首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
• Eleven OPEs were detected in river sediment and lake sediment in Taihu Lake. • TnBP dominated in river sediment, while TBEP dominated in lake sediment. • A strong correlation existed between logKoc and logKow of OPEs. • Vertical profiles of OPEs in sediment cores varied according to sampling location. Surface sediment samples from Taihu Lake in China and its inflow rivers, along with two lake sediment core samples, were collected and analyzed for organophosphate esters (OPEs). The concentrations of total OPEs varied from 28.60 ng/g to 158.72 ng/g (median: 54.25 ng/g) in river surface sediment and from 62.57 ng/g to 326.84 ng/g (median: 86.37 ng/g) in lake sediment. Tributyl phosphate (TnBP) was the predominant compound in river surface sediment, and tris(2-butoxyethyl) phosphate was predominant in lake sediment. High contamination occurred in the north-west region, which was related to the high level of urbanization and high usage of OPEs. The sediment–water partition coefficients of OPEs (logKoc) were calculated, showing a significant correlation with logKow (p<0.05). The concentration and composition of OPEs in two sediment cores varied due to the different sampling locations, with more OPE species found in the northern region than in the southern one. Principal component analysis and positive matrix factorization indicated that sewage discharges, vehicle emissions, and atmospheric deposition were the possible sources of OPEs in Taihu Lake sediments. Tris(1-chloro-2-propyl) phosphate, tris(2-chloroethyl) phosphate, and TnBP were the main OPEs causing ecological risks.  相似文献   

2.
• The source of DOM in surface water and sediment is inconsistent. • The DOC content changes differently in surface water and sediment. • The content of DOC in the surface water is lower than that in the sediment. • The DOM in the surface water had higher photodegradation potentials than sediment. Dissolved organic matter (DOM) in rivers is a critical regulator of the cycling and toxicity of pollutants and the behavior of DOM is a key indicator for the health of the environment. We investigated the sources and characteristics of DOM in surface water and sediment samples of the Wei River, China. Dissolved organic carbon (DOC) concentration and ultraviolet absorbance at 254 nm (UV254) increased in the surface water and were decreased in the sediment downstream, indicating that the source of DOM in the water differed from the sediment. Parallel factor (PARAFAC) analysis of the excitation-emission matrices (EEM) revealed the presence of terrestrial humus-like, microbial humus-like and tryptophan-like proteins in the surface water, whereas the sediment contained UVA humic-like, UVC humic-like and fulvic-like in the sediment. The DOM in the surface water and sediment were mainly derived from microbial metabolic activity and the surrounding soil. Surface water DOM displayed greater photodegradation potential than sediment DOM. PARAFAC analysis indicated that the terrestrial humic-like substance in the water and the fulvic-like component in the sediment decomposed more rapidly. These data describe the characteristics of DOM in the Wei River and are crucial to understanding the fluctuations in environmental patterns.  相似文献   

3.
• The total organic pollutant concentrations in sediment were 27.4-1620 ng/g. • The phenol concentrations were relatively high in the sediment of the Dianchi Lake. • Average total concentrations decreased as follows: Caohai>Waihai>Haigeng Dam. • 1,4-dichlorobenzene, 3- or 4-methylphenol, 1,2,4-trichlorobenzene might be risks. Organic pollutants are widespread environmental pollutants with high toxicity, persistence, and bioaccumulation. Our aim was to investigate the distribution of aromatic amines, phenols, chlorobenzenes, and naphthalenes in the surface sediment of the Dianchi Lake, China. Nineteen surface sediment samples were collected from the Dianchi Lake, and 40 types of organic pollutants were analyzed via gas chromatography–mass spectrometry. The total organic pollutant concentrations in the surface sediment of the Dianchi Lake varied from 27.4 to 1.62 × 103 ng/g. The concentrations of phenols were much higher than those in other water bodies but still within a controllable range, whereas the concentrations of the other organic pollutant classes were similar or even lower. The detection ratio of 3- or 4-methylphenol was the highest (100.00%) among the pollutants. The average total organic pollutant concentrations decreased in the following order: Caohai (540 ng/g)>the middle of Waihai (488 ng/g)>the edge of Waihai (351 ng/g)>Haigeng Dam (90.4 ng/g). Pearson analysis showed a strong correlation among 1-methylnaphthalene, 2-methylnaphthalene, 1,3-dinitronaphthalene, and 1,4-dinitronaphthalene (p<0.01). Caohai, the north lakeshore of Waihai and the south of Waihai showed higher risk because of high concentration; meanwhile, 1,4-dichlorobenzene, 3- or 4-methylphenol and 1,2,4-trichlorobenzene were more likely to cause risks.  相似文献   

4.
• An integrated method, called PHDVPSS, was proposed for treating DCS. • The PHDVPSS method showed superior performance compared to conventional method. • Using the method, water content (%) of DCS decreased from 300 to<150 in 3 days. • The 56-day UCS from this method is 12‒17 times higher than conventional method. • Relative to PC, GGBS-MgO binder yielded greater reduction in the leachability. To more efficiently treat the dredged contaminated sediment (DCS) with a high water content, this study proposes an integrated method (called PHDVPSS) that uses the solidifying/stabilizing (S/S) agents and prefabricated horizontal drain (PHD) assisted by vacuum pressure (VP). Using this method, dewatering and solidification/stabilization can be carried out simultaneously such that the treatment time can be significantly shortened and the treatment efficacy can be significantly improved. A series of model tests was conducted to investigate the effectiveness of the proposed method. Experimental results indicated that the proposed PHDVPSS method showed superior performance compared to the conventional S/S method that uses Portland cement (PC) directly without prior dewatering. The 56-day unconfined compressive strength of DCS treated by the proposed method with GGBS-MgO as the binder is 12‒17 times higher than that by the conventional S/S method. DCS treated by the PHDVPSS method exhibited continuous decrease in leaching concentration of Zn with increasing curing age. The reduction of Zn leachability is more obvious when using GGBS-MgO as the binder than when using PC, because GGBS-MgO increased the residual fraction and decreased the acid soluble fraction of Zn. The microstructure analysis reveals the formation of hydrotalcite in GGBS-MgO binder, which resulted in higher mechanical strength and higher Zn stabilization efficiency.  相似文献   

5.
• Mechanism of DCM disproportionation over mesoporous TiO2 was studied. • DCM was completely eliminated at 350℃ under 1 vol.% humidity. • Anatase (001) was the key for disproportionation. • A competitive oxidation route co-existed with disproportionation. • Disproportionation was favored at low temperature. Mesoporous TiO2 was synthesized via nonhydrolytic template-mediated sol-gel route. Catalytic degradation performance upon dichloromethane over as-prepared mesoporous TiO2, pure anatase and rutile were investigated respectively. Disproportionation took place over as-made mesoporous TiO2 and pure anatase under the presence of water. The mechanism of disproportionation was studied by in situ FTIR. The interaction between chloromethoxy species and bridge coordinated methylenes was the key step of disproportionation. Formate species and methoxy groups would be formed and further turned into carbon monoxide and methyl chloride. Anatase (001) played an important role for disproportionation in that water could be dissociated into surface hydroxyl groups on such structure. As a result, the consumed hydroxyl groups would be replenished. In addition, there was another competitive oxidation route governed by free hydroxyl radicals. In this route, chloromethoxy groups would be oxidized into formate species by hydroxyl radicals transfering from the surface of TiO2. The latter route would be more favorable at higher temperature.  相似文献   

6.
• Sediment desiccation alters morphological characteristics of aquatic sediment. • Alternation in morphological properties of sediment limiting root characteristics. • Fibrous-rooted macrophytes root properties extra favor nutrients removal. • Thick-rooted macrophytes exhibit higher life-span in two sediment types. Purpose of the current study was to investigate the effects of constantly wet and dried-rewetted sediments on root functional traits of emerged macrophytes and their nutrients removal abilities. It is based on the hypothesis that root characteristics and nutrients removal abilities of plants will be altered in the course of sediment desiccation. Four emerged macrophytes including two fibrous-root plants (Canna indica and Acorus calamus) and two thick-root plants (Alocasia cucullata and Aglaonema commutatum) were investigated for their root functional traits and rhizoperformance in both wet and dried-rewetted sediments. Results showed that sediment desiccation followed by rewetting substantially altered the root functional traits (root surface area, radial oxygen loss, and root activity) of plants due to adverse changes in morphological characteristics (porosity, bulk density, particle density) of dried-rewetted sediments than by wet sediments. Consequently, limited plants growth and removal of nitrogen (N), phosphorus (P) and dissolved organic carbon (DOC) were recorded in dried-rewetted sediments and their pore water than in wet sediments. Radial oxygen loss from plant roots correlated positively with root functional traits, plants growth, and removal of N, P and DOC from pore water and sediment in both sediment types. Among the macrophyte species, the fibrous-root plants having advantages root functional traits, greatly influenced the rhizospheric conditions (pH, dissolved oxygen and redox potential), and demonstrated higher N, P and DOC reduction from both sediment types. While, the thick-rooted plants with thick diameter roots (D > 1 mm) and higher rhizome exhibited longer life-span in both sediment types.  相似文献   

7.
• UV/VUV/I induces substantial H2O2 and IO3 formation, but UV/I does not. • Increasing DO level in water enhances H2O2 and iodate productions. • Increasing pH decreases H2O2 and iodate formation and also photo-oxidation. • The redox potentials of UV/VUV/I and UV/VUV changes with pH changes. • The treatability of the UV/VUV/I process was stronger than UV/VUV at pH 11.0. Recently, a photochemical process induced by ultraviolet (UV), vacuum UV (VUV), and iodide (I) has gained attention for its robust potential for contaminant degradation. However, the mechanisms behind this process remain unclear because both oxidizing and reducing reactants are likely generated. To better understand this process, this study examined the evolutions of hydrogen peroxide (H2O2) and iodine species (i.e., iodide, iodate, and triiodide) during the UV/VUV/I process under varying pH and dissolved oxygen (DO) conditions. Results show that increasing DO in water enhanced H2O2 and iodate production, suggesting that high DO favors the formation of oxidizing species. In contrast, increasing pH (from 6.0 to 11.0) resulted in lower H2O2 and iodate formation, indicating that there was a decrease of oxidative capacity for the UV/VUV/I process. In addition, difluoroacetic acid (DFAA) was used as an exemplar contaminant to verify above observations. Although its degradation kinetics did not follow a constant trend as pH increases, the relative importance of mineralization appeared declining, suggesting that there was a redox transition from an oxidizing environment to a reducing environment as pH rises. The treatability of the UV/VUV/I process was stronger than UV/VUV under pH of 11.0, while UV/VUV process presented a better performance at pH lower than 11.0.  相似文献   

8.
• Genotoxicity of substances is unknown in the water after treatment processes. • Genotoxicity decreased by activated carbon treatment but increased by chlorination. • Halogenated hydrocarbons and aromatic compounds contribute to genotoxicity. • Genotoxicity was assessed by umu test; acute and chronic toxicity by ECOSAR. • Inconsistent results confirmed that genotoxicity cannot be assessed by ECOSAR. Advanced water treatment is commonly used to remove micropollutants such as pesticides, endocrine disrupting chemicals, and disinfection byproducts in modern drinking water treatment plants. However, little attention has been paid to the changes in the genotoxicity of substances remaining in the water following the different water treatment processes. In this study, samples were collected from three drinking water treatment plants with different treatment processes. The treated water from each process was analyzed and compared for genotoxicity and the formation of organic compounds. The genotoxicity was evaluated by an umu test, and the acute and chronic toxicity was analyzed through Ecological Structure- Activity Relationship (ECOSAR). The results of the umu test indicated that biological activated carbon reduced the genotoxicity by 38%, 77%, and 46% in the three drinking water treatment plants, respectively, while chlorination increased the genotoxicity. Gas chromatograph-mass spectrometry analysis revealed that halogenated hydrocarbons and aromatic compounds were major contributors to genotoxicity. The results of ECOSAR were not consistent with those of the umu test. Therefore, we conclude that genotoxicity cannot be determined using ECOSAR .  相似文献   

9.
• A model-free sewer-WWTP integrated control was proposed. • A dynamic discrete control based on the water level was developed. • The approach could improve the sewer operation against flow fluctuation. • The approach could increase transport capacity and enhance pump efficiency. This study aims to propose a multi-point integrated real-time control method based on discrete dynamic water level variations, which can be realized only based on the programmable logic controller (PLC) system without using a complex mathematical model. A discretized water level control model was developed to conduct the real-time control based on data-automation. It combines the upstream pumping stations and the downstream influent pumping systems of wastewater treatment plant (WWTP). The discretized water level control method can regulate dynamic wastewater pumping flow of pumps following the dynamic water level variation in the sewer system. This control method has been successfully applied in practical integrated operations of sewer-WWTP following the sensitive flow disturbances of the sewer system. The operational results showed that the control method could provide a more stabilized regulate pumping flow for treatment process; it can also reduce the occurrence risk of combined sewer overflow (CSO) during heavy rainfall events by increasing transport capacity of pumping station and influent flow in WWTP, which takes full advantage of storage space in the sewer system.  相似文献   

10.
• An innovative bubble column tower BPE was designed to treat the black-odorous water. • PO43, S2 and turbidity were removed, and dissolved oxygen was enriched in the BPE. • An aluminum bipolar electrode gave the best oxygen enrichment and pollutant removal. • Changes of microorganisms confirmed the improvement in water quality achieved. The large amount of municipal wastewater discharged into urban rivers sometimes exceeds the rivers’ self-purification capacity leading to black-odorous polluted water. Electro-flocculation has emerged as a powerful remediation technology. Electro-flocculation in a bubble column tower with a bipolar electrode (BPE) was tested in an attempt to overcome the high resistance and weak gas-floatation observed with a monopolar electrode (MPE) in treating such water. The BPE reactor tested had a Ti/Ta2O5-IrO2 anode and a graphite cathode with an iron or aluminum bipolar electrode suspended between them. It was tested for its ability to reduce turbidity, phosphate and sulphion and to increase the concentration of dissolved oxygen. The inclusion of the bipolar electrode was found to distinctly improved the system’s conductivity. The system’s electro-flocculation and electrical floatation removed turbidity, phosphate and sulphion completely, and the dissolved oxygen level improved from 0.29 to 6.28 mg/L. An aluminum bipolar electrode performed better than an iron one. Changes in the structure of the microbial community confirmed a significant improvement in water quality.  相似文献   

11.
• Annual AOCs in MBR effluents were stable with small increase in warmer seasons. • Significant increase in AOC levels of tertiary effluents were observed. • Coagulation in prior to ozonation can reduce AOC formation in tertiary treatment. • ∆UV254 and SUVA can be surrogates to predict the AOC changes during ozonation. As water reuse development has increased, biological stability issues associated with reclaimed water have gained attention. This study evaluated assimilable organic carbon (AOC) in effluents from a full-scale membrane biological reactor (MBR) plant and found that they were generally stable over one year (125–216 µg/L), with slight increases in warmer seasons. After additional tertiary treatments, the largest increases in absolute and specific AOCs were detected during ozonation, followed by coagulation-ozonation and coagulation. Moreover, UV254 absorbance is known to be an effective surrogate to predict the AOC changes during ozonation. Applying coagulation prior to ozonation of MBR effluents for removal of large molecules was found to reduce the AOC formation compared with ozonation treatment alone. Finally, the results revealed that attention should be paid to seasonal variations in influent and organic fraction changes during treatment to enable sustainable water reuse.  相似文献   

12.
• CWF is a sustainable POU water treatment method for developing areas. • CWF manufacturing process is critical for its filtration performance. • Simultaneous increase of flow rate and pathogen removal is a challenge. • Control of pore size distribution holds promises to improve CWF efficiency. • Novel coatings of CWFs are a promising method to improve contaminant removal. Drinking water source contamination poses a great threat to human health in developing countries. Point-of-use (POU) water treatment techniques, which improve drinking water quality at the household level, offer an affordable and convenient way to obtain safe drinking water and thus can reduce the outbreaks of waterborne diseases. Ceramic water filters (CWFs), fabricated from locally sourced materials and manufactured by local labor, are one of the most socially acceptable POU water treatment technologies because of their effectiveness, low-cost and ease of use. This review concisely summarizes the critical factors that influence the performance of CWFs, including (1) CWF manufacturing process (raw material selection, firing process, silver impregnation), and (2) source water quality. Then, an in-depth discussion is presented with emphasis on key research efforts to address two major challenges of conventional CWFs, including (1) simultaneous increase of filter flow rate and bacterial removal efficiency, and (2) removal of various concerning pollutants, such as viruses and metal(loid)s. To promote the application of CWFs, future research directions can focus on: (1) investigation of pore size distribution and pore structure to achieve higher flow rates and effective pathogen removal by elucidating pathogen transport in porous ceramic and adjusting manufacture parameters; and (2) exploration of new surface modification approaches with enhanced interaction between a variety of contaminants and ceramic surfaces.  相似文献   

13.
• A novel and multi-functional clay-based oil spill remediation system was constructed. • TiO2@PAL functions as a particulate dispersant to break oil slick into tiny droplets. • Effective dispersion leads to the direct contact of TiO2 with oil pollutes directly. • TiO2 loaded on PAL exhibits efficient photodegradation for oil pollutants. • TiO2@PAL shows a typical dispersion-photocatalysis synergistic remediation. Removing spilled oil from the water surface is critically important given that oil spill accidents are a common occurrence. In this study, TiO2@Palygorskite composite prepared by a simple coprecipitation method was used for oil spill remediation via a dispersion-photodegradation synergy. Diesel could be efficiently dispersed into small oil droplets by TiO2@Palygorskite. These dispersed droplets had an average diameter of 20–30 mm and exhibited good time stability. The tight adsorption of TiO2@Palygorskite on the surface of the droplets was observed in fluorescence and SEM images. As a particulate dispersant, the direct contact of TiO2@Palygorskite with oil pollutants effectively enhanced the photodegradation efficiency of TiO2 for oil. During the photodegradation process, •O2and •OH were detected by ESR and radical trapping experiments. The photodegradation efficiency of diesel by TiO2@Palygorskite was enhanced by about 5 times compared with pure TiO2 under simulated sunlight irradiation. The establishment of this new dispersion-photodegradation synergistic remediation system provides a new direction for the development of marine oil spill remediation.  相似文献   

14.
• Graphite bipolar electrodes act as an appropriate bed for the CDI process. • Activated carbon Coating improves the application of the electrodes. • CDI is an environmentally friendly method to apply for brackish water. • Initial concentration is the most important parameter in the CDI method. • CDI process in a batch-mode setup needs more development. This research investigates a capacitive deionization method for salinity reduction in a batch reactor as a new approach for desalination. Reductions of cost and energy compared with conventional desalination methods are the significant advantages of this approach. In this research, experiments were performed with a pair of graphite bipolar electrodes that were coated with a one-gram activated carbon solution. After completing preliminary tests, the impacts of four parameters on electrical conductivity reduction, including (1) the initial concentration of feed solution, (2) the duration of the tests, (3) the applied voltage, and (4) the pH of the solution, were examined. The results show that the maximum efficiency of electrical conductivity reduction in this laboratory-scale reactor is about 55%. Furthermore, the effects of the initial concentration of feed solution are more significant than the other parameters. Thus, using the capacitive deionization method for water desalination with low and moderate salt concentrations (i.e., brackish water) is proposed as an affordable method. Compared with conventional desalination methods, capacitive deionization is not only more efficient but also potentially more environmentally friendly.  相似文献   

15.
• In situ preparation of FeNi nanoparticles on the sand via green synthesis approach. • Removal of tetracycline using GS-FeNi in batch and column study. • Both reductive degradation and sorption played crucial role the process. • Reusability of GS-FeNi showed about 77.39±4.3% removal on 4th cycle. • TC by-products after interaction showed less toxic as compared with TC. In this study, FeNi nanoparticles were green synthesized using Punica granatum (pomegranate) peel extract, and these nanoparticles were also formed in situ over quartz sand (GS-FeNi) for removal of tetracycline (TC). Under the optimized operating conditions, (GS-FeNi concentration: 1.5% w/v; concentration of TC: 20 mg/L; interaction period: 180 min), 99±0.2% TC removal was achieved in the batch reactor. The removal capacity was 181±1 mg/g. A detailed characterization of the sorbent and the solution before and after the interaction revealed that the removal mechanism(s) involved both the sorption and degradation of TC. The reusability of reactant was assessed for four cycles of operation, and 77±4% of TC removal was obtained in the cycle. To judge the environmental sustainability of the process, residual toxicity assay of the interacted TC solution was performed with indicator bacteria (Bacillus and Pseudomonas) and algae (Chlorella sp.), which confirmed a substantial decrease in the toxicity. The continuous column studies were undertaken in the packed bed reactors using GS-FeNi. Employing the optimized conditions, quite high removal efficiency (978±5 mg/g) was obtained in the columns. The application of GS-FeNi for antibiotic removal was further evaluated in lake water, tap water, and ground water spiked with TC, and the removal capacity achieved was found to be 781±5, 712±5, and 687±3 mg/g, respectively. This work can pave the way for treatment of antibiotics and other pollutants in the reactors using novel green composites prepared from fruit wastes.  相似文献   

16.
• Lanthanum modified bentonite (LMB) can effectively absorb phosphorus (P). • Water treatment plant sludge (WTPS) capping is effective for controlling P release. •Aluminum-based P-inactivation agent (Al-PIA) is an efficient P control material. •The P adsorbed by WTPS and Al-PIA is mainly in the form of NAIP. We determined the effects of quartz sand (QS), water treatment plant sludge (WTPS), aluminum-based P-inactivation agent (Al-PIA), and lanthanum-modified bentonite (LMB) thin-layer capping on controlling phosphorus and nitrogen release from the sediment, using a static simulation experiment. The sediment in the experiment was sampled from Yundang Lagoon (Xiamen, Fujian Province, China), which is a eutrophic waterbody. The total phosphorus (TP), ammonium nitrogen (NH4+-N), and total organic carbon (TOC) levels in the overlying water were measured at regular intervals, and the changes of different P forms in WTPS, Al-PIA, and sediment of each system were analyzed before and after the test. The average TP reduction rates of LMB, Al-PIA, WTPS, and QS were 94.82, 92.14, 86.88, and 10.68%, respectively, when the release strength of sediment TP was 2.26–9.19 mg/(m2·d) and the capping strength of the materials was 2 kg/m2. Thin-layer capping of LMB, WTPS, and Al-PIA could effectively control P release from the sediment (P<0.05). However, thin-layer capping of LMB, Al-PIA, and QS did not significantly reduce the release of ammonium N and organic matter (P > 0.05). Based on our results, LMB, Al-PIA, and WTPS thin-layer capping promoted the migration and transformation of easily released P in sediment. The P adsorbed by WTPS and Al-PIA mainly occurred in the form of NAIP.  相似文献   

17.
• Swimming pool water was studied for DBPs upon exposure to additional stimulants. • DBP formation could be induced by residual chlorine and extended incubation. • Urine led to a massive formation of chloroform with additional stimulants. • Reactions between chlorine and anthropogenic organics were slow and long-lasting. • Urine control and air ventilation should be on the priority list for pool management. Anthropogenic organics are known to be responsible for the formation of harmful disinfection by-products (DBPs) in swimming pool water (SPW). The research explored an important scenario of SPW with no additional anthropogenic organic input. With stimulations by residual chlorine or additional chlorine and extended incubation, the formation of DBPs, especially chloroform, was significantly induced. Similar observations were found by investigating synthetic SPW made with sweat and urine. The presence of urine led to a massive formation of chloroform, as noted by an approximate 19-fold increase after 165-day incubation with a shock chlorine dose. The research suggests that consistent residual chlorine and long water retention as two typical features of SPW could unlock the DBP formation potential of anthropogenic organics. Thus, limiting the introduction of anthropogenic organics may not have an immediate effect on reducing DBP levels, because their reactions with chlorine can be slow and long-lasting. Pool management should prioritize on control of urine and improving air ventilation. This work is useful to deepen understandings about DBP formation in SPW and provide implications for pool management and prospective legislation.  相似文献   

18.
• Metal pollution was studied in riverine sediments from different land-use areas. • Cd was the most serious heavy metal contaminant in riverine sediment cores. • Riverine sediment cores from industrial area were most polluted by heavy metals. • B1 fraction determined metal pollution, risk and toxicity in riverine sediments. Anthropogenic activities are regarded as the main sources of heavy metal pollution, yet few studies have investigated the effects of land-use setting on heavy metal accumulation in riverine sediments. Based on both total contents and geochemical fractions, heavy metal pollution, risk and toxicity were determined in riverine sediment cores from different land-use areas (mountain area- MA, farm area- FA, city area- CA, and industrial area- IA) of the Yang River Basin in North China. The results showed that FA had higher contents of riverine sedimentary Cu; CA had higher contents of Cd; IA had higher contents of both Cd and Zn. Most riverine sediments from FA and IA were contaminated with the investigated metals, although these concentrations were evaluated to have low potential ecological risk and no toxicity to benthic organisms. However, a high proportion of Cd in the B1 fraction of riverine sediments in IA indicating high risk should receive more attention. The B1 fraction largely determined the contamination, risk and toxicity levels associated with heavy metals in the riverine sediments of the Yang River Basin.  相似文献   

19.
• Nanocomposites were prepared by adding dolomite to vinasse at different ratio. • Textural and morphological features of adsorbents were studied in detail. • CCD based RSM was used for investigation of P ion removal by nanocomposite. • The qm based on Langmuir model for modified vinasse biochar was 178.57 mg/g. • P loaded nanocomposite improved plant growth and could be utilized as P-fertilizer. The effectiveness of phosphate (P) removal from aqueous solutions was investigated by novel low-cost biochars synthesized from vinasse and functionalized with calcined dolomite. The vinasse-derived biochar, synthesized via pyrolysis at different temperatures, showed easy preparation and a large surface area. The novel vinasse biochar nanocomposites were prepared by adding dolomite to the vinasse biochars with different weight percentages (10, 20 and 30%). The characteristics of the prepared materials were identified for further understanding of the inherent adsorption mechanism between P ions and vinasse biochars. Vinasse-dolomite nanocomposite was very effective in the adsorption of P species from aqueous media. The effect of the operational factors on Vinasse-dolomite nanocomposite was explored by applying response surface methodology (RSM). According to RSM results, the optimum condition was achieved to be contact time 90 (min), 250 (mg/L) of P concentration and pH 7. Thermodynamic isotherm and kinetic studies were applied on experimental data to understand the adsorption behavior. The Vinasse-dolomite nanocomposite revealed preferential P species adsorption in the presence of co-existing anions. The P species could be recovered by 1.0 M HCl where the efficiency was not affected up to the fifth cycle. The P-loaded Vinasse-dolomite nanocomposite was successfully tested on a plant; it significantly improved its growth and proved its potency as a P-based fertilizer substitute.  相似文献   

20.
• The first study on micro(meso)plastics (MMPs) in the Liaohe River Reserve is reported. • Diverse MMP were detected in surface water and sediment at all 32 sites. • The abundance of MMPs decreased in the course of the river. • The MMPs abundance in water is significant association with the county population. Microplastics pollution has received growing attention worldwide in recent years. However, data on microplastics in the freshwater environment are still limited, especially in high-latitude nature reserves in Northern China. The first study on microplastic pollution in the Liaohe River Reserve in Northern China is reported here, and mesoplastics were also incorporated. Surface water and sediment samples were collected from 32 sites along the nature reserve. The abundance, type, shape, color, and size of micro- and mesoplastics were measured using density extraction, optical microscopy, and FTIR spectroscopy. The data showed that diverse micro- and mesoplastics were found widespread in the 32 sites, and the average abundance of these plastics was 0.11±0.04 10−2 items/L in surface water and 62.29±54.30 items/kg in sediment. Moreover, 70% and 66% were smaller than 2000 μm in surface water and sediment, respectively. Fiber accounted for 91.86% in surface water and 43.48% in sediment, indicating that the major source of micro- and mesoplastics in the Liaohe River Reserve may be domestic sewage and aquaculture. A total of 16 and 27 polymers were identified in surface water and sediment, respectively, and mostly consisted of rayon, polyester, polystyrene, and poly(ethylene terephthalate). Moreover, both the risk index and the pollution load index demonstrated a low risk of micro- and mesoplastics in surface water and sediment in the Liaohe River Reserve.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号