首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 343 毫秒
1.
为使金属钼能从钼含量为1.62%的铜钼多金属硫化矿混合精矿中高效分离,探索了一种加温预处理-浮选分离的工艺。混合精矿首先经加温脱药,脱药温度为90℃,加温时间为2.5 h,在不磨矿的情况下直接进行一粗-四精-一扫的钼浮选分离工艺,并配合专门浮钼的选择性捕收剂MY,获得了钼品位为45.24%,回收率为86.88%的钼精矿,并使铜、铋等其他有价金属元素富集至浮钼尾矿中,有效的解决了钼从铜钼多金属硫化混合精矿中难分离的问题。  相似文献   

2.
通过浮选试验研究了西藏某铜钼混合精矿的分选条件,同时借助人工配置的模拟回水和不同配比的选矿回水试验考察了回水对铜钼混合精矿分离浮选的影响。浮选条件试验结果表明:在矿浆p H值为7.68条件下,固定Na2S用量为5 000 g/t,煤油用量为100 g/t,经过一步粗选,得到的钼精矿中钼品位为11.52%,回收率为61.61%;铜品位为24.63%,回收率为10.77%。人工配置的模拟回水试验结果表明:铜钼分离各因素显著性顺序为铜离子浓度、黄药浓度、硫离子浓度。配比使用选厂回水试验结果表明:配比使用选厂回水时,当回水配比≤60%时,有利于提高铜钼分离指标;当回水配比60%时,不利于铜钼的分离。现场选矿回水的循环回用试验结果表明选矿回水会降低钼精矿中钼的回收率,影响铜钼混合精矿的分离。  相似文献   

3.
福建某钨矿采用重选方法回收,所得重选毛砂采用混合浮选方法脱除伴生的硫化矿,产出合格钨精矿;而脱除出来的伴生硫化矿含Mo 2.20%、Cu 2.59%、Bi 1.22%、S 40.31%,有用组分多、性质复杂、药剂残留多,分离难度大。长期以来,该矿采用钼浮选-铜浮选-铋重选工艺回收其中的钼、铜和铋,金属互含高、品位和回收率低。为了充分利用该钨矿伴生硫化矿资源,进行了详细的选矿试验研究,最终采用钼浮选-铜浮选-铋浮选工艺流程,其中钼使用硫化钠抑制后加煤油选钼、铜采用石灰抑制后用TL-1捕收剂选铜、铋采用硫酸铝活化后用乙硫氮选铋,可大幅度提高钼、铜和铋的回收率,其闭路试验指标为:钼精矿含Mo 50.16%、回收率94.48%,铜精矿含Cu 20.49%、回收率90.08%,铋精矿含Bi 20.29%、回收率59.59%。该工艺可实现钨矿伴生硫化矿钼铜铋的高效分离,提高硫化矿资源综合利用率。  相似文献   

4.
云南某铜矿铜钼浮选分离废水硫、氟含量非常高,直接回用严重影响铜钼混合浮选指标。试验采用化学沉淀—絮凝沉降法处理该废水,考察了沉淀剂用量、搅拌反应时间对废水脱硫、脱氟的影响,絮凝剂种类、用量、p H值对反应后废水絮凝效果的影响,并对处理前后废水的回用情况进行了对比。研究表明:在废水初始p H=12.5,硫沉淀剂绿矾用量为83.33 g/L,氟沉淀剂石灰用量为40 g/L,搅拌反应时间为60 min情况下,硫去除率为93.37%,氟去除率为98.52%;新型絮凝剂M5250用量为50 mg/L时,澄清水的浊度为8.1 FTU。处理后的铜钼分离废水部分回用于矿石的磨矿和铜钼混浮作业,可明显改善铜钼混浮效果。因此,化学沉淀—絮凝沉降工艺在处理某铜钼分离废水中的硫和氟方面,具有简单、快速、高效的特征,经济效益和环境效益显著。  相似文献   

5.
江维  李俊  王铧泰  郭俊龙 《金属矿山》2012,41(11):151-155
某富含钼、铜、铋、硫的白钨矿脱硫产品具有粒度粗细不均、嵌布关系复杂、有用矿物被强捕收剂MB作用的特点。以活性炭脱药、LTN与LTZ组合抑铜铋硫浮钼为核心技术,按优先浮钼-铜铋混浮再分离-最后浮硫的试验流程进行了有用成分分离试验研究,最终获得了钼品位为45.19%、回收率为79.95%的钼精矿,铜品位为18.13%、回收率为81.41%的铜精矿,铋品位为15.30%、回收率为50.07%的铋精矿,硫品位为39.08%、回收率为84.67%的硫精矿。  相似文献   

6.
某硫化铜钼选厂尾矿回水利用研究   总被引:3,自引:1,他引:2  
周强  戈保梁  聂琪 《矿冶工程》2010,30(3):40-42
某铜钼选厂采用磨矿-混合浮选-分离流程, 经一粗一扫三精得到铜钼混合精矿, 最后进行铜钼分离。该选厂的尾矿水碱度高, 硫化钠含量高, 如果直接返回利用会对铜矿物产生一定的抑制作用。尾矿回水试验表明, 未经处理的尾矿回水和经阴离子絮凝剂或阳离子絮凝剂处理过的尾矿回水试验均得不到理想的试验结果。而采用KMG处理的尾矿回水进行试验, 结果表明, 回水对选矿技术指标影响不大, 可循环利用。  相似文献   

7.
铜钼混合精矿的工艺粒度很细,在-0.043mm的级别中,辉钼矿、铜矿物的含量分别为77.30%、65.77%,造成铜钼浮选分离困难。试验首先对铜钼混合精矿进行浓密脱药,然后以水玻璃和硫氢化钠作为脉石矿物和铜矿物的抑制剂,并用氧化剂高锰酸钾进一步抑制微细颗粒次生铜矿物,在利用多次条件试验后闭路回水、再磨细度-0.043mm82.5%的条件下,经过一次粗选、二次扫选和四次精选,擦洗后再进行二次精选的闭路试验,获得了钼品位55.73%、含铜0.64%,钼回收率68.11%的钼精矿;铜品位21.36%、含钼0.1447%,铜回收率99.98%的铜精矿,实现了铜钼的有效分离。  相似文献   

8.
针对粤北某极低品位伴生稀有金属矿石,采用由“分级-粗粒跳汰-细粒摇床”重选预富集工艺、“钨硫枱浮分组-分类磨矿-异步浮选分离”钨硫分离工艺和“加温脱药-钼优先浮选-铋银重选-铜银浮选”硫化矿相互分离工艺3部分组成的工艺流程,生产实践结果显示,在原矿钨、铜、钼、铋、银品位分别为0.417%、0.111%、0.017%、0.072%和9.909 g/t时,获得了钨、铜、钼、铋、硫品位分别为61.96%、21.69%、51.89%、25.18%和44.51%,回收率分别为80.21%、72.28%、64.01%、56.40%和60.41%的合格产品,银在铜、铋精矿中品位分别为353.31 g/t和3 391.49 g/t,总回收率为68.27%,充分回收了铜、钼、铋、硫、钨等有价金属元素,实现了极低品位伴生稀有金属矿产资源的高效综合利用。  相似文献   

9.
为解决德兴铜矿铜钼分离工艺硫化钠用量大、产生的碱性废水中COD含量高、废水处理成本高等问题,结合铜钼混合精矿粒度细、铜钼矿物组成简单、单体解离度高的特点,开展了磁浮联合工艺选矿试验研究。通过条件试验确定了较优的磁选工艺参数,磁选扩大试验获得了磁选精矿产率39.16%、铜品位29.27%、钼损失率6.08%的指标;对磁选尾矿进行了浮选分离试验,获得了精矿钼品位46.54%、钼作业回收率93.97%的指标;综合计算表明,采用磁浮联合工艺处理含铜25.56%、含钼1.04%的铜钼混合精矿,可获得铜品位26.02%、铜回收率99.79%的铜精矿及钼品位46.54%、钼回收率88.30%的钼精矿,铜钼分离指标较优。此外,由于磁选作业提前分离出近40%的高铜低钼铜精矿,大幅降低了浮选处理量,使硫化钠等浮选药剂用量降低40%以上,显著降低了碱性废水的COD含量及后续水处理成本,具有显著的经济效益和环保效益。  相似文献   

10.
内蒙古某低品位铜钼混合精矿中辉钼矿和铜矿的嵌布粒度很细,在-0.043mm级别中,辉钼矿、铜矿物的含量分别为77.30%和65.77%,造成铜钼浮选分离困难。试验首先对铜钼混合精矿进行浓密脱药,然后以水玻璃和硫氢化钠作为脉石矿物和铜矿物的抑制剂,并用氧化剂高锰酸钾进一步抑制微细颗粒次生铜矿物,在利用多次循环闭路回水、再磨细度82.5% -0.043mm的条件下,经过一次粗选、二次扫选和四次精选,擦洗后再进行二次精选的闭路试验,获得了钼品位55.73%、含铜0.64%,钼回收率68.11%的钼精矿;铜品位21.36%、含钼0.1447%,铜回收率99.98%的铜精矿,实现了铜钼的有效分离。   相似文献   

11.
湖北某铜矿含铜0.67%和钼0.012%,现场采用高碱度铜钼混合浮选工艺,存在石灰用量高和废水难处理等问题.通过组合捕收剂的使用及调整矿浆电位,在石灰和过氧化钙用量各为400 g/t、组合捕收剂丁基黄药+乙硫氮(质量比11)用量80 g/t的条件下(此时矿浆pH为10.5、矿浆电位177.4 mV)进行一次粗选,可获...  相似文献   

12.
彭会清  黄鑫  罗文  邵辉 《金属矿山》2019,48(1):83-86
江西某钼矿选矿厂原工艺已不适应矿石性质的变化,导致磨矿-粗选-粗精矿再磨-1粗5精2扫闭路浮选流程仅获得钼品位为45.06%的钼精矿,再磨后的钼浮选作业回收率为90.31%、尾矿钼品位高达1.12%。造成生产指标不理想的原因主要是其他硫化矿物的抑制剂Na2S抑制效果不理想、钼矿物与其他矿物解离不充分。为解决生产中存在的问题进行了选矿试验。结果表明,在核心改造内容为ZA替代Na2S、对再磨选精矿进行2次再磨选的情况下,采用再磨1(-0.038 mm占85%)-1粗3精4扫-再磨2(-0.038 mm占90%)-2次精选、中矿顺序返回流程处理试样,最终获得钼品位为53.57 %、钼作业回收率为98.45 %的钼精矿,尾矿钼品位降至0.175 %,精矿钼品位和钼作业回收率分别提高了8.51个百分点和8.14个百分点,再磨选尾矿品位下降0.945个百分点,高效地实现了钼的回收。  相似文献   

13.
研究了内蒙古某铅锌矿选矿废水水质、废水处理中硫化钠用量及硫化钠添加位置对该废水回用于浮选时铅锌矿品位及回收率的影响。结果表明,当废水中CODCr和BOD5含量超过92.10 mg/L和18.54 mg/L时,废水回用对浮选效果影响较大;废水回用前添加硫化钠1.5 kg/t至废水中,可有效降低浮选精矿中铅锌互含且不影响铅精矿品位及回收率,最终可得到铅品位57.52%、锌含量3.67%、铅回收率84.72%的铅精矿。  相似文献   

14.
铅锌矿废水净化处理及回用试验研究   总被引:3,自引:0,他引:3  
赵学中  周廷熙  王进  贺昶友 《矿冶》2010,19(1):88-90
采用明矾作为混凝剂,PAM作为助凝剂对铅锌矿山选矿废水进行混凝沉淀处理。结果表明,pH为9~10,明矾的用量为20~30mg/L,PAM用量为0.5mg/L时,混合废水的混凝沉淀效果最佳。混凝沉淀后废水经活性炭吸附后用于选矿,废水回用对产品质量和回收率没有影响。  相似文献   

15.
鄂西高磷鲕状赤铁矿采用细磨-反浮选工艺可有效提铁降杂,实现铁的回收利用。但该工艺产生的废水浊度高,成分复杂,浮选废水回用困难。本研究对该反浮选废水进行了研究,发现废水pH值为9.6,散射浊度为95 780 NTU,悬浮物浓度为1 272 mg/L。采用氧化钙(CaO)与聚丙烯酰胺(PAM)联用混凝沉淀法处理该废水,用量分别为350 mg/L和20 mg/L时,搅拌速率80 r/min搅拌10 min,处理后废水浊度降至19.9 NTU,出水率为80%~90%。通过Zeta电位和扫描电镜研究发现,CaO-PAM的加入,降低了悬浮微细粒间的静电斥力,发生了双电层吸附,通过架桥作用使微细粒发生了絮凝沉淀,从而降低了废水浊度及金属离子含量,满足了废水循环使用的要求,降低了废水外排造成的资源浪费和环境污染危害。   相似文献   

16.
选矿废水的完全回用是建设绿色矿山和资源高效利用的必然要求。为考察鹿鸣钼矿选矿废水循环利用的可行性,基于废水水质分析结果,在实验室进行了选矿废水直接回用的探索试验及系统的药剂制度优化试验,并通过工业试验进行了验证。结果表明,在现有选矿工艺制度下,选矿废水直接回用会明显降低铜、钼精矿品位,无法满足生产要求。通过优化铜钼混浮作业、铜钼分离作业和钼尾选铜作业的浮选药剂制度,调整选矿废水循环利用的生产工艺流程,经过工业试验验证,最终获得了钼回收率88.13%、铜回收率35.29%的良好指标,使综合经济效益有所提升,为同类型钼矿选厂选矿废水循环利用提供了借鉴。  相似文献   

17.
5000 t/d钨铋选矿废水处理工业分流试验   总被引:4,自引:2,他引:2  
以自制的氧化药剂ME22作为氧化剂,采用“ME22氧化+PAM混凝+调酸”工艺开展了5 000 t/d钨铋选矿废水处理工业分流试验,研究了氧化剂ME22投加量对COD去除效果及药剂成本的影响。实验结果表明:氧化剂ME22投加量0.76 kg/m3,氧化45 min后,再投加0.20%(体积分数)质量浓度为1.00 g/L的聚丙烯酰胺絮凝15 min,处理后废水COD去除率达到65.7%,COD含量由118 mg/L降至40.6 mg/L,满足《污水综合排放标准》(GB 8978-1996)一级标准,吨水处理药剂成本较现有工艺降低20.0%。  相似文献   

18.
湖北某铜冶炼厂电炉渣浮选铜后的尾渣,Fe品位为35.37%,Mo品位为0.30%,其中铁主要以磁铁矿和铁橄榄石形式存在,钼存在形式复杂,以氧化物为主,同时与铜渣中Si、Fe等之间形成化学键。若采用 直接磁选回收铁,常规浮选回收钼,铁与钼均不能被有效回收。为使铜渣中的铁与钼资源可最大化回收再利用,以煤粉作还原剂,氧化钙与氧化铝作造渣剂,采用熔融直接还原工艺制备铁钼合金,从而一并回收铜渣 中的铁和钼。探讨了还原温度、还原时间、煤粉用量、氧化钙用量、氧化铝用量等因素对Fe、Mo在合金中的回收率及品位的影响。结果表明在还原温度1 400 ℃、还原时间60 min、煤粉用量、氧化钙用量、氧化铝用 量分别是铜渣量的20%、20%、10%等优化条件下,Fe、Mo在合金中回收率分别为89.03%、98.44%,品位分别为91.70%、0.86%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号