首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
将非晶颗粒态淀粉和原淀粉在阴离子、阳离子、醋酸酯及羟丙基醚化剂条件下进行淀粉改性反应,取代度随醚化剂量的改变而改变,但由于整个颗粒处于非晶状态,导致非晶淀粉取代度和原淀粉相比有不同程度的提高,对羧甲基化,取代度平均提高9.15%,最高达10.72%,对阳离子化来说,取代度平均提高9.65%,最高达13.18%,对醋酸酯化,取代度平均提高47.49%,最高达64.82%,对羟丙基化,取代度平均提高22.78%,最高达27.48%.  相似文献   

2.
高交联玉米淀粉的非晶化特性   总被引:7,自引:0,他引:7       下载免费PDF全文
研究了以三氯氧磷为交联剂的高交联玉米淀粉的制备方法,报道了高交联玉米淀粉颗粒随反应取代度增加而逐渐非晶化的现象.采用偏光显微镜和广角X-射线衍射对其由多晶态向非晶态的渐变过程进行了研究,提出高交联玉米淀粉中存在不同于原淀粉多晶颗粒态的只含无定形结构的非晶颗粒态。对非晶颗粒态高交联玉米淀粉颗粒的粒度分布的进一步研究结果还表明,此时的淀粉颗粒发生了轻度的膨胀。  相似文献   

3.
高交联木薯淀粉非晶化特性研究   总被引:8,自引:0,他引:8  
研究了以三氯氧磷为交联剂的高交联木薯淀粉的制备方法,报告了高交联木薯淀粉颗粒随反应取代度增加而逐渐非晶化的现象;同时,采用偏光显微镜和广角X-射线衍射对其由多晶态向非晶态的渐变过程进行了研究,提出高交联木薯淀粉存在着不同于原淀粉多晶颗粒态的只含无定形结构的非晶颗粒态。对非晶颗粒态高交联木薯淀粉颗粒的粒度分布的进一步研究结果还表明,此时的淀粉颗粒发生了轻度有限的膨胀  相似文献   

4.
非晶颗粒态淀粉是一种特殊的淀粉物态形式,具有颗粒性,但不具有结晶性。为了实现对原淀粉颗粒的改性,本文以玉米淀粉为原料,采用乙醇溶液处理法制备非晶颗粒态淀粉。在此基础上,研究了这种非晶化处理方法对玉米淀粉的颗粒形貌、结晶性质、溶解度与膨胀力及体外消化性能的影响。结果表明,原淀粉经非晶化处理后颗粒性仍保持完整,但颗粒表面有较大爆裂孔生成,并出现明显褶皱;非晶颗粒态玉米淀粉呈现V-型衍射结构,其结晶性基本消失,颗粒由多晶颗粒态结构转变为非晶颗粒态结构;与玉米原淀粉相比,其溶解度和膨胀度在相同的测定温度下均明显增加。原淀粉经乙醇溶液处理后,其快消化淀粉含量由92.83%下降到81.64%。而慢消化淀粉和抗性淀粉总含量由7.17%上升到18.36%。因此,采用乙醇溶液处理法对淀粉颗粒进行改性将有助于开发低热量和慢血糖应答的产品。  相似文献   

5.
以原玉米淀粉、氯乙酸为主要原料,先用乙醇制备非晶颗粒态玉米淀粉,然后将氢氧化钠和氯乙酸加入反应瓶中制备羧甲基淀粉.研究了氯乙酸用量、氢氧化钠用量、反应体系水分含量、反应温度、时间对样品取代度(DS)的影响.结果表明:在m(氯乙酸)/m(淀粉)为0.2,n(氢氧化钠)/n(淀粉)为0.4,反应体系水分25%条件下,温度55℃反应4 h得到较高取代度的羧甲基淀粉CMS.  相似文献   

6.
以天然淀粉为原料,采用逐步分子修饰合成淀粉基重金属捕集材料,并对产品的铜镍离子捕集能力进行了评估分析。首先淀粉分子通过醚化作用,引入阳离子季铵型基团;在此基础上,继续磷酸化引入阴离子基团;合成过程添加尿素,促进各类基团的交联网状结构,淀粉分子的氨基甲酸酯化同时也引入非离子基团,最终获取了多种电荷分布的淀粉分子修饰产品。研究结果表明,3-氯-2-羟丙基三甲基氯化铵(CHPTAC)用量为淀粉质量(m L/g)0.4,50℃下作用4 h,阳离子化取代度最高为1.61%。三聚磷酸钠质量分数4%,p H值6~7,120℃下作用2 h,负电荷磷酸化淀粉分子的取代度为0.026。低浓度的尿素能提高磷酸化淀粉的反应效率,质量分数高于3%时,会与淀粉分子氨基甲酸酯化作用增强结构的交联。不同基团取代度的产品对铜镍离子均具有捕集效果,阳离子化和阴离子磷酸酯化的取代度分别为1.42%和0.018,淀粉基捕集材料对30 mg/L浓度含铜、镍离子溶液的重金属去除率高达98%。  相似文献   

7.
磷酸酯型两性淀粉结构性能及其对纸张的增强作用   总被引:2,自引:0,他引:2  
以木薯原淀粉、3-氯-2-羟丙基三甲基氯化铵和混合磷酸盐为主要原料,用半干法工艺合成了磷酸酯型两性淀粉,用FT-IR、XRD、SEM等对产物结构性能进行了表征;研究了其作为纸张增强剂对废纸浆的增强作用.结果表明,改性剂与木薯原淀粉反应不仅发生在无定形区,而且发生在结晶区;不仅发生在颗粒的表面,也可进入其内部;在一定条件下,产物的阳离子取代度随着磷酸盐用量的增加而减小,阴离子取代度随淀粉阳离子取代度的提高而降低.实验合成的磷酸酯型两性淀粉对纸张的增强作用显著,当添加量为1.O%(对绝干浆)时,纸张的抗张指数、耐破指数和撕裂指数分别比空白样提高了23.5%、20.3%、29.4%.  相似文献   

8.
利用显微镜和旋转式黏度仪,研究木薯淀粉糊化过程中淀粉颗粒形态和溶液黏度的变化规律,从而探明原淀粉、阳离子淀粉以及两性淀粉糊化规律的差异性。结果显示:木薯原淀粉糊化的最佳温度是85℃,低取代度、中取代度和高取代度阳离子淀粉糊化的最佳温度分别是90℃、80℃和75℃,而低取代度、中取代度和高取代度两性淀粉糊化的最佳温度分别是85℃、90℃和70℃。淀粉在糊化过程中,随着糊化温度的升高,淀粉颗粒逐渐膨胀;而且改性淀粉的黏度都高于原淀粉。  相似文献   

9.
本文的研究目的是为了满足市场对增加纸张内部和表面强度,改善印刷性能和提高纸张强度的需求,采用将木薯淀粉阳离子化原纸进行表面施胶,然后测定纸张性能,探讨阳离子淀粉作为表面施胶剂的最佳应用条件。本文探讨了阳离子淀粉用作纸张表面施胶剂的作用机理,初步研究了制备阳离子淀粉的最优化条件,不同取代度的阳离子淀粉作为表面施胶剂的应用效果。通过对纸张性能(抗张强度、环压强度、吸水性)的测定,找出阳离子淀粉应用的优点。实验结果表明制备阳离子淀粉的最优化条件为木薯淀粉用量为50g,阳离子醚化剂用量为3.008g,n(NaOH):n(CTA)=1.2:1,反应时间为2h,反应温度为40℃;阳离子淀粉作为表面施胶剂的最佳取代度和固含量分别为0.056和40%。  相似文献   

10.
季铵醚化改性对磷酸酯淀粉浆料性能的影响   总被引:1,自引:1,他引:0       下载免费PDF全文
为提高磷酸酯淀粉浆料的使用性能,通过改变3-氯-2羟丙基三甲基氯化铵醚化剂对磷酸酯淀粉的投料比,制备了一系列具有不同季铵醚阳离子取代度的磷酸酯变性淀粉。通过性能对比实验,研究了这种变性淀粉的季铵阳离子化变性对浆液ζ电位、黏度以及黏附性能和浆膜性能的影响。结果表明:随着季铵阳离子取代度的增加,这种变性淀粉浆液的ζ电位升高,黏度明显提高;季铵阳离子化变性能够进一步改善磷酸酯淀粉对棉纤维的黏附性能;随着阳离子取代度的增加,对棉纤维的黏附性能增大,浆膜的断裂伸长率增大。  相似文献   

11.
Native potato, waxy corn, corn, wheat, filed pea and lentil starches were autoclaved at 15 psi, 121°C for 1min. Scanning electron micrographs of the native and autoclaved starches showed no changes in granular surfaces and shapes. In all starches, the X-ray intensities at most of the d-spacings between 3-18 Å increased upon autoclaving, being more pronounced in potato. The X-ray patterns of cereals and legumes remained unchanged, while that of tuber (potato) became more cereal-like. Differential scanning calorimetry of the starch samples revealed that autoclaving increased the gelatinization transition temperatures of wheat but decreased that of potato; the changes observed in waxy corn, corn, field pea and lentil starches were very small. The gelatinization enthalpy of all native starches decreased upon autoclaving while the percentage decrease was highly marked in potato. Image analysis of the native and autoclaved starches revealed changes in the granule size distribution patterns. Also, the population mean area of all native starch granules considerably increased upon autoclaving. Acetyl binding capacity, measured at 5% and 10% acetic anhydride addition levels, was higher in autoclaved than in native starches. Furthermore, autoclaving had no influence on starch cationization, studied at 3% and 6% reagent addition levels. The results indicated that the changes in starch molecular organization caused by autoclaving enhanced its reactivity towards acetylation but not cationization.  相似文献   

12.
J.A. Stahl  V.C. Bochi  L.C. Gutkoski 《LWT》2007,40(7):1206-1214
Physicochemical properties of pinhão (seeds of Paraná pine) starch phosphates were evaluated and compared to corn starch phosphates. The phosphorylation process used yielded starch phosphates with three different degrees of substitution (DS): low (0.015), medium (0.07) and high (?0.12). Medium and high DS starch phosphates had higher cold water binding capacity, swelling power, and paste clarity, but lower paste syneresis (at 5 °C and after freeze-thaw cycles) than native starches (P<0.05). Low, medium, and high DS corn starches had higher solubility than native starches (3.8-, 8-, and 6-fold higher; P<0.05), but the solubility of pinhão starch increased only in medium DS starch phosphates (3-fold higher; P<0.05). Low DS starch phosphates had viscosity curves similar to native starches. In contrast, medium and high DS starch pastes had peak viscosity at room temperature, reached the minimum viscosity when heated to 95 °C, and had low setback.  相似文献   

13.
Cationic starch ethers of normal and waxy corn, normal and waxy barley and normal pea starch were prepared by an aqueous alcoholic process for evaluation of their functional properties as compared to the native starch controls. The native starches exhibited a wide range in average granule size (10–21 μm diameter), amylose content (0–34%) and swelling power (13–31). Cationization to degrees of substitution (DS) of 0.030–0.035 with 3-chloro-2-hydroxypropyltrimethylammonium chloride resulted in marked increases in swelling power of all starches, with little corresponding increases in starch solubility. Cationization also decreased the onset of endothermic transitions and pasting temperatures quite substantially, and promoted the development of sharp peak viscosities in the amylographs of all normal and waxy starches, including that of pea starch. Final cold viscosities of the cationic starches exhibited positive setbacks, and the cooked starch gels, after storage for 7 days at 4°C and −15°C, showed no syneresis. All cationic starches except for waxy corn were more susceptible to α-amylase hydrolysis than native control starches. The general improvement in functional properties, especially in the waxy corn, waxy barley and pea starches, due to the aqueous alcoholic-alkaline cationization process would greatly enhance their industrial applications.  相似文献   

14.
Acetylated corn starches with different degrees of substitution (DS 0.85, DS 1.78, DS 2.89) were synthesized by the reaction of corn starch with acetic anhydride in the presence of acetic acid under varying reaction temperatures. The product was characterized by FTIR spectroscopy, 1H NMR, X-ray diffraction and contact angle measurement. Acid-base titration and 1H NMR methods were employed to determine the degree of substitution of product. FTIR spectroscopic analysis showed that the characteristic absorption intensities of esterified starch increased with increase in the degree of substitution, and the characterized peak of hydroxyl group almost disappeared in the spectrum of DS 2.89 acetylated starch. The detailed chemical microstructure of native starch and acetylated starch was confirmed by 1H NMR, 13C NMR and 13C–1H COSY spectra. Analysis of 1H NMR spectra of acetylated starches was assigned accurately. Strong peaks in X-ray diffraction of acetylated starch revealed that new crystalline regions were formed. Compared with native starch, the hydrophobic performance of acetylated starch esters was increased. The contact angle of acetylated starch with DS 2.89 was 68.2°.  相似文献   

15.
Resistant starch has drawn broad interest for both potential health benefits and functional properties. In this study, a technology was developed to increase resistant starch content of corn starch using esterification with citric acid at elevated temperature. Waxy corn, normal corn and high‐amylose corn starches were used as model starches. Citric acid (40% of starch dry weight) was reacted with corn starch at different temperatures (120–150°C) for different reaction times (3–9 h). The effect of reaction conditions on resistant starch content in the citrate corn starch was investigated. When conducting the reaction at 140°C for 7 h, the highest resistant starch content was found in waxy corn citrate starch (87.5%) with the highest degree of substitution (DS, 0.16) of all starches. High‐amylose corn starch had 86.4% resistant starch content and 0.14 DS, and normal corn starch had 78.8% resistant starch and 0.12 DS. The physicochemical properties of these citrate starches were characterized using various analytical techniques. In the presence of excess water upon heating, citrate starch made from waxy corn starch had no peak in the DSC thermogram, and small peaks were found for normal corn starch (0.4 J/g) and Hylon VII starch (3.0 J/g) in the thermograms. This indicates that citrate substitution changes granule properties. There are no retrogradation peaks in the thermograms when starch was reheated after 2 weeks storage at 5°C. All the citrate starches showed no peaks in RVA pasting curves, indicating citrate substitution changes the pasting properties of corn starch as well. Moreover, citrate starch from waxy corn is more thermally stable than the other citrate starches.  相似文献   

16.
Effects of deproteinization on the degree of oxidation of ozonated starch (corn, sago, and tapioca) were investigated. Starch in dry powder form was exposed to ozone for 10 min at different ozone generation times (OGTs: 1, 3, 5, 10 min), and then native starches (NS) and deproteinized starches (DPS) were analyzed for protein content. Deproteinization caused a significant reduction in protein content for corn (∼21%) and sago (∼16%) starches relative to NS. Carbonyl and carboxyl contents increased significantly in all ozonated deproteinized starches (ODPS) with increasing OGT. Carbonyl and carboxyl contents of ODPS ranged from 0.03 to 0.13% and 0.14 to 0.28%, respectively. The carboxyl content for all ODPS was significantly higher than that of ozonated native starches (ONS). A Rapid Visco Analyser was used to analyze pasting properties of all starches. Deproteinization increased the pasting viscosities of corn and sago starches compared to their native forms. Generally, pasting viscosity of all ODPS decreased drastically as OGT increased. At the highest oxidation level (10 min OGT), all ODPS exhibited the lowest pasting viscosities compared to their ozonated native form, except for peak viscosity, breakdown viscosity, and setback viscosity for ozonated deproteinized corn starch. In conclusion, deproteinization as a pretreatment prior to starch ozonation successfully increased the degree of oxidation in the three types of starch studied. However, the extent of starch oxidation varied among the different starches, possibly due to differences in rates of degradation on amorphous and crystalline lamellae and in rates of oxidation of carbonyl and carboxyl groups.  相似文献   

17.
Benzyl corn starches (DS 0.02–0.16) were prepared by reacting starch with benzyl chloride in an alkaline aqueous medium at 65°C, and the pasting properties of the starches were investigated. Reaction yield with 20% benzyl chloride (based on starch weight) for 12 h was increased from 26.7% to 60.5% as the NaOH addition increased from 3% to 8% (based on starch weight), and became relatively constant thereafter. With 20% benzyl chloride and 8% NaOH, degree of substitution (DS) reached 0.16. Light transmittance and viscosity of starch paste were decreased as DS increased. Low viscosity and opaqueness of the paste indicated that the benzyl groups increased hydrophobicity, and reduced solubility of the starch. Onset temperature (To) for starch melting measured by a Differential Scanning Calorimeter thermogram was decreased as DS increased up to 0.1. But above DS 0.1, To increased. Melting enthalpy was also decreased as DS increase because of the incomplete gelatinization. Solubility in aqueous methanol (80%) increased near 2% as DS reached 0.16. Maximum wavelength and absorbance of the iodine complexes of benzyl starch were decreased with benzylation.  相似文献   

18.
Recombinant amylosucrase (200 U/mL) from Neisseria polysaccharea was used to produce digestion‐resistant starch (RS) using 1–3% (w/v) corn starches and 0.1–0.5 M sucrose incubated at 35°C for 24 h. Characterization of the obtained enzyme‐modified starches was investigated. Results show that the yields of the enzyme‐modified starches were inversely proportional to the original amylose contents of corn starches. After enzymatic reaction, insoluble RS contents increased by 22.3 and 20.7% from 6.9% of waxy and 7.7% of normal corn starches, respectively, using 3.0% starch as acceptor and 0.3 M sucrose as donor, while amylomaize VII showed the lowest increase (8.5%) in RS content. The crystalline polymorph of these enzyme‐modified starches resulted in the B‐type immediately after enzymatic reaction. The enzyme‐modified starches displayed higher melting peak temperatures (85.6–100.6°C) compared to their native starch counterparts (70.1–78.4°C). After enzymatic reaction, pasting temperature increased in waxy (71.9 → 77.6°C) and normal corn starches (75.3 → 80.6°C), and the peak viscosity of waxy corn starches increased from 264 to 349 RVU, whereas that of normal corn starches decreased from 235 to 66 RVU.  相似文献   

19.
Different starch types (corn, rice, and potato starch, corn amylose and corn amylopectin) were phosphorylated by reaction with a mixture of mono and disodium phosphate at different molar ratios (mol phosphate/mol anhydrous glucose) under heat and vacuum. The starch granules of the modified and the native starches were microscopically examined for their sizes and morphology. The correlation between the variation in granular size of the modified starches with the extent of phosphorylation and some other physicochemical properties was studied. The granular size was generally increased while the iodine absorption capacity was decreased by phosphorylation. There were strong correlations between the variation in the starch granular size in dependence on phosphorylation and the corresponding changes in some physicochemical parameter of starch, e.g. solubility, swelling and paste clarity. This relationship was most evident in the case of phosphorylated corn amylopectin. Starch granular size can be taken as a quick indicator of the physicochemical properties of the native and modified starches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号