activated oxygen species as a source of microsomal peroxidation which in return may explain the inhibitory effect of CsA on cytochrome P450 itself.Abbreviations AM9 9hydroxycyclosporine - AM1 1(8)hydroxycyclosporine - AM1c 1hydroxy--cyclo-cyclosporine - AM4N 4N-desmethylcyclosporine  相似文献   

13.
The spice principles curcumin (from turmeric) and eugenol (from cloves) are good inhibitors of lipid peroxidation. Lipid peroxidation is known to be initiated by reactive oxygen species. The effect of curcumin and eugenol on the generation of reactive oxygen species in model systems were investigated. Both curcumin and eugenol inhibited superoxide anion generation in xanthine-xanthine oxidase system to an extent of 40% and 50% at concentrations of 75 M and 250 M respectively. Curcumin and eugenol also inhibited the generation of hydroxyl radicals (.OH) to an extent of 76% and 70% as measured by deoxyribose degradation. The.OH-radical formation measured by the hydroxylation of salicylate to 2,3-dihydroxy benzoate was inhibited to an extent of 66% and 46%, respectively, by curcumin and eugenol at 50 M and 250 M. These spice principles also prevented the oxidation of Fe2+ in Fentons reaction which generates.OH radicals.  相似文献   

14.
During restoration of blood flow of the ischemic heart induced by coronary occlusion, free radicals cause lipid peroxidation with myocardial injury. Lipid peroxidation end-products, such as malondialdehyde (MDA), have been used to assess oxygen free radical-mediated injury of the ischemic-reperfused (I/R) myocardium in rats. This experimental study assessed the preventive effect of caffeic acid phenthyl ester (CAPE), antioxidant, on I/R-induced lipid peroxidation in the rat heart. We are also interested in the role of CAPE on glutathione (GSH) levels, an antioxidant whose levels are influenced by oxidative stress. I/R leads to the depletion of GSH which is the major intracellular nonprotein sulphydryl and plays an important role in the maintenance of cellular proteins and lipid in their functional state and acts primarily to protect these important structures against the threat of oxidation. In addition, we also examined morphologic changes in the heart by using light microscopy. The left coronary artery was occluded for 30 min and then reperfused for 120 min more before the experiment was terminated. CAPE (50 M kg–1) was administered 10 min prior to ischemia and during occlusion by infusion. At the end of the reperfusion period, rats were sacrificed, and the heart was quickly removed for biochemical determination and histopathological analysis. I/R was accompanied by a significant increase in MDA production and decrease in GSH content in the rat heart. Administration of CAPE reduced MDA production and prevented depletion of GSH content. These beneficial changes in these biochemical parameters were also associated with parallel changes in histopathological appearance. These findings imply that I/R plays a causal role in heart injury due to overproduction of oxygen radicals or insufficient antioxidant and CAPE exert cardioprotective effects probably by the radical scavenging and antioxidant activities.  相似文献   

15.
The aim of this study was to set up a simple procedure for assessing lipid peroxidation (L.P.) and testing the activity of antioxidant compounds. L. P. was determined in rat brain homogenates by measuring the endogenous and stimulated accumulation of malonaldehyde (MDA). MDA was assayed by an HPLC method. Homogenates spontaneously formed appreciable amounts of MDA. The addition of increasing concentrations of FeCl2 resulted in a linear accumulation of MDA, up to 16.6-fold at 50 M. An organic form of iron (Fe-saccharate) was less active on MDA formation (11.4-fold increase at 100 M). The addition of xanthine-xanthine oxidase resulted in only a 2.4-fold increase in MDA formation. Various antioxidant or chelating compounds effectively inhibited L.P., with IC50 between 0.1 M (phenoxazine) and 4–50 M (-tocopherol). Their potencies depended on the iron concentration and time of preincubation with the homogenates. In conclusion, this is a simple and reliable procedure for studying L.P. and inhibiting agents, provided that the experimental conditions are carefully assessed.  相似文献   

16.
Crude striatum synaptosomes (P2 fraction) from Fisher 344 female rats were incubated in the presence of ADP-chelated Fe3+ (0.5–50 M) and ascorbate (250 M). Intrasynaptosomal conversion of tyrosine to dopamine (DA) was measured by14CO2 evolution froml-[1-14C]tyrosine in the absence of added cofactors and DOPA decarboxylase. Malondialdehyde (MDA) was measured as an index of lipid peroxidation. A concentration-dependent inhibition of DA synthesis by ADP-Fe3+/ascorbate was found with 50% inhibition occurring at 2.5 M Fe3+ concentration. This was accompanied by marked accumulation of MDA. Ascorbate or ADP alone did not affect DA synthesis and ADP-Fe3+ in the absence of exogenous ascorbate was effective only above 25 M. Exogenously added MDA did not inhibit DA synthesis. Purified synaptosomes were isolated from peroxidized and control P2 fractions using sucrose gradients. Membrane microviscosity of the purifled synaptosomes was assessed by nitroxyl spin labels of stearic acid using electron paramagetic resonance techniques. There was a significant increase in membrane microviscosity as a result of ADP-Fe3+/ascorbate induced peroxidation. Maleimide nitroxide spin-label binding to protein sulhydryls was significantly modified by peroxidation of striatum synaptosomes. The weakly immobilized component of the sulhydryl spin-label (w) was drastically decreased whereas the strongly immobilized component (s) was modified less, thus leading to a marked reduction of w/s ratio. The exposure of striatum synaptosomes to the peroxidizing system resulted in a significant increase in total iron and in a 25% decrease in protein sulhydryl content. It is concluded that ironinduced damage to the DA synthetic system is mediated by alterations of the structural properties of nerve ending membranes.  相似文献   

17.
The formation of malondialdehyde (MDA), a product of lipid peroxidation (LPO), was measured in human spermatozoa from 27 subjects with normal sperm characteristics. Peroxidation of lipids in washed spermatozoa was induced by catalytic amounts of ferrous ions and ascorbate and malondiaidehyde dctermint-d by thiobarbituric method. MDA formation varied considerably from one sample to another. The studied population showed a strong correlation between lipid peroxidation potential (amount of MDA formed by 108 spermatozoa after 1 hour of incubation) and 1) initial motility r = ?0.623, P = 0.001; and 2) morphologic abnormalities of the midpiece r = 0.405, P = 0.05. These results suggest that poor motility is linked with membrane fragility and that spermatozoa with midpiece abnormalities probably have membrane and/or cytoplasmic antiperoxidant system defects. Because LPO potential is related to the two most important characteristics of fertility, it seems possible that it has the potential to become a good biochemical index of semen quality.  相似文献   

18.
Quinolinic acid is a potent lipid peroxidant in rat brain homogenates   总被引:7,自引:0,他引:7  
In this study, we describe the lipoperoxidative effect of quinolinic acid (QUIN) in vitro. The formation of thiobarbituric acid reactive products (TBA-RP), an index of lipid peroxidation, was measured in rat brain homogenates after incubation at 37°C for 30 min in the presence of QUIN and some structurally and metabolically related compounds such as Kynurenine, Kynurenic acid, Glutamate, Aspartate and Kainate. Concentrations of QUIN in the range of 20 to 80 M increased lipid peroxidation in a concentration-dependent manner from about 15% to about 50%. Kynurenic acid, a compound metabollically related to QUIN that can block its neurotoxic actions in vivo, also inhibited completely the QUIN-induced TBA-RP formation in our system. Lipid fluorescent material, another index of lipid peroxidation was also found increased by 49% after incubation with 40 M QUIN. It is concluded that lipid peroxidation may be a damaging process involved in the neurotoxicity of QUIN.  相似文献   

19.
The effect of tocopherol, all-trans retinol and retinyl palmitate on the non enzymatic lipid peroxidation induced by ascorbate-Fe2+ of rod outer segment membranes isolated from bovine retina was examined. The inhibition of light emission (maximal induced chemiluminescence) by tocopherol, all-trans retinol and retinyl palmitate was concentration dependent. All trans retinol showed a substantial degree of inhibition against ascorbate-Fe2+ induced lipid peroxidation in rod outer segment membranes that was 10 times higher than the observed in the presence of either tocopherol or retinyl palmitate. Inhibition of lipid peroxidation of rod outer segment membranes by tocopherol and retinyl palmitate was almost linear for up to 0,5 mol vitamin/mg membrane protein, whereas all-trans retinol showed linearity up to 0,1 mol vitamin/mg membrane protein. Incubation of rod outer segments with increasing amounts of low molecular weight cytosolic proteins carrying 1-[14C] linoleic acid, [3H] retinyl palmitate or [3H] all-trans retinol during the lipid peroxidation process produced a net transfer of ligand from soluble protein to membranes. Linoleic acid was 4 times more effectively transferred to rod outer segment membranes than all-trans retinol or retinyl palmitate. Incubation of rod outer segments with delipidated low molecular weight cytosolic proteins produced inhibition of lipid peroxidation. The inhibitory effect was increased when the soluble retinal protein fraction containing a tocopherol was used. These data provide strong support for the role of all-trans retinol as the major retinal antioxidant and open the way for many fruitful studies on the interaction and precise roles of low molecular weight cytosolic retinal proteins involved in the binding of antioxidant hydrophobic compounds with rod outer segments.  相似文献   

20.
Ter-butyl hydroperoxide (TBH) induced microsomal lipid peroxidation has been measured by oxygen consumption and malonaldehyde (MDA) formation. It has been found that the singlet oxygen (1O2) trap 2,5 diphenylfuran depressed both oxygen consumption and MDA formation. In contrast, histidine, another 1O2 trap does not effect neither oxygen consumption, nor MDA production. On the other hand, β-carotene, a 1O2 quencher strongly depresses oxygen consumption but slightly affects MDA production. Such results are consistent with the generation of 1O2 as transient by product of peroxidative microsomal lipid decomposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号