首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We studied the effect of melatonin on the oxidative changes produced by the intracerebroventricular (i.c.v.) injection of okadaic acid (200 ng/kg BW) in the Wistar rat. The effects of okadaic acid were evaluated as changes in the quantity of lipid peroxides, reduced glutathione content (GSH) and activity of antioxidative enzymes. Okadaic acid caused lipid peroxidation (5.35 +/- 0.47 micro mol/g tissue in the i.c.v. vehicle group versus 10.14 +/- 0.88 micro mol/g tissue in the okadaic acid group, P < 0.001), GSH consumption (0.115 +/- 0.0065 micro mol/g tissue in the i.c.v. vehicle group versus 0.024 +/- 0.0021 micro mol/g tissue, P < 0.001), and a reduction in the activity of GSH-peroxidase, GSH-reductase and GSH-transferase between 60-80%. All these changes were prevented by pre-injection of 4.5 mg melatonin per kg BW 2 hr before okadaic acid. These findings indicate: (i) okadaic acid induces a status of oxidative stress in the brain, characterized by a high level of lipid peroxidation, decreases in GSH content and diminished activities of antioxidative enzymes, and (ii) melatonin prevents the deleterious effects induced by okadaic acid. In conclusion, the results show the ability of melatonin to modify the neural response to okadaic acid with the protective mechanism likely involving the antioxidative processes of melatonin.  相似文献   

2.
Melatonin has marked antioxidant properties. The aim of the present study was to evaluate the therapeutic effect of melatonin on acute liver injury induced in rats by carbon tetrachloride (CCl4), allyl alcohol (AA) and their combination. A total of 108 male Wistar rats were divided into 12 experimental groups according to their treatment regimen (n = 5-10 rats in each group). Melatonin (100 mg/kg body weight, BW) was administered 6 hr (a) after a single dose of CCl4 (intragastrically 0. 66 mL/kg BW diluted 1:1 v/v with corn oil); (b) a single dose of AA (intraperitonealy, 0.62 mmol/kg BW 1:50 v/v in 0.9% saline solution); and (c) a combination of the above substances. Rats were sacrificed at 24 and 48 hr post-toxin administration and the therapeutic effect of melatonin was investigated by assessment of histopathological changes and lipid peroxidation alterations determined by measuring tissue malondialdehyde plus 4-hydroxy-nonenal (MDA + 4-HNE), plasma MDA and plasma levels of liver enzymes. The levels of a key antioxidant, glutathione (GSH), were measured in liver tissue homogenates. Hepatic necrosis was significantly reduced in the melatonin-treated rats 48 hr after administration of CCl4, AA and CCl4 + AA. The levels of hepatic enzymes in plasma were found to be significantly reduced at 24 and 48 hr in the CCl4 + AA treated rats after melatonin administration. Additionally, MDA and MDA + 4-HNE concentrations were significantly reduced at 24 and 48 hr time-points in all groups that received melatonin. GSH levels were decreased in liver after the toxic substances administration, whereas melatonin reversed this effect. In conclusion, a single dose of melatonin decreased hepatic injury induced by CCl4, AA and CCl4 + AA. The inhibition of the oxidative stress and therefore lipid peroxidation by melatonin in CCl4 and AA administered animals, may constitute the protective mechanism of melatonin against acute liver injury.  相似文献   

3.
Various evidences have documented that the pineal secretory product melatonin exerts an important anti-inflammatory effect in different experimental models including colitis. The aim of the present study was to evaluate whether melatonin regulates the inflammatory response of experimental colitis in rats at the level of signal transduction pathway. Colitis was induced by intracolonic instillation of dinitrobenzene sulfonic acid (DNBS). Four days after DNBS administration, a substantial increase of colon TNF-alpha production was associated with the colon damage. In DNBS-treated rats, the colon injury correlated with a significant rise of apoptosis (evaluated by TUNEL coloration) which was associated with a significant increased expression of proapoptotic Bax and decreased colon content of antiapoptotic Bcl-2. This inflammatory response was also related to activation of nuclear factor-kappaB (NF-kappaB) and phosphorylation of c-Jun as well as FAS ligand expression in the colon. Treatment with melatonin (15 mg/kg daily i.p.) was associated with a remarkable amelioration of colonic disrupted architecture as well as a significant reduction of TNF-alpha. Melatonin also reduced the NF-kappaB activation and phosphorylation of c-Jun as well as the Fas ligand expression in the colon. Furthermore, melatonin reduced the expression of Bax and prevented the loss of Bcl-2 proteins as well as the presence of apoptotic cells caused by DNBS. The results of this study show that melatonin administration exerts beneficial effects in inflammatory bowel disease by modulating signal transduction pathways.  相似文献   

4.
Acetaminophen (AA) is a commonly used analgesic and antipyretic drug; however, when used in high doses, it causes fulminant hepatic necrosis and nephrotoxic effects in both humans and experimental animals. It has been reported that the toxic effects of AA are the result of oxidative reactions that take place during its metabolism. In this study we investigated if melatonin, vitamin E or N-acetylcysteine (NAC) are protective against AA toxicity in mice. The doses of the antioxidants used were as follows: melatonin (10 mg/kg), vitamin E (30 mg/kg) and NAC (150 mg/kg). Blood urea nitrogen (BUN), serum creatinine, alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels in blood, and glutathione (GSH), malondialdehyde (MDA), oxidized protein levels and myeloperoxidase (MPO) activity in liver and kidney tissues were measured. BUN and serum creatinine, ALT and AST levels which were increased significantly following AA treatment decreased significantly after pretreatment with either vitamin E, melatonin or NAC; however, they were not reduced to control levels. ALT and AST levels were significantly higher at 4 hr compared with the 24 hr levels after AA administration. However, BUN and creatinine levels were significantly elevated only at 24 hr. GSH levels were reduced while MDA, MPO and oxidized protein levels were increased significantly following AA administration. These changes were reversed by pretreatment with either melatonin, vitamin E or NAC. Liver toxicity was higher at 4 hr, whereas nephrotoxicity appeared to be more severe 24 hr after treatment with AA. Vitamin E was the least efficient agent in reversing AA toxicity while melatonin, considering it was given as at lower dose than either vitamin E or NAC, was the most effective. This may be the result of the higher efficacy of melatonin in scavenging various free radicals and also because of its ability in stimulating the antioxidant enzymes.  相似文献   

5.
The present study was performed to determine whether melatonin protects mouse liver against severe damage induced by acetaminophen (APAP) administration and where melatonin primarily functions in the metabolic pathway of APAP to protect mouse liver against APAP-induced injury. Treatment of mice with melatonin (50 or 100 mg/kg, p.o.) 8 or 4 hr before APAP administration (750 mg/kg, p.o.) suppressed the increase in plasma alanine aminotransferase and aspartate aminotransferase activities in a dose- and a time-dependent manner. Melatonin treatment (100 mg/kg, p.o.) 4 hr before APAP administration remarkably inhibited centrilobular hepatic necrosis with inflammatory cell infiltration and increases in hepatic lipid peroxidation and myeloperoxidase activity, an index of tissue neutrophil infiltration, as well as release of nitric oxide and interleukin-6 into blood circulation at 9 hr after APAP administration. However, melatonin neither affected hepatic reduced glutathione (GSH) content nor spared hepatic GSH consumption by APAP treatment. Moreover, pretreatment with melatonin 4 hr before APAP administration did not influence the induction of hepatic heat shock protein 70 (HSP70) by APAP and melatonin alone did not induce HSP70 in mouse liver. These results indicate that exogenously administered melatonin exhibits a potent hepatoprotective effect against APAP-induced hepatic damage probably downstream of the activity of cytochrome P450 2E1, which works upstream of GSH conjugation in the pathway of APAP metabolism, via its anti-nitrosative and anti-inflammatory activities in addition to its antioxidant activity.  相似文献   

6.
己酮可可碱对小鼠TNBS结肠炎的药效学研究   总被引:2,自引:0,他引:2  
目的观察己酮可可碱(PTX)对小鼠TNBS(三硝基苯磺酸)肠炎的作用.方法通过直肠给予雄性BALB/c小鼠TNBS诱导结肠炎,应用PIX对其进行治疗,6日后收集结肠标本评价结肠炎症程度.结果直肠内给予BALB/c小鼠TNBS后可造成小鼠结肠炎性改变:FTX治疗可使小鼠疾病活动指数、结肠重量和炎症指数均显著下降(P<0.05).结论PTX治疗可使TNBS肠炎模型小鼠肠道炎症减轻.  相似文献   

7.
Protective effect of melatonin in a model of traumatic brain injury in mice   总被引:2,自引:0,他引:2  
ABSTRACT: The pineal hormone melatonin has recently been shown to exert neuroprotective activity in a variety of experimental neuropathologies in which free radicals are involved. This neuroprotective effect has been attributed to the antioxidant properties of melatonin. Considering that free radicals also play a deleterious role in traumatic brain injury (TBI), the purpose of the present study was to determine whether melatonin would have a beneficial effect in this pathology. Head injury was induced in mice and the neurological deficit was evaluated at 24 hr by a grip test. In this model, the free radical scavenger, α-phenyl-tert-butyl-nitrone (2 ± 100 mg/ kg, i.p.) given 5 min and repeated at 4 hr after TBI was neuroprotective. Melatonin (1.25 mg/kg, i.p.) given 5 min and repeated at 1,2, and 3 hr after head trauma also significantly reduced the neurological deficit. This beneficial effect was not due to melatonin-induced hypothermia since repeated treatment with melatonin did not modify the colonic temperature of mice. This study shows that melatonin exerts a beneficial effect on the neurological deficit induced by traumatic brain injury in mice. The mechanisms of this neuroprotection remains to be established, and more particularly, the contribution of the antioxidant activity of melatonin.  相似文献   

8.
We investigated the role of melatonin on water avoidance stress (WAS)-induced degeneration of the gastric, ileal and colonic mucosa. Wistar albino rats were exposed to acute WAS (aWAS group) or chronic WAS (cWAS group). Before exposing animals to acute (aWAS + mel group) or chronic WAS (cWAS + mel group), 10 mg/kg melatonin was injected i.p. The stomach, ileum and colon samples were investigated under light and scanning electron microscope. Malondialdehyde (MDA) and glutathione (GSH) levels were also determined. In both aWAS and cWAS groups, the epithelium of stomach showed ulceration in some areas, dilatations of the gastric glands and degeneration of gastric glandular cells; prominent congestion of the capillaries after WAS was apparent. In the cWAS group, severe vascular congestion was observed along with degeneration of ileal and colonic epithelium. MDA levels were increased and GSH levels were decreased in all tissues in both the aWAS and cWAS groups. The morphology of gastric, ileal and colonic mucosa in both aWAS + mel and cWAS + mel groups showed that the indole significantly reduced degeneration of the gastrointestinal mucosa. Decreased MDA and increased GSH levels were observed in the WAS + mel groups. Based on the results, melatonin treatment significantly prevented WAS induced degenerative morphological and biochemical changes of gastrointestinal mucosa.  相似文献   

9.
Abstract: We have studied the effects of melatonin and retinol palmitate (RP) on the nephropathy and oxidative stress induced by a single and high dose of adriamycin (AD) in Wistar male rats. A dose of melatonin (75 μg/ kg/day) and a dose of RP (0.25 g oily solution/kg/day, sc) were injected 3 and 9 days before and after the administration of AD (25 mg/kg, i.p.), respectively. After the decapitation, samples were taken from the neck vascular trunk in order to determine the triglycerides, total cholesterol, phospholipids, HDL-cholesterol, total proteins, urea, lipoperoxides, and reduced glutathione (GSH). We estimated the lipoperoxide and glutathione (GSH) contents in renal homogenates, and the excretion of proteins in urine over a 24 hr period. The administration of AD caused significant increases in proteinuria and in the other parameters studied [lipids (triglycerides, total cholesterol, phospholipids, and HDL-cholesterol), nonprotein nitrogen compounds, and lipoperoxides]. AD increased the lipoperoxide content, but it decreased the GSH content in the kidney. Both melatonin and RP, although melatonin more significantly, decreased the intensity of the changes produced by the administration of AD alone. In fact, melatonin was quite efficient in reducing the formation of lipoperoxides, restoring renal GSH content and decreasing remarkably the severity of proteinuria. These results support the powerful antioxidant action of melatonin at renal level and a lower antioxidant action of retinol. Likewise, these data reinforce the hypothesis which supports the pathogenetic role and the close relation between the oxidative stress and the expression of the nephropathy induced by AD. However, in spite of this obvious antioxidant effect of melatonin in the kidney, additional studies are required to establish accurately the role of this pineal indole in the regulation and dynamics of the antioxidative defense enzyme system, which neutralizes the damaging effect of free radicals, both endogenous and exogenous, in this organ.  相似文献   

10.
Melatonin is the principal secretory product of the pineal gland and its role as an immuno-modulator is well established. Recent evidence shows that melatonin is a scavenger of oxyradicals and peroxynitrite and exerts protective effects in septic shock, hemorrhagic shock and inflammation. In the present study, we evaluated the effect of melatonin treatment, in a model of spinal cord injury (SCI). SCI was induced by the application of vascular clips (force of 50 g) to the dura via a four-level T5-T8 laminectomy. SCI in rats resulted in severe trauma characterized by edema, neutrophil infiltration and apoptosis (measured by terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling staining). Infiltration of spinal cord tissue with neutrophils (measured as increase in myeloperoxidase activity) was associated with enhanced lipid peroxidation (increased tissue levels of malondialdehyde). Immunohistochemical examination demonstrated a marked increase in immunoreactivity for nitrotyrosine and Poly(ADP-ribose) (PAR) in the spinal cord tissue. In contrast, the degree of (a) spinal cord inflammation and tissue injury (histological score), (b) nitrotyrosine and PAR formation, (c) neutrophils infiltration and (d) apoptosis was markedly reduced in spinal cord tissue obtained from rats treated with melatonin (50 mg/kg i.p., 30 min before SCI, 30 min, 6 hr, 12 hr and 24 hr after SCI). In a separate set of experiment we have clearly demonstrated that melatonin treatment significantly ameliorated the recovery of limb function (evaluated by motor recovery score). Taken together, our results demonstrate that treatment with melatonin reduces the development of inflammation and tissue injury events associated with spinal cord trauma.  相似文献   

11.
Melatonin is involved in defending against oxidative stress caused by various environmental stresses in plants. In this study, the roles of exogenous melatonin in regulating local and systemic defense against photooxidative stress in cucumber (Cucumis sativus) and the involvement of redox signaling were examined. Foliar or rhizospheric treatment with melatonin enhanced tolerance to photooxidative stress in both melatonin‐treated leaves and untreated systemic leaves. Increased melatonin levels are capable of increasing glutathione (reduced glutathione [GSH]) redox status. Application of H2O2 and GSH also induced tolerance to photooxidative stress, while inhibition of H2O2 accumulation and GSH synthesis compromised melatonin‐induced local and systemic tolerance to photooxidative stress. H2O2 treatment increased the GSH/oxidized glutathione (GSSG) ratio, while inhibition of H2O2 accumulation prevented a melatonin‐induced increase in the GSH/GSSG ratio. Additionally, inhibition of GSH synthesis blocked H2O2‐induced photooxidative stress tolerance, whereas scavenging or inhibition of H2O2 production attenuated but did not abolish GSH‐induced tolerance to photooxidative stress. These results strongly suggest that exogenous melatonin is capable of inducing both local and systemic defense against photooxidative stress and melatonin‐enhanced GSH/GSSG ratio in a H2O2‐dependent manner is critical in the induction of tolerance.  相似文献   

12.
The therapeutic effect of melatonin on acute liver injury was examined in rats intoxicated with carbon tetrachloride (CCl4). Melatonin (10, 50, or 100 mg/kg body weight [BW]) was intraperitoneally administered to male Wistar rats 6 hr after intraperitoneal injection of CCl4 (1.6 g/kg BW) at which time an apparent liver injury occurred. This post-melatonin administration dose dependently prevented the progression of liver injury at 24 hr after CCl4 injection, judging from the levels of serum transaminases, indices of liver cell damage. Rats injected with CCl4 alone showed an increase in liver lipid peroxide (LPO) content and a decrease in liver reduced glutathione content at 6 and 24 hr after the injection. The post-melatonin administration dose dependently ameliorated both changes found at 24 hr after CCl4 injection. Rats injected with CCl4 alone showed an increase in liver triglyceride (TG) content and decreases in serum TG concentration and liver tryptophan 2,3-dioxygenase (TDO) activity, a marker of the inhibition of liver protein synthesis by CCl4, at 6 and 24 hr after the injection, and also a decrease in serum albumin concentration at 24 hr. The changes in serum TG, albumin concentration, liver TG content, and TDO activity found at 24 hr after CCl4 injection were not ameliorated by the post-administration of melatonin. The same administration of melatonin dose dependently reduced liver LPO content in CCl4-untreated rats. These results indicate that melatonin exerts a therapeutic effect on CCl4-induced acute liver injury in rats, possibly through its antioxidant action.  相似文献   

13.
We have reported that melatonin protects against alpha-naphthylisothiocyanate (ANIT)-induced acute liver injury in rats by preventing enhanced lipid peroxidation. Herein, we examine the effect of melatonin on hepatic antioxidant enzyme activities in rats with a single i.p. injection of ANIT (75 mg/kg body weight) in order to clarify the protective mechanism of the indoleamine against ANIT-induced acute liver injury. Rats received a single oral administration of melatonin (10 or 100 mg/kg body weight) at 12 hr after ANIT treatment. Hepatic Cu,Zn-superoxide dismutase (Cu,Zn-SOD), Mn-superoxide dismutase (Mn-SOD), catalase (CAT), Se-glutathione peroxidase (Se-GSH-Px), glutathione reductase (GSSG-R), and glucose-6-phosphate dehydrogenase (G-6-PDH) activities and reduced glutathione (GSH) concentration were determined 12 and 24 hr after ANIT treatment. ANIT-treated rats showed decreases in hepatic Cu,Zn-SOD and GSSG-R activities at 24 hr after treatment, transient increases in hepatic CAT and Se-GSH-Px activities at 12 hr, and no changes in hepatic Mn-SOD and G-6-PDH activities at 12 or 24 hr. Only the high dose of melatonin attenuated the decrease in hepatic Cu,Zn-SOD activity, while both doses of the indoleamine almost completely attenuated the decrease in hepatic GSSG-R activity. Neither dose of melatonin affected hepatic CAT, Se-GSH-Px, and G-6-PDH activities. ANIT-treated rats showed an increase in hepatic GSH concentration at 24 hr after treatment. Neither dose of melatonin affected the increase in hepatic GSH concentration. These results indicate that orally administered melatonin prevents decreases in Cu,Zn-SOD and GSSG-R activities in the liver of ANIT-treated rats, and suggest that the indoleamine may protect against ANIT-induced acute liver injury by attenuating the disruption of hepatic antioxidant defense systems.  相似文献   

14.
In this study, the protective effect of melatonin on kainic acid (KA)-induced neurotoxicity involving autophagy and α-synuclein aggregation was investigated in the hippocampus of C57/BL6 mice. Our data showed that intraperitoneal injection of KA (20 mg/kg) increased LC3-II levels (a hallmark protein of autophagy) and reduced mitochondrial DNA content and cytochrome c oxidase levels (a protein marker of mitochondria). Atg7 siRNA transfection prevented KA-induced LC3-II elevations and mitochondria loss. Furthermore, Atg7 siRNA attenuated KA-induced activation of caspases 3/12 (biomarkers of apoptosis) and hippocampal neuronal loss, suggesting a pro-apoptotic role of autophagy in the KA-induced neurotoxicity. Nevertheless, KA-induced α-synuclein aggregation was not affected in the Atg7 siRNA-transfected hippocampus. The neuroprotective effect of melatonin (50 mg/kg) orally administered 1 hr prior to KA injection was studied. Melatonin was found to inhibit KA-induced autophagy-lysosomal activation by reducing KA-induced increases in LC3-II, lysosomal-associated membrane protein 2 (a biomarker of lysosomes) and cathepsin B (a lysosomal cysteine protease). Subsequently, KA-induced mitochondria loss was prevented in the melatonin-treated mice. At the same time, melatonin reduced KA-increased HO-1 levels and α-synuclein aggregation. Our immunoprecipitation study showed that melatonin enhanced ubiquitination of α-synuclein monomers and aggregates. The anti-apoptotic effect of melatonin was demonstrated by attenuating KA-induced DNA fragmentation, activation of caspases 3/12, and neuronal loss. Taken together, our study suggests that KA-induced neurotoxicity may be mediated by autophagy and α-synuclein aggregation. Moreover, melatonin may exert its neuroprotection via inhibiting KA-induced autophagy and a subsequent mitochondrial loss as well as reducing α-synuclein aggregation by enhancing α-synuclein ubiquitination in the CNS.  相似文献   

15.
Protective effect of melatonin against adriamycin toxicity in the rat   总被引:1,自引:0,他引:1  
Adriamycin, an anthracyclinic antibiotic frequently used in quimioterapeutic treatments is highly toxic; it inhibits protein synthesis and provokes prooxidant effects. Melatonin has recently been shown to have high antioxidative properties. We tested if melatonin is able to neutralize the oxidative damage induced by a single dose (20 mg/kg, i.p.) of adriamycin preceded (3 days) and followed (7 days) by a low pharmacological dose (50 microg/kg, i.p.) of melatonin. After the administration of a single dose of adriamycin (20 mg/kg i.p.) to male Wistar rats, the reduced to oxidized glutathione (GSH/GSSG) ratio and the glutathione peroxidase (GPx, E.C. 1.11.1.9.) activity in the brain, intestine, heart, kidney, and lung were significantly reduced. When the treatment of adriamycin was preceded and followed by low pharmacological doses of melatonin, the decrease in the GSH/GSSG ratio was significantly reduced but the reduction in GPx activity was not attenuated. A significant increase in lipid peroxidation products was observed in brain, heart, and kidney tissues after a single administration of adriamycin, which was attenuated by pre- and post-treatment with a low pharmacological dose of melatonin. Our results demonstrate that oxidative damage induced by the antitumor drug, adriamycin, can be reduced by low pharmacological doses of melatonin.  相似文献   

16.
The study aimed at determining the effect of melatonin on the activity of protective antioxidative enzymes in the heart and of lipid peroxidation products in the course of intoxication with doxorubicin (DOX). The rats were categorized into four groups, receiving: 0.9% NaCl i.p. (NaCl control); melatonin [20 mg/kg body weight (b.w.)] s.c. (control Mel); DOX (2.5 mg/kg b.w.) i.p.; melatonin plus DOX in doses as above. All the substances were administered once in a week for four consecutive weeks. Homogenates of heart tissue were examined for activities of glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT), levels of reduced glutathione (GSH) and of lipid peroxidation indices (MDA + 4-HDA). Administration of melatonin alone did not induce alterations in levels of MDA + 4-HDA, GSH, or in activity of GPx, SOD or CAT, as compared to the group receiving 0.9% NaCl. GSH levels decreased following DOX but remained at normal levels following DOX and melatonin. The level of MDA + 4-HDA increased following DOX, as compared with the control, a change prevented by the combination of DOX + melatonin. Activities of GPx, SOD and CAT were higher in groups receiving DOX and/or DOX plus melatonin than in control groups. Activity of CAT and the level of GSH in the group receiving DOX plus melatonin were significantly higher than in the group intoxicated with DOX alone. The obtained results demonstrate that, when given in parallel with DOX, melatonin protects cardiomyocytes from damaging effects of the cytostatic drug (reflected by the levels of MDA + 4-HDA). The protective effect resulted, in part from the augmented levels of GSH and from stimulation of CAT activity by melatonin in cardiomyocytes subjected to the action of DOX.  相似文献   

17.
Aging is a multifactorial process that involves biochemical, structural, and functional changes in mitochondria. The ability of melatonin to palliate the alterations induced by aging is based on its chronobiologic, antioxidant, and mitochondrial effects. There is little information about the effects of melatonin on the in situ mitochondrial network of aging cells and its physiological implications. We have studied the ability of melatonin to prevent the functional alterations of in situ mitochondria of smooth muscle cells and its impact on contractility. Mitochondrial membrane potential was recorded in isolated colonic smooth muscle cells from young mice (3 month old), aged mice (22–24‐month old), and aged mice treated with melatonin (starting at 14‐month age). Aging induced a partial mitochondrial depolarization in resting conditions and reduced the depolarizing response to cellular stimulation. Use of oligomycin indicated that aging enhanced the resting activity of the mitochondrial ATP synthase, whereas in young cells, the enzyme operated mainly in reverse mode. Melatonin treatment prevented all these changes. Aging reduced both spontaneous and stimulated contraction of colonic strips and shifted the metabolic dependence of contraction from mitochondria to glycolysis, as indicated the use of mitochondrial and glycolysis inhibitors. These functional alterations were also palliated by melatonin treatment. Aging effects were not related to a decrease in Ca2+ store mobilization, because this was enhanced in aged cells and restored by melatonin. In conclusion, melatonin prevents the age induced in situ mitochondrial potential alterations in smooth muscle cells and the associated changes in contractility and metabolism.  相似文献   

18.
Preventive effect of melatonin on bleomycin-induced lung fibrosis in rats   总被引:4,自引:0,他引:4  
Oxidative stress has an important role in the pathogenesis of idiopathic pulmonary fibrosis. Melatonin has direct and indirect free radical-detoxifying activity. The present study investigated whether melatonin treatment attenuates bleomycin-induced lung fibrosis in rats. A group of rats was given one dose of bleomycin while the control animals were given saline. The first dose of melatonin (4 mg/kg/day) was given 2 days before the bleomycin injection. At day 14, fibrotic changes were evaluated using Aschoft's criteria and lung hydroxyproline content. Bleomycin produced a 2.7-fold rise in the fibrosis score that was decreased 65% by melatonin (P < 0.05) and a 1.4-fold increase in hydroxyproline content which was completely prevented by melatonin. Protein carbonyl and thiobarbituric acid reactive substances levels, which were significantly elevated in the bleomycin treated rats, were significantly attenuated by melatonin. Bleomycin administration significantly reduced the activities of catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in lung tissue. The reduction in CAT activity was prevented by melatonin but SOD and GSH-Px were not influenced. These results revealed that melatonin may prevent the development of bleomycin-induced lung fibrosis via the repression of protein and lipid peroxidation.  相似文献   

19.
Melatonin reduces uranium-induced nephrotoxicity in rats   总被引:2,自引:0,他引:2  
The protective role of exogenous melatonin on U-induced nephrotoxicity was investigated in rats. Animals were given single doses of uranyl acetate dihydrate (UAD) at 5 mg/kg (subcutaneous), melatonin at 10 or 20 mg/kg (intraperitoneal), and UAD (5 mg/kg) plus melatonin (10 or 20 mg/kg), or vehicle (control group). In comparison with the UAD-treated group only, significant beneficial changes were noted in some urinary and serum parameters of rats concurrently exposed to UAD and melatonin. The increase of U excretion after UAD administration was accompanied by a significant reduction in the renal content of U when melatonin was given at a dose of 20 mg/kg. Melatonin also reduced the severity of the U-induced histological alterations in kidney. In renal tissue, the activity of the superoxide dismutase (SOD) and the thiobarbituric acid reactive substances (TBARS) levels increased significantly as a result of UAD exposure. Following UAD administration, oxidative stress markers in erythrocytes showed a reduction in SOD activity and an increase in TBARS levels, which were significantly restored by melatonin administration. In plasma, reduced glutathione (GSH) and its oxidized form (GSSG) were also altered in UAD-exposed rats. However, only the GSSG/GSH ratio was restored to control levels after melatonin treatment. Oxidative damage was observed in kidneys. Melatonin administration partially restored these adverse effects. It is concluded that melatonin offers some benefit as a potential agent to treat acute U-induced nephrotoxicity.  相似文献   

20.
Hepatocyte apoptosis plays an important role in the development of fulminant hepatic failure (FHF). The objective of this study was to investigate the antiapoptotic effect of melatonin in an animal model of FHF of viral origin induced by the rabbit hemorrhagic disease virus (RHDV). Rabbits were experimentally infected with 2 × 10(4) hemagglutination units of a RHDV isolate and received melatonin at two concentrations of 10 and 20 mg/kg at 0, 12, and 24 hr postinfection. RHDV infection induced liver apoptosis, with increased caspase-3 immunoexpression and activity and poly(ADP-ribose)polymerase-1 (PARP-1) proteolysis. These effects were attenuated by melatonin in a concentration-dependent manner. Antiapoptotic effects of melatonin were related to a reduced expression of Bax and cytosolic cytochrome c release, increased expression of Bcl-2 and Bcl-xL, and inhibition of caspase-9 activity. Increased thiobarbituric reactive acid substances concentration and oxidized-to-reduced glutathione ratio were significantly prevented by melatonin administration. Melatonin treatment also resulted in a reduction in caspase-8 activity, tumor necrosis factor receptor-1 (TNF-R1) expression, and phosphorylated Janus kinase (JNK) expression, and increased expression of cellular FLICE-inhibitory protein (c-FLIP). Our findings show that inhibition of apoptotic mechanisms contributes to the beneficial effects of melatonin in rabbits with experimental infection by RHDV and supports a potential hepatoprotective role of melatonin in FHF.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号