首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A green palladium (Pd)‐based catalyst supported on Rosa canina fruit extract‐modified graphene oxide [Pd nanoparticles (NPs)/reduced graphene oxide (RGO)‐Rosa canina] hybrid materials has been used as a recoverable and heterogeneous nanocatalyst for cyanating aryl halides using K4[Fe (CN)6] as the resource of cyanide. The nitriles were achieved in good to high yield, and the catalyst can be recovered and reused for up to seven cycles with no remarkable decrease in its catalytic activity.  相似文献   

2.
Nanting Li 《中国化学》2016,34(11):1129-1134
FePd‐RGO composites through the growth of uniformly dispersed iron‐palladium bimetallic nanoparticles (NPs) on reduced graphene oxide (RGO) nanosheets were prepared by a two‐step method. The firstly formed Fe is used as the seed for the subsequent Pd growth. The formation of Fe NPs on RGO in the first step is performed by an in‐situ reduction reaction with the reducer ethylene glycol under oil bath at 180°C. NPs in the as‐prepared FePd‐RGO have an average particle size of 6.5 nm, and Pd is added to one side of Fe which leads to the formation of Fe‐Pd bimetallic interfaces. As compared with the commercial Pd black at the same loading, the composites have higher electro‐catalytic activity, better electrochemical stability and higher resistance to CO poisoning for formic acid electro‐oxidation.  相似文献   

3.
A three‐dimensional (3D) nitrogen‐doped reduced graphene oxide (rGO)–carbon nanotubes (CNTs) architecture supporting ultrafine Pd nanoparticles is prepared and used as a highly efficient electrocatalyst. Graphene oxide (GO) is first used as a surfactant to disperse pristine CNTs for electrochemical preparation of 3D rGO@CNTs, and subsequently one‐step electrodeposition of the stable colloidal GO–CNTs solution containing Na2PdCl4 affords rGO@CNTs‐supported Pd nanoparticles. Further thermal treatment of the Pd/rGO@CNTs hybrid with ammonia achieves not only in situ nitrogen‐doping of the rGO@CNTs support but also extraordinary size decrease of the Pd nanoparticles to below 2.0 nm. The resulting catalyst is characterized by scanning and transmission electron microscopy, X‐ray diffraction, Raman spectroscopy, and X‐ray photoelectron spectroscopy. Catalyst performance for the methanol oxidation reaction is tested through cyclic voltammetry and chronoamperometry techniques, which shows exceedingly high mass activity and superior durability.  相似文献   

4.
We developed a selective solvothermal synthesis of palladium nanoparticles on nanodiamond (ND)–graphene oxide (GO) hybrid material in solution. After the GO and ND materials have been added in PdCl2 solution, the spontaneous redox reaction between the ND–GO and PdCl2 led to the creation of nanohybrid Pd@ND@GO material. The resulting Pd@ND@GO material was characterized by X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) spectrometry, scanning electronic microscopy (SEM), and atomic absorption spectrometry methods. The Pd@ND@GO material has been used for the first time as a catalyst for the reduction for 2-nitrophenol and the degradation of methylene blue in the presence of NaBH4. GO plays the role of 2D support material for Pd nanoparticles, while NDs act as a nanospacer for partly preventing the re-stacking of the GO. The Pd@ND@GO material can lead to high catalytic activity for the reduction reaction of 2-nitrophenol and degradation of methylene blue with 100% conversion within ~15 s for these two reactions even when the content of Pd in it is as low as 4.6 wt%.  相似文献   

5.
Facile and efficient reduction of graphene oxide (GO) and novel applications of the reduced graphene oxide (RGO) based materials are of current interest. Herein, we report a novel and facile method for the reduction of GO by using a biocompatible reducing agent dithiothreitol (DTT). Stabilization of DTT by the formation of a six‐membered ring with internal disulfide linkage upon oxidation is responsible for the reduction of GO. The reduced graphene oxide is characterized by several spectroscopic and microscopic techniques. Dispersion of RGO in DMF remained stable for several weeks suggesting that the RGO obtained by DTT‐mediated reduction is hydrophobic in nature. This method can be considered for large scale production of good quality RGO. Treatment of RGO with hemin afforded a functional hemin‐reduced graphene oxide (H‐RGO) hybrid material that exhibited remarkable protective effects against the potentially harmful peroxynitrite (PN). A detailed inhibition study on PN‐mediated oxidation and nitration reactions indicate that the interaction between hemin and RGO results in a synergistic effect, which leads to an efficient reduction of PN to nitrate. The RGO also catalyzes the isomerization of PN to nitrate as the RGO layers facilitate the rapid recombination of .NO2 with FeIV=O species. In the presence of reducing agents such as ascorbic acid, the FeIV=O species can be reduced to FeIII, thus helping to maintain the PN reductase cycle.  相似文献   

6.
Nanosheet of PdNiZn and nanosphere of PdNiZn/reduced‐graphene oxide (RGO) with sub‐3 nm spheres have been successfully synthesized through a facile oil‐water interfacial strategy. The morphology and composition of the films were determined by X‐ray diffraction (XRD), X‐ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive analysis of X‐ray (EDAX) and elemental mapping. In the present study, we have developed a method to minimize the usage of precious Pd element. Due to the special structure and intermetallic synergies, the PdNiZn and PdNiZn/RGO nanoalloys exhibited enhanced catalytic activity and durability relative to Pd nanoparticles in Suzuki‐Miyaura C‐C cross‐coupling reaction. Compared to classical cross‐coupling reactions, this method has the advantages of a green solvent, short reaction times, low catalyst loading, high yields and reusability of the catalysts.  相似文献   

7.
The concise synthesis of sulfur‐enriched graphene for battery applications is reported. The direct treatment of graphene oxide (GO) with the commercially available Lawesson's reagent produced sulfur‐enriched‐reduced GO (S‐rGO). Various techniques, such as X‐ray photoelectron spectroscopy (XPS), confirmed the occurrence of both sulfur functionalization and GO reduction. Also fabricated was a nanohybrid material by using S‐rGO with polyoxometalate (POM) as a cathode‐active material for a rechargeable battery. Transmission electron microscopy (TEM) revealed that POM clusters were individually immobilized on the S‐rGO surface. This battery, based on a POM/S‐rGO complex, exhibited greater cycling stability for the charge‐discharge process than a battery with nanohybrid materials positioned between the POM and nonenriched rGO. These results demonstrate that the use of sulfur‐containing groups on a graphene surface can be extended to applications such as the catalysis of electrochemical reactions and electrodes in other battery systems.  相似文献   

8.
A green palladium‐based catalyst supported on Artemisia abrotanum extract‐modified graphene oxide (Pd NPs/RGO‐A. abrotanum) hybrid material has been used as a recoverable and heterogeneous nanocatalyst for the catalytic reduction of various dyes, including methylene blue, methyl orange and rhodamine B, in the presence of NaBH4 as reducing agent in aqueous medium at room temperature. With the help of UV–visible spectroscopy, the catalytic reactions were investigated. According to the results, these reactions followed the pseudo‐first‐order rate equation.  相似文献   

9.
采用改进的Hummers法氧化石墨后,对其超声剥离成氧化石墨烯水溶液,继之通过乙二醇还原Pd金属离子和氧化石墨烯,得到了还原态氧化石墨烯(RGO)负载Pd纳米催化剂,并用于甲酸的电催化氧化.透射电子显微镜和X射线衍射结果显示:负载于RGO上的Pd粒子平均粒径为3.8nm,其优先在RGO的褶皱和边缘处生长.电化学测试表明:RGO上残存的含氧基团降低了Pd催化剂受CO毒化的程度,Pd/RGO催化剂表现出了较商业化Pd/C更高的电催化活性和更好的稳定性.  相似文献   

10.
A series of new 5‐substituted 1H‐tetrazoles bearing bioactive N‐heterocyclic cores were synthesized through [3 + 2] cycloaddition reactions between alkyl nitriles (RCN) and NaN3 in the presence of Cu/aminoclay/reduced graphene oxide nanohybrid (Cu/AC/r‐GO nanohybrid) as a heterogeneous nanocatalyst in water/i‐PrOH (50:50, V/V) media at reflux condition. The influence of factors on a sample reaction including solvent type, temperature, and catalyst amount was discussed. This current protocol has many advantages including inexpensiveness, environmentally benign, broad substrate scope, excellent yields, and easy work‐up procedure. The Cu/AC/r‐GO used in this protocol is a low‐cost catalyst that proved to have considerable chemical and thermal stabilities. This non‐hygroscopic catalyst can be easily recycled, reused, and stored for many consecutive reaction runs without significant loss in its reactivity.  相似文献   

11.
Poly(diallyldimethylammonium chloride) (PDDA) has been employed as a modifying material for the development of new functional materials; then, the functionalized graphene was employed as a support for Pd nanoparticles through a facile method. The structures and morphologies of the as‐synthesized Pd/PDDA–graphene composites were extensively characterized by Raman spectroscopy, XRD, XPS, and TEM. Morphological observation showed that Pd NPs with average diameters of 4.4 nm were evenly deposited over the functionalized graphene sheets. Moreover, the electrochemical experiments indicated that the Pd/PDDA–graphene catalyst showed improved electrocatalytic activity toward alcohol‐oxidation reactions compared to the Pd/graphene and commercial Pd/C systems, as well as previously reported Pd‐based catalysts. This study demonstrates the great potential of PDDA‐functionalized graphene as a support for the development of metal–graphene nanocomposites for important applications in fuel cells.  相似文献   

12.
An SO3H‐functionalized nano‐MGO‐D‐NH2 catalyst has been prepared by multi‐functionalization of a magnetic graphene oxide (GO) nanohybrid and evaluated in the synthesis of tetrahydrobenzo[b]pyran and pyrano[2,3‐d]pyrimidinone derivatives. The GO/Fe3O4 (MGO) hybrid was prepared via an improved Hummers method followed by the covalent attachment of 1,4‐butanesultone with the amino group of the as‐prepared polyamidoamine‐functionalized MGO (MGO‐D‐NH2) to give double‐functionalized magnetic nanoparticles as the catalyst. The prepared nanoparticles were characterized to confirm their synthesis and to precisely determine their physicochemical properties. In summary, the prepared catalyst showed marked recyclability and catalytic performance in terms of reaction time and yield of products. The results of this study are hoped to aid the development of a new class of heterogeneous catalysts to show high performance and as excellent candidates for industrial applications.  相似文献   

13.
We have synthesized a porous Mo‐based composite obtained from a polyoxometalate‐based metal–organic framework and graphene oxide (POMOFs/GO) using a simple one‐pot method. The MoO2@PC‐RGO hybrid material derived from the POMOFs/GO composite is prepared at a relatively low carbonization temperature, which presents a superior activity for the hydrogen‐evolution reaction (HER) in acidic media owing to the synergistic effects among highly dispersive MoO2 particles, phosphorus‐doped porous carbon, and RGO substrates. MoO2@PC‐RGO exhibits a very positive onset potential close to that of 20 % Pt/C, low Tafel slope of 41 mV dec?1, high exchange current density of 4.8×10?4 A cm?2, and remarkable long‐term cycle stability. It is one of the best high‐performance catalysts among the reported nonprecious metal catalysts for HER to date.  相似文献   

14.
Macrocyclic chelators have been widely employed in the realm of nanoparticle‐based positron emission tomography (PET) imaging, whereas its accuracy remains questionable. Here, we found that 64Cu can be intrinsically labeled onto nanographene based on interactions between Cu and the π electrons of graphene without the need of chelator conjugation, providing a promising alternative radiolabeling approach that maintains the native in vivo pharmacokinetics of the nanoparticles. Due to abundant π bonds, reduced graphene oxide (RGO) exhibited significantly higher labeling efficiency in comparison with graphene oxide (GO) and exhibited excellent radiostability in vivo. More importantly, nonspecific attachment of 1,4,7‐triazacyclononane‐1,4,7‐triacetic acid (NOTA) on nanographene was observed, which revealed that chelator‐mediated nanoparticle‐based PET imaging has its inherent drawbacks and can possibly lead to erroneous imaging results in vivo.  相似文献   

15.
To achieve small-sized and well-dispersed palladium (Pd) nanoparticles, we make use of effective photochemical approaches to synthesis of clean Pd nanoparticles on the surface of graphene at room temperature. By modulating the photochemical reaction conditions, the size and dispersion of graphene–Pd composites can be well controlled, where PdCl42− and graphene oxide (GO) are the reaction precursors, Hantzsch 1,4-dihydropyridine (HEH) is used as an electron donor and an amine-type ligand to stabilize small Pd nanoparticles on the surface of graphene. As a result, the easy and effective photochemical approaches to the graphene–Pd composites with well-dispersed, small-sized Pd nanoparticles and highly conductive reduced GO, are established. Good to excellent yields have also been achieved with the graphene-supported Pd nanoparticles catalysts for the Suzuki coupling reaction.  相似文献   

16.
Thiol‐ene click reaction was successfully employed for chemical modification of graphene oxide (GO) by one‐step synthesis. Herein, 2,2‐azobis(2‐methylpropionitrile) (AIBN) was used as thermal catalyst and cysteamine hydrochloride (HS?(CH2)2?NH2HCl) was used as thiol‐containing compound, which is incorporated to GO surface upon reaction with the C=C bonds. The hydrochloride acts as protecting group for the amine, which is finally eliminated by adding sodium hydroxide. The modified GO contains both S‐ and N‐containing groups (NS‐GO). We found that NS‐GO sheets form good dispersion in water, ethanol, and ethylene glycol. These graphene dispersions can be processed into functionalized graphene film. Besides, it was demonstrated that NS‐GO was proved to be an excellent host matrix for platinum nanoparticles. The developed method paves a new way for graphene modification and its functional nanocomposites.  相似文献   

17.
《中国化学会会志》2018,65(7):868-874
In this work, the NiFe2O4@TiO2/reduced graphene oxide (RGO) ternary nanocomposites with high saturation magnetization and catalytic efficiency have been synthesized through the following steps. First, graphene oxide was prepared using the modified Hummer's method. Second, the NiFe2O4 nanoparticles were successfully prepared using the hydrothermal method. Third, the core shell‐structured NiFe2O4@TiO2/RGO nanocomposite precursors were easily obtained through hydrolysis reaction. The morphology of NiFe2O4@TiO2/RGO nanocomposites was characterized from scanning electron microscope (SEM) and transmission electron microscope (TEM) images. Moreover, the results of X‐ray diffraction (XRD) patterns proved that the TiO2 coating shell consisted of anatase. The vibrating sample magnetometer (VSM) measurements showed that the saturation magnetization value of NiFe2O4@TiO2/RGO ternary nanocomposites was 25 emu/g. The X‐ray photoelectron spectroscopy (XPS) analysis confirmed that only part of the graphite oxide (GO) was reduced to RGO in the ternary nanocomposite. The degradation experiments proved that NiFe2O4@TiO2/RGO nanocomposite exhibited the high catalytic efficiency and outstanding recyclable performance for rhodamine B (RhB).  相似文献   

18.
A ZnO@reduced graphene oxide–poly(N‐vinylpyrrolidone) (ZnO@RGO‐PVP) nanocomposite, prepared by in situ growth of ZnO nanoparticles on PVP‐decorated RGO (RGO‐PVP) was developed as a cathode buffer layer for improving the performance of polymer solar cells (PSCs). PVP not only favors homogeneous distribution of the RGO through the strong π–π interactions between graphene and PVP molecules, but also acts as a stabilizer and bridge to control the in situ growth of sol–gel‐derived ZnO nanoparticles on the surface of the graphene. At the same time, RGO provides a conductive connection for independent dispersion of ZnO nanoparticles to form uniform nanoclusters with fewer domain boundaries and surface traps. Moreover, the LUMO level of ZnO is effectively improved by modification with RGO‐PVP. Compared to bare ZnO, a ZnO@RGO‐PVP cathode buffer layer substantially reduces the recombination of carriers, increases the electrical conductivity, and enhances electron extraction. Consequently, the power conversion efficiency of an inverted device based on thieno[3,4‐b]thiophene/benzodithiophene (PTB7):[6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) with ZnO@RGO‐PVP as cathode buffer layer was greatly improved to 7.5 % with improved long‐term stability. The results reveal that ZnO@RGO‐PVP is universally applicable as a cathode buffer layer for improving the performance of PSCs.  相似文献   

19.
This paper is a review of the recent progress on gas sensors using graphene oxide (GO). GO is not a new material but its unique features have recently been of interest for gas sensing applications, and not just as an intermediate for reduced graphene oxide (RGO). Graphene and RGO have been well known gas-sensing materials, but GO is also an attractive sensing material that has been well studied these last few years. The functional groups on GO nanosheets play important roles in adsorbing gas molecules, and the electric or optical properties of GO materials change with exposure to certain gases. Addition of metal nanoparticles and metal oxide nanocomposites is an effective way to make GO materials selective and sensitive to analyte gases. In this paper, several applications of GO based sensors are summarized for detection of water vapor, NO2, H2, NH3, H2S, and organic vapors. Also binding energies of gas molecules onto graphene and the oxygenous functional groups are summarized, and problems and possible solutions are discussed for the GO-based gas sensors.  相似文献   

20.
Graphene‐polymer nanocomposites have significant potential in many applications such as photovoltaic devices, fuel cells, and sensors. Functionalization of graphene is an essential step in the synthesis of uniformly distributed graphene‐polymer nanocomposites, but often results in structural defects in the graphitic sp2 carbon framework. To address this issue, we synthesized graphene oxide (GO) by oxidative exfoliation of graphite and then reduced it into graphene via self‐polymerization of dopamine (DA). The simultaneous reduction of GO into graphene, and polymerization and coating of polydopamine (PDA) on the reduced graphene oxide (RGO) surface were confirmed with XRD, UV–Vis, XPS, Raman, TGA, and FTIR. The degree of reduction of GO increased with increasing DA/GO ratio from 1/4 to 4/1 and/or with increasing temperature from room temperature to 60 °C. A RAFT agent, 2‐(dodecylthiocarbonothioylthio)?2‐methylpropionic acid, was linked onto the surface of the PDA/RGO, with a higher equivalence of RAFT agent in the reaction leading to a higher concentration of RAFT sites on the surface. Graphene‐poly(methyl methacrylate), graphene‐poly(tert‐butyl acrylate), and graphene‐poly(N‐isopropylacrylamide) nanocomposites were synthesized via RAFT polymerization, showing their characteristic solubility in several different solvents. This novel synthetic route was found facile and can be readily used for the rational design of graphene‐polymer nanocomposites, promoting their applications. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3941–3949  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号