首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have prepared photoresponsive oligomers that have molecular weights of ca. 4500, 8000, and 16 000 g mol–1 via the free‐radical polymerization of 4‐[4‐alkylphenylazo]phenoxyalkyl acrylates. All of the oligomers possess bilayer smectic A (SmA) and smectic B (SmB) phases. Increasing the concentration of these oligomeric dopants in a glass‐forming cholesteric liquid crystal causes a dramatic red‐shift in the reflection wavelength. The pitch shifts are very dependent on the alkyl chain lengths and molecular weights of the dopants. The oligomer that contains octyl chains and an octyl spacer, and that has a molecular weight of 4500 g mol–1 exhibits the largest shift in the reflection wavelength. UV exposure has been used to control the cholesteric reflection pitch of the oligomer‐cholesteric glassy liquid‐crystal mixture over the entire visible region of the electromagnetic spectrum and vitrifies the samples by rapid cooling from their cholesteric temperatures to 0 °C. Extremely stable, even at 70 °C, erasable, full‐color images have been created using this host–guest mixture.  相似文献   

2.
The temperature dependence of the mobility and decay kinetics of charge carriers in discotic hexa‐peri‐hexabonzocoronene derivatives has been measured using the pulse‐radiolysis time‐resolved microwave conductivity technique (PR‐TRMC). For both the racemic and chiral dimethyloctyl, and the isomeric n‐decyl substituted derivatives, the mobility decreases at the crystalline solid (K)–liquid crystalline (Col) transition from 0.5±0.1 to 0.30±0.05 cm2 V–1 s–1 with the transition temperature ca. 30 °C lower for the branched chain compounds. The charge recombination kinetics are similar for the branched chain isomers in the Col phase but a faster decay is found for the racemic compound in the K phase. The fact that the mobility values for an asymmetrically substituted butylanthraquinone (C4 AQ) derivative are a factor of 2–3 lower than for the fully hexakis‐alkyl substituted compounds is attributed to the similar intracore mobilities for holes and electrons in the latter materials and the electron localization on the AQ moiety in the former. Charge recombination is found to be orders of magnitude faster in the Col phase of the C4 AQ derivative than in the K phase, this is attributed to the motional freedom of the AQ group in the liquid‐crystalline phase.  相似文献   

3.
1‐(Alkoxyphenyl)‐4‐(cyanophenyl)buta‐1E,3E‐dienes have been used as novel photoresponsive dopants for investigating light‐induced changes in the pitch of a glass‐forming cholesteric liquid crystal (CLC), dicholesteryl‐10,12‐docosadiynedioate. X‐ray diffraction studies have helped to establish the role of microscopic changes of smectic domains within the helical superstructure, induced by the dopant molecules and their photoisomers, which result in changes in their macroscopic light‐reflecting properties. Increasing concentration (1–12 wt.‐%) of these dopants causes a dramatic red‐shift in the wavelength of reflected light by the host CLC, extending it into the near‐infrared region. The extent of red‐shift depends strongly on the molecular length of the dopants and those possessing lengths between 25–28 Å, namely 1‐(octyloxyphenyl)‐4‐(cyanophenyl)buta‐1E,3E‐diene and 1‐(decyloxyphenyl)‐4‐(cyanophenyl)buta‐1E,3E‐diene, exhibit the maximum shift (Δλma x = 435 nm). Photoisomerization of these dopants leads to a blue‐shift of the reflected light and this effect could be used to tune the light reflectivity of these mixtures over a large part of the visible region. The cholesteric pitch and hence the reflected light by these materials could be fixed in a glassy state by rapidly cooling them from their cholesteric temperatures to 0 °C. The efficacy of these materials for full‐color photoimaging has also been demonstrated.  相似文献   

4.
Using thin films of a cholesteric mixture of acrylates 2 and 3 doped with the chiroptical molecular switch (M)‐trans‐ 1 , photocontrol of the reflection color between red and green is possible. This doped liquid‐crystal (LC) film can be used for photoinduced writing, color reading, and photoinduced locking (via polymerization) of chiral, optically written information.  相似文献   

5.
The fabrication, molecular structure, and spectroscopy of a stable cholesteric liquid crystal platinum acetylide glass obtained from trans‐Pt(PEt3)2(C?C?C6H5?C?N)(C?C?C6H5?COO?Cholesterol), are described and designated as PE1‐CN‐Chol. Polarized optical microscopy, differential scanning calorimetry, and wide‐angle X‐ray scattering experiments show room temperature glassy/crystalline texture with crystal formation upon heating to 165 °C. Further heating results in conversion to cholesteric phase. Cooling to room temperature leads to the formation of a cholesteric liquid crystal glass. Scanning tunneling microscopy of a PE1‐CN‐Chol monolayer reveals self‐assembly at the solid?liquid interface with an array of two molecules arranged in pairs, oriented head‐to‐head through the CN groups, giving rise to a lamella arrangement. The lamella structure obtained from molecular dynamics calculations shows a clear phase separation between the conjugated platinum acetylide and the hydrophobic cholesterol moiety with the lamellae separation distance being 4.0 nm. Ultrafast transient absorption and flash photolysis spectra of the glass show intersystem crossing to the triplet state occurring within 100 ps following excitation. The triplet decay time of the film compared to aerated and deoxygenated solutions is consistent with oxygen quenching at the film surface but not within the film. The high chromophore concentration, high glass thermal stability, and long triplet lifetime in air show that these materials have potential as nonlinear absorbing materials.  相似文献   

6.
Mixtures of cholesteric liquid crystals doped with high clearing temperature azobenzene nematic liquid crystals are shown to possess large, fast, and reversible dynamic photosensitive features. Selective wavelength shifts approaching 400 nm are reported, and depending on the host cholesteric liquid crystal, both red‐shifted and blue‐shifted wavelength changes can be induced. The photoinduced states of these material systems are shown to be stable for long periods of time upon removal of the radiation source, completely reversible, and dynamically fast. These phototunable features are demonstrated using both continuous wave (CW) and nanosecond laser beams. The latter is used to change the selective reflection wavelength from blue to green with a single nanosecond pulse and the ability to write information into these films using these processes are demonstrated.  相似文献   

7.
8.
A new unsymmetrical chiral thioindigo dopant 6‐[(R,R)‐2,3‐difluorooct‐1‐yloxy]‐5′‐nitro‐6′‐[(R)‐2‐octyloxy]thioindigo ( 4 ) designed to photoinvert the sign of spontaneous polarization (PS) in a ferroelectric chiral smectic C (SmC*) liquid crystal was prepared using a synthetic approach previously developed in our laboratory. In this new “ambidextrous” design, the (R)‐2‐octyloxy side‐chain is sterically coupled to the thioindigo core and induces a positive PS, whereas the (R,R)‐2,3‐difluorooctyloxy side‐chain is decoupled from the core and induces a larger negative PS. In the trans form, this dopant induces a negative polarization in the SmC host (+)‐4‐(4‐methylhexyloxy)phenyl 4‐decyloxybenzoate ( PhB ). Irradiation of a 1 mol‐% mixture of 4 in PhB at λ = 510 nm caused a sign inversion of PS, from –0.88 to +0.42 nC cm–2 at TTC = –5 °C, which is consistent with an increase in the polarization power of the coupled 2‐octyloxy/thioindigo unit over that of the 2,3‐difluorooctyloxy unit, due to the increase in transverse dipole moment of the thioindigo core upon transcis photoisomerization. The PS sign inversion was confirmed by a surface‐stabilized ferroelectric liquid crystal photoswitching experiment. Spectroscopic measurements on films of the doped liquid crystal mixtures showed that transcis photoisomerization is gradually suppressed with increasing dopant mole fraction, possibly as a result of increased dopant aggregation.  相似文献   

9.
Poly(lactic acid) (PLA)‐block‐poly(norbornene) (PNB) copolymers which bear photocrosslinkable cinnamate side‐chains are synthesized by combining the ring‐opening metathesis polymerization (ROMP) of norbornenes with the ring‐opening polymerization (ROP) of lactides. Highly porous 3D scaffolds with tunable pore sizes ranging from 20 to 300 µm are fabricated through liquid–solid phase separation. Scaffolds with an average pore size around 250 µm, which are under investigation as bone grafting materials, are reproducibly obtained from freeze‐drying 5% w/v benzene solutions of PLA‐b‐PNB copolymers at −10 °C. As a demonstration of the impact of photocrosslinking of cinnamate side‐chains, scaffolds are exposed to UV radiation for 8 h, resulting in a 33% increase in the compressive modulus of the polymeric scaffold. The foams and the methodology described herein represent a new strategy toward polymeric scaffolds with potential for use in regenerative medicine applications.  相似文献   

10.
Tetraphenylpyrene has been selected as a discotic core to promote liquid‐crystalline fluorescent columns in view of its high fluorescence quantum yield in solution and ease of substitution by flexible lateral side chains. The synthesis and characterization of ten new derivatives of pyrene have been carried out; the pyrene core has been substituted at the 1,3,6,8‐positions by phenylene rings bearing alkoxy, ester, thioether, or tris(alkoxy)benzoate groups on the para position; the compounds have been characterized by mass spectrometry and 1H NMR and UV‐vis spectroscopies. In order to generate liquid‐crystalline phases, the nature, number, and size of the side chains as well as the degree of polarity around the tetraphenylpyrene core have been varied. However, the desired liquid‐crystalline behavior has not been observed. The supramolecular order together with the absorption and emission properties in solution and the solid state are discussed and compared to theoretical predictions. Quantum‐chemical calculations rationalize the high solid‐state fluorescence of a tetraphenylpyrene derivative for which the crystal structure has been determined.  相似文献   

11.
胆甾相液晶在彩色显示技术中的应用   总被引:10,自引:1,他引:9  
胆甾相液晶分子呈螺旋结构,并且其螺距可以用加热冷却、光照和施加电场的方法进行可逆调整。这些性质使得其在彩色显示上具有巨大的应用前景,目前已经能够用胆甾相液晶做成各种彩色图案。为了探索实用的胆甾相液晶材料,人们制备并研究了各种结构和组成的胆甾相液晶,以及控制这些材料颜色的方法。  相似文献   

12.
Halide perovskites have received tremendous attention due to their fantastic optical and electrical properties. Here, circularly polarized light emission is successfully demonstrated using a simple configuration consisting of inorganic perovskite nanocrystals embedded within a predefined handedness cholesteric superstructure stack. The helical structured cholesteric liquid crystal film acts as a selective filter to transform the unpolarized light emission from perovskite nanocrystals into circularly polarized luminescence. The transformation is accompanied by an extraordinary dissymmetry factor (|glum|) up to 1.6, well‐defined handedness, high photoluminescence quantum yield, and full‐color availability. Furthermore, the circularly polarized luminescence is angular dependent and can easily be modulated by shifting the overlap of the reflection band and the emission band. The proposed method is more straightforward and powerful than the previous approaches, offering new opportunities in optoelectronic and photonic devices.  相似文献   

13.
A biosensor array is fabricated using an interpenetrating polymer network consisting of photonic film templated from reactive cholesteric liquid crystal (CLC) and enzyme‐immobilized polyacrylic acid (PAA). The solid‐state photonic film on the glass substrate is successfully templated by ultraviolet (UV) curing of the reactive CLC mixture of a reactive mesogen mixture of RMM 727 (from Merck) and a nonreactive chiral dopant of (S)‐4‐cyano‐4′‐(2‐methylbutyl)biphenyl following the extraction of the chiral dopant. The acrylic acid monomer mixed with a cross‐linker of tri(propylene glycol) diacrylate is infiltrated into the extracted space of the photonic film, and UV‐cured with a photomask to obtain a patterned array‐dot film. The interpenetrated cholesteric liquid crystal/hydrogel polymer network (CLC‐hydrogel‐IPN) array is further functionalized in the individual dots with urease, for a model study of biosensor array applications. The dots of the CLC‐hydrogel‐IPN array respond independently to the urea by a color change with high sensitivity and stability. Thus, the patterned CLC‐hydrogel‐IPN can be used as a new biosensor array for cost‐effective and easy visual detection without any sophisticated instruments.  相似文献   

14.
Antiferroelectric order has been known to exist in liquid crystals since more than a decade and is now an intensely studied field of research. The great application potential of antiferroelectric liquid crystals has especially been demonstrated in sophisticated flat‐panel display prototypes, which nevertheless have not yet reached manufacturing, due to the severe intrinsic problem of folds in the smectic layers, which drastically limit the achievable contrast, and which seem impossible to circumvent. By proper molecular design, we have developed and tested a new generic class of antiferroelectric materials that present an elegant solution to this problem. Their optical properties make them unique not only among liquid crystals but among electro‐optical materials in general. The design of this generic class, which we call orthoconic, also gives an illustrative example of the physical meaning of the addition of tensorial properties. Normal surface‐stabilized antiferroelectrics are optically positive biaxial crystals, with an effective optic axis along the smectic layer normal. The surprising optical property of the corresponding orthoconic antiferroelectric can be formulated as a theorem: When the tilt directions in adjacent smectic layers are made perpendicular to each other, the material becomes negatively uniaxial with the optic axis lying perpendicular to the smectic layer normal. The electro‐optic effect in such a material is based on the fact that the optic axis can be switched between three mutually orthogonal directions, corresponding to zero, negative, or positive values of the applied electric field.  相似文献   

15.
In this paper we consider the photo‐induced aligning capability of various ladder‐like polysiloxane‐based photoalignment films—which could be used in liquid‐crystal displays—bearing different photoreactive side chains, i.e., laterally grafted cinnamate/azobenzene‐based dual photoreactive side chains with a short or longer spacer, and terminally fixed coumarin‐containing side chains. Results from polarized optical microscopy (POM), Fourier‐transform infrared (FTIR) spectroscopy, surface‐enhanced Raman scattering (SERS), atomic force microscopy (AFM), etc., are integrated to elucidate the influence of side‐chain structure and the irradiation conditions on the photoalignment of ladder‐like polysiloxane films. It is demonstrated that the film containing the dual photoreactive group with a longer spacer exhibits better alignment properties. Reasonably, the concerted photoreactions of the dual photoreactive group and the longer spacer are beneficial to the cooperative motion of chromophores at the “domain level”, resulting in improved alignment facility and stability. The complicated effects of irradiation conditions and moderate annealing are also discussed. High‐quality alignment of the polysilsesquioxane (LPS)‐based photoalignment film LPS‐CA11 with a longer spacer between the LPS main chain and cinnamoyl/azobenzene side chains can be achieved only within an optimal range of exposure (5–8 J cm–2), while the pretilt angles can be adjusted in the range 0.5°–7° by varying the incident light intensity. Additionally, moderate annealing before and after illumination can markedly improve the alignment uniformity by self‐healing of defects.  相似文献   

16.
Polymer cholesteric liquid‐crystal (PCLC) flakes were investigated for their electro‐optical behavior under an applied alternating‐current field. Shaped flakes, fabricated using soft lithography and suspended in dielectric‐fluid‐filled cells, reoriented more uniformly than randomly shaped flakes made by fracturing of PCLC films. Extensive characterization found shaped flakes to be smooth and uniform in size, shape, and thickness. Reorientation in applied fields as low as tens of mVrms μm–1 was fastest for flakes with lateral aspect ratios greater than 1:1, confirming theoretical predictions based on Maxwell–Wagner polarization. Brilliant reflective colors and inherent polarization make shaped PCLC flakes of interest for particle displays.  相似文献   

17.
The cover shows a variety of shaped flakes fabricated from polymer cholesteric liquid‐crystal material using soft lithography. In work reported by Jacobs and co‐workers on p. 217, the micrometer‐sized flakes exhibit brilliant circularly polarized selective reflection colors without polarizers or color filters when placed in a fluid‐filled electro‐optic cell. With the application of a low‐magnitude alternating current field, the flakes reorient in hundreds of milliseconds and the colors disappear. Polymer cholesteric liquid‐crystal (PCLC) flakes were investigated for their electro‐optical behavior under an applied alternating‐current field. Shaped flakes, fabricated using soft lithography and suspended in dielectric‐fluid‐filled cells, reoriented more uniformly than randomly shaped flakes made by fracturing of PCLC films. Extensive characterization found shaped flakes to be smooth and uniform in size, shape, and thickness. Reorientation in applied fields as low as tens of mVrms μm–1 was fastest for flakes with lateral aspect ratios greater than 1:1, confirming theoretical predictions based on Maxwell–Wagner polarization. Brilliant reflective colors and inherent polarization make shaped PCLC flakes of interest for particle displays.  相似文献   

18.
The photoresponse of ferroelectric smectic side‐chain liquid‐crystalline (LC) polymers containing a photoisomerizable azobenzene derivative as a covalently linked photochromic side group is investigated. By static measurements in different photostationary states, the effect of trans–cis isomerization on the material's phase‐transition temperatures and its ferroelectric properties (spontaneous electric polarization PS and director tilt angle θ) are analyzed. It turns out that the Curie temperature (transition SC* to SA) can be reversibly shifted by up to 17 °C. The molecular mechanism of this “photoferroelectric effect” is studied in detail using time‐resolved measurements of the dye's optical absorbance, the director tilt angle, and the spontaneous polarization, which show a direct response of the ferroelectric parameters to the molecular isomerization. The kinetics of the thermal reisomerization of the azo dye in the LC matrix are evaluated. A comparison to the reisomerization reaction in isotropic solution (toluene) reveals a faster thermal relaxation of the dye in the LC phase.  相似文献   

19.
A one‐dimensional pattern‐forming state of a cholesteric liquid crystal (CLC) is used as a template for the self‐organization of ordered, spatially orientated, acetylene‐based semiconducting polymers. The polymers are formed by metathesis reaction with all chemical components contained in an ordinary electro‐optic cell. The polymer morphology consists of parallel ~ 1 μm thick bundles, uniformly spaced at ~ 10 μm over the full macroscopic active area of the cell substrates. The polymer templating can be explained by a model that predicts a corrugation in polymer density determined by the spatially periodic profile of the orientational energy density associated with the pattern‐forming CLC state.  相似文献   

20.
Three stereochemically pure isomers and two isomeric mixtures of a solution‐processable diketopyrrolopyrrole‐containing oligothiophene ( SMDPPEH ) have been used to study the effect of 2‐ethylhexyl solubilizing group stereochemistry on the film morphology and bulk heterojunction (BHJ) solar cell characteristics of small molecule organic photovoltaics. The different SMDPPEH stereoisomer compositions exhibit nearly identical optoelectronic properties in the molecularly dissolved state, as well as in amorphous films blended with PCBM. However, for films in which SMDPPEH crystallization is induced by thermal annealing, significant differences in molecular packing between the different stereoisomer formulations are observed. These differences are borne out in photovoltaic device characteristics for which unannealed devices show very similar behavior, while after annealing the RR‐ and SS‐SMDPPEH enantiomers show blue‐shifted peak EQE relative to the SMDPPEH isomer mixtures. Unannealed devices made from the most crystalline stereoisomer, meso RS‐SMDPPEH , are not completely amorphous, and show improved photocurrent generation as a result. Unlike the other compounds, after thermal annealing the RS‐SMDPPEH devices show reduced device performance. The results reveal that the chirality of commonly used 2‐ethylhexyl solubilizing chains can have a significant effect on the morphology, absorption, and optimum processing conditions of small molecule organic thin films used as photovoltaic device active layers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号