首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Agricultural production plays an important role in affecting atmospheric greenhouse gas concentrations. Field measurements were conducted in Quzhou County, Hebei Province in the North China Plains to quantify carbon dioxide (CO2) and nitrous oxide (N2O) emissions from a winter wheat–maize rotation field, a common cropping system across the Chinese agricultural regions. The observed flux data in conjunction with the local climate, soil and management information were utilized to test a process-based model, Denitrification–Decomposition or DNDC, for its applicability for the cropping system. The validated DNDC was then used for predicting impacts of three management alternatives (i.e., no-till, increased crop residue incorporation and reduced fertilizer application rate) on CO2 and N2O emissions from the target field. Results from the simulations indicated that (1) CO2 emissions were significantly affected by temperature, initial SOC, tillage method, and quantity and quality of the organic matter added in the soils; (2) increases in temperature, initial SOC, total fertilizer N input, and manure amendment substantially increased N2O emissions; and (3) temperature, initial SOC, tillage, and quantity and quality of the organic matter added in the soil all had significant effects on global warming. Finally, five 50-year scenarios were simulated with DNDC to predict their long-term impacts on crop yield, soil C dynamics, nitrate leaching losses, and N2O emissions. The modelled results suggested that implementation of manure amendment or crop residue incorporation instead of increased fertilizer application rates would more efficiently mitigate GHG emissions from the tested agro-ecosystem. The multi-impacts provided a sound basis for comprehensive assessments on the management alternatives.  相似文献   

2.
Due to significant differences in biotic and abiotic properties of soils compared to those of sediments, the predicted underlying microbe-mediated mechanisms of soil carbon emissions in response to warming may not be applicable for estimating similar emissions from inland water sediments. We addressed this issue by incubating different types of sediments, (including lake, small river, and pond sediments) collected from 36 sites across the Yangtze River basin, under short-term experimental warming to explore the effects of climate warming on sediment carbon emission and the underlying microbe-mediated mechanisms. Our results indicated that under climate warming CO2 emissions were affected more than CH4 emissions, and that pond sediments may yield a greater relative contribution of CO2 to total carbon emissions than lake and river sediments. Warming-induced CO2 and CH4 increases involve different microbe-mediated mechanisms; Warming-induced sediment CO2 emissions were predicted to be directly positively driven by microbial community network modularity, which was significantly negatively affected by the quality and quantity of organic carbon and warming-induced variations in dissolved oxygen, Conversely, warming-induced sediment CH4 emissions were predicted to be directly positively driven by microbial community network complexity, which was significantly negatively affected by warming-induced variations in pH. Our findings suggest that biotic and abiotic drivers for sediment CO2 and CH4 emissions in response to climate warming should be considered separately when predicting sediment organic carbon decomposition dynamics resulting from climate change.  相似文献   

3.
河流CO2与CH4排放研究进展   总被引:1,自引:0,他引:1  
王晓锋  袁兴中  陈槐  何奕忻  罗珍  刘恋  何宗苡 《环境科学》2017,38(12):5352-5366
河流作为连接海-陆两大碳库的主要通道,其水-气界面二氧化碳(CO_2)与甲烷(CH_4)排放构成全球碳循环的重要环节,对全球气候变暖的贡献不容小觑.明确河流水体CO_2与CH_4产排过程、时空特征以及控制因素是认识河流生态学功能以及其对变化环境响应的重要内容.基于当前河流CO_2与CH_4排放研究进展,构建河流碳排放动力学概念框架(内源代谢、陆源输入),并从全球尺度、区域尺度、流域尺度综述了河流碳排放时空变异性特征以及存在的研究不足.在理解碳排放动力学概念框架和时空变异特征的基础上,构建了河流CO_2与CH_4动力学控制因子分层框架(内部因子:有机质、温度、营养盐;外部因子:水文、地貌、人类活动),深入探讨了河流碳排放的关键影响因素.最后,根据当前研究中存在的不足,提出河流碳排放应将纳入区域陆地碳平衡过程,今后研究重点应包括流域尺度上河流CO_2与CH_4内源产生与陆源输入相对贡献的量化研究、不同界面CO_2与CH_4产生与排放过程研究、高时空分辨率的监测数据的补充以及变化环境与人类活动干扰下河流碳排放的响应过程等,为理解河流生态学过程及生态系统功能提供基础,同时为我国进一步深入开展相关研究提供借鉴.  相似文献   

4.
秸秆与氮肥配比对农田土壤内外源碳释放的影响   总被引:4,自引:2,他引:2  
秸秆配施氮肥调节C/N比不仅影响外源秸秆的矿化,也影响内源土壤有机碳(SOC)的分解(即激发效应),因此研究秸秆与氮肥配比对土壤内外源有机碳分解的影响,对于农田温室气体减排和土壤肥力提升具有双重意义.本研究以山东桓台农田土壤为研究对象,为了探究秸秆与氮肥的配比对秸秆与SOC分解的影响,在不同氮肥水平下,采用13C标记玉米秸秆进行室内土壤培养32周,设置4个处理:CK、秸秆(S)、秸秆+低量尿素(SN1)和秸秆+高量尿素(SN2).在整个培养期进行16次动态取样,借助13C两元线性模型,拆分土壤释放CO2中源于秸秆和SOC的比例.结果表明,随着培养时间的进行,SOC分解对土壤释放CO2的贡献呈先减少后升高的趋势,相反,秸秆矿化对土壤释放CO2的贡献呈先升高后减少的趋势,到培养期末,SOC和秸秆分解对土壤CO2释放的贡献分别为0.84~0.86和0.14~0.16;在整个培养期,施氮对秸秆累计分解的影响呈先增加后减少的趋势,高氮和低氮施用对秸秆分解的促进程度最高分别为15.8%和7.9%,经历整个培养期,低氮抑制秸秆幅度达到7.1%,而高氮呈轻度促进秸秆分解的趋势(0.7%).在整个培养期,秸秆配施不同氮量对SOC矿化的激发效应程度呈先升高后降低趋势,在第7 d取样达到最高为55%~148%,并且随着施氮量增加而升高,随着培养时间的进行,各处理的激发效应程度趋于相等,约为50%.因此,秸秆配施氮肥调节C:N不仅影响外源秸秆对SOC的贡献,也影响内源SOC的分解,进而影响土壤碳的固持,经过整个培养期,土壤残留秸秆碳不能完全补偿因激发效应导致SOC的损失,导致SOC库的净亏损.  相似文献   

5.
Carbon dioxide (CO2) emissions from inland waters to the atmosphere are a pivotal component of the global carbon budget. Anthropogenic land use can influence riverine CO2 emissions, but empirical data exploring cause-effect relationships remain limited. Here, we investigated CO2 partial pressures (pCO2) and degassing in a monsoonal river (Yue River) within the Han River draining to the Yangtze in China. Almost 90% of river samples were supersaturated in CO2 with a mean ± standard deviation of 1474 ± 1614 µatm, leading to emissions of 557 - 971 mmol/m2/day from river water to the atmosphere. Annual CO2 emissions were 1.6 - 2.8 times greater than the longitudinal exports of riverine dissolved inorganic and organic carbon. pCO2 was positively correlated to anthropogenic land use (urban and farmland), and negatively correlated to forest cover. pCO2 also had significant and positive relationships with total dissolved nitrogen and total dissolved phosphorus. Stepwise multiple regression models were developed to predict pCO2. Farmland and urban land released nutrients and organic matter to the river system, driving riverine pCO2 enrichment due to enhanced respiration in these heterotrophic rivers. Overall, we show the crucial role of land use driving riverine pCO2, which should be considered in future large-scale estimates of CO2 emissions from streams. Land use change can thus modify the carbon balance of urban-river systems by enhancing river emissions, and reforestation helps carbon neutral in rivers.  相似文献   

6.
Tropical peat swamp forests, which are predominantly located in Southeast Asia (SEA) and play a prominent role as a global carbon store, are being intensively degraded and converted to agricultural lands and tree plantations. For national inventories, updated estimates of peat emissions of greenhouse gases (GHG) from land use (LU) and land-use change in the tropics are required. In this context, we reviewed the scientific literature and calculated emission factors of peat net emissions of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) in seven representative LU categories for SEA i.e. intact peat swamp forest, degraded forest (logged, drained and affected by fire), mixed croplands and shrublands, rice fields, oil palm, Acacia crassicarpa and sago palm plantations. Peat net CO2 uptake from or emissions to the atmosphere were assessed using a mass balance approach. The balance included main peat C inputs through litterfall and root mortality and outputs via organic matter mineralization and dissolved organic carbon. Peat net CO2 loss rate from degraded forest, croplands and shrublands, rice fields, oil palm, A. crassicarpa and sago palm plantations amounted to 19.4?±?9.4, 41.0?±?6.7, 25.6?±?11.5, 29.9?±?10.6, 71.8?±?12.7 and 5.2?±?5.1 Mg CO2 ha?1 y?1, respectively. Total peat GHG losses amounted to 20.9?±?9.4, 43.8?±?6.8, 36.1?±?12.9, 30.4?±?10.6, 72?±?12.8 and 8.6?±?5.3 Mg CO2-equivalent ha?1 y?1 in the same LU categories, respectively. A single land-clearing fire would result in additional emissions of 493.6?±?156.0 Mg CO2-equivalent ha?1.  相似文献   

7.
Little is known about the multiple impacts of sustainable land management practices on soil and water conservation, carbon sequestration, mitigation of global change and crop yield productivity in semiarid Mediterranean agroecosystems. We hypothesized that a shift from intensive tillage to more conservative tillage management practices (reduced tillage optionally combined with green manure) leads to an improvement in soil structure and quality and will reduce soil erosion and enhance carbon sequestration in semiarid Mediterranean rainfed agroecosystems. To test the hypothesis, we assessed the effects of different tillage treatments (conventional (CT), reduced (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil structure and soil water content, runoff and erosion control, soil carbon dioxide (CO2) emissions, crop yield and carbon sequestration in two semiarid agroecosystems with organic rainfed almond (Prunus dulcis Mill) in the Murcia Region (southeast Spain). It was found that reduction and suppression of tillage under almonds led to an increase in soil water content in both agroecosystems. Crop yields ranged from 775 to 1,766 kg ha?1 between tillage treatments, but we did not find a clear relation between soil water content and crop yield. RT and RTG treatments showed lower soil erosion rates and higher crop yields of almonds than under CT treatment. Overall, higher soil organic carbon contents and aggregate stability were observed under RTG treatment than under RT or CT treatment. It is concluded that conversion from CT to RTG is suitable to increase carbon inputs without enhancing soil CO2 emissions in semiarid Mediterranean agroecosystems.  相似文献   

8.
研究农田土壤自养微生物碳同化潜力,对全面认识农田生态系统碳吸收和碳储存有着重要意义.选取6种典型农田土壤,通过14C连续标记示踪技术结合密闭系统模拟培养,量化了土壤自养微生物碳同化潜力及其向土壤活性碳库组分转化,同时结合分子生物学技术及酶学分析方法,探讨了不同土壤自养微生物细菌固碳功能基因(cbbL)丰度及关键酶(RubisCO)活性.结果表明,土壤自养微生物具有可观的CO2同化潜力,在本实验条件下,全球每年表层(0~20 cm)土壤通过自养微生物的同化作用可固定的碳为0.57~7.3 Pg.供试土壤的14C土壤有机碳(14C-SOC)含量范围为10.63~133.81 mg·kg-1,而14C可溶性有机碳(14C-DOC)、14C微生物生物量碳(14C-MBC)含量范围分别为0.96~8.10 mg·kg-1、1.70~49.16 mg·kg-1.土壤可溶解性有机碳(DOC)、微生物量碳(MBC)和SOC的更新率分别为5.07%~14.3%、2.51%~13.12%和0.09%~0.64%.土壤细菌cbbL丰度范围为2.40×107~1.9×108copies·g-1,且RubisCO酶活性(CO2/soil)范围为34.06~71.86 nmol·(g·min)-1.相关分析表明,土壤14C-SOC与14C-MBC及RubisCO酶活性均呈极显著正相关关系(P<0.01).说明土壤对大气CO2的同化作用主要是由自养微生物参与的同化过程,且较高的RubisCO酶活性意味着较高的自养微生物CO2同化潜力.  相似文献   

9.
陶宝先 《环境科学研究》2017,30(12):1927-1933
为研究我国北方典型设施菜地的土壤CO2排放特征及其影响因素,通过原位监测手段,研究山东省寿光市农田转变为不同种植年限(6、12 a)设施菜地及设施菜地荒废12 a后土壤CO2排放规律及影响因素.结果表明:①种植6 a设施菜地较农田具有较高的土壤CO2排放量,可能是由于设施菜地种植过程中大量施加有机肥造成的,并且设施菜地土壤温度及含水率较高,增加了土壤蔗糖酶活性,加剧土壤CO2排放.②当种植年限超过10 a,设施菜地施肥量减少,降低了土壤微生物可利用底物的供应.因此,种植12 a设施菜地土壤CO2排放量降至农田水平.③种植6 a设施菜地土壤的w(DOC)(DOC表示水溶性有机碳)比农田较高.④土壤CO2排放年内分配不均匀,表现为农田及荒废设施菜地土壤CO2排放主要集中在5—8月,其排放量占全年的75.09%、87.02%,峰值出现在7月.种植6 a设施菜地土壤CO2排放主要集中在5—8月和11月—翌年2月,两阶段排放量分别占全年的48.48%、42.34%,峰值分别出现在7月、12月.研究显示,农田转变为设施菜地短期(种植6 a)内可显著促进土壤CO2排放及DOC的输出,但随着种植年限延长至12 a,土壤CO2排放降至农田水平.   相似文献   

10.
长期秸秆还田对水稻根系碳矿化与激发效应的影响   总被引:2,自引:1,他引:1  
长期秸秆还田改变水稻土环境条件,从而会影响水稻残留根系碳在土壤中的矿化和激发效应,其影响的方向和强度尚不明确.因此,基于长期定位施肥试验,采用13C-CO2同位素标记技术,结合室内模拟培养试验,研究不施肥(CK)、单施化肥(CF)和秸秆还田配施化肥(CFS)这3种长期处理下,水稻根系和土壤本身有机碳的矿化特征,分析根系的激发效应的强度与方向,以及各处理CO2释放量的来源组成.结果表明,经过120 d的室内淹水培养,根系残留(R)将CO2累积释放量增加了617.41~726.27 mg·kg-1.CFS+R和CF+R处理根系来源CO2累积释放量分别为470.82mg·kg-1和444.04 mg·kg-1,根系的矿化率分别为18.8%和17.8%,均显著高于CK+R处理(384.19 mg·kg-1,15.4%).3个处理的土壤本身有机碳产生的CO2累积排放量无显著差异,但CFS+R处理的土壤本身有机碳矿化率(4.2%)显著低于CF+R和CK+R处理(5.4%和5.8%).CFS+R处理中根系的CO2累积激发效应为29.6%,显著低于CK+R处理的42.5%,高于CF+R处理的14.4%.淹水水稻土CO2累积释放量中23.47%~27.59%来源于根系,其余来源于土壤,其中,激发效应引起的CO2释放量占比在CFS+R处理中比CK+R处理小,比CF+R处理大.综上,淹水水稻土长期秸秆还田会提高根系碳的矿化潜力,但是更有利于土壤本身有机碳的稳定.  相似文献   

11.
The distribution and composition of humic and fulvic acids have been investigated in the following organic wastes: straw, farmyard manure, sewage sludge, poultry manure, municipal refuse compost and pig slurry. Of the total organic carbon, the proportion present as humic carbon varied from about 13% in the compost to 50% in the pig slurry; the humic compounds extracted are characterized by a variable chemical composition. As compared to the natural humic substances from soil organic matter, these compounds show a lower content of acidic functional groups, lower E4/E6 and C/H ratios and can be classified as young forms of humic substances.  相似文献   

12.
土壤是温室气体的重要排放源,在土壤中施入生物质炭和有机物料对土壤微生物在土壤碳氮转化和微量气体代谢方面有着重要作用,不过迄今在生物质炭和有机物料混施对土壤温室气体排放和微生物活性的影响方面的研究尚少.本研究采用室内培养试验,利用土壤添加生物质炭和生物质炭与不同有机物料混施,探究生物质炭和有机物料混施对土壤温室气体排放及微生物活性的影响.共设5个处理:新鲜土壤(S)、新鲜土壤+2%生物质炭(SB)、新鲜土壤+2%生物质炭+1%大豆饼(SBS)、新鲜土壤+2%生物质炭+1%小麦秸秆(SBW)、新鲜土壤+2%生物质炭+1%鸡粪(SBC).研究表明:只添加生物质炭对温室气体的排放影响不明显;生物质炭与有机物料混施使土壤的CO2、N2O排放明显增加,而对CH4的排放影响不明显;从温室气体增温潜势(GWP)变化可以看出有机物料施用对温室效应具有明显的增强作用;生物质炭与有机物料混施在一定程度上增加微生物生物量碳和代谢熵(q CO2),各处理的代谢熵是对照处理S的0.18~4.37倍;不同有机物料对FDA水解酶、过氧化氢酶、脲酶和碱性磷酸酶活性都表现为激活作用.  相似文献   

13.
Biochar addition to agricultural soil has been suggested to mitigate climate change through increased biogenic carbon storage and reduction of greenhouse gas emissions. We measured the fluxes of N2O, CO2, and CH4 after adding 9 t ha?1 biochar on an agricultural soil in Southern Finland in May 2009. We conducted these measurements twice a week for 1.5 months, between sowing and canopy closure, to capture the period of highest N2O emissions, where the potential for mitigation would also be highest. Biochar addition increased CH4 uptake (96% increase in the average cumulative CH4 uptake), but no statistically significant differences were observed in the CO2 and N2O emissions between the biochar amended and control plots. Added biochar increased soil water holding capacity by 11%. Further studies are needed to clarify whether this may help balance fluctuations in water availability to plants in the future climate with more frequent drought periods.  相似文献   

14.
Reducing carbon emissions from deforestation and degradation in developing countries is of the central importance in efforts to combat climate change. A study was conducted to measure carbon stocks in various land-use systems including forms and reliably estimates the impact of land use on carbon (C) stocks in the forest of Rajasthan, western India (23°3′–30°12′N longitude and 69°30′–78°17′E). 22.8% of India is forested and 0.04% is the deforestation rate of India. In Indian forest sector of western India of Aravally mountain range covered large area of deciduous forest and it’s very helpful in carbon sequestration at global level. The carbon stocks of forest, plantation (reforestation) and agricultural land in aboveground, soil organic and fine root within forest were estimated through field data collection. Results revealed that the amount of total carbon stock of forests (533.64?±?37.54 Mg·ha?1, simplified expression of Mg (carbon) ·ha?1) was significantly greater (P?<?0.05) than the plantation (324.37?±?15.0 Mg·ha?1) and the agricultural land (120.50?±?2.17 Mg·ha?1). Soil organic carbon in the forests (172.84?±?3.78 Mg·ha?1) was also significantly greater (P?<?0.05) than the plantation (153.20?±?7.48 Mg·ha?1) and the agricultural land (108.71?±?1.68 Mg·ha?1). The differences in carbon stocks across land-use types are the primary consequence of variations in the vegetation biomass and the soil organic matter. Fine root carbon was a small fraction of carbon stocks in all land-use types. Most of the soil organic carbon and fine root carbon content was found in the upper 30-cm layer and decreased with soil depth. The aboveground carbon (ABGC): soil organic carbon (SOC): fine root carbon ratios (FRC), was 8:4:1, 4:5:1, and 3:37:1 for the forest, plantation and agricultural land, respectively. These results indicate that a relatively large proportion of the C loss is due to forest conversion to agricultural land.  相似文献   

15.
理解底物碳氮对厌氧条件下水稻土排放氮素气体——氮气(N2)、氧化亚氮(N2O)和一氧化氮(NO)以及二氧化碳(CO2)和甲烷(CH4)的影响,有助于制定合理的温室气体减排措施,定量了解反硝化产物组成对碳底物水平的依赖性,也有助于氮转化过程模型研发中制定正确的关键过程参数选取方法或参数化方案.本研究采用粉砂壤质水稻土为研究对象,设置对照(CK)和加碳(C+)两个处理,前者的初始硝态氮和可溶性有机碳(DOC)含量分别为~50 mg·kg-1和~28 mg·kg-1,后者的分别为~50 mg·kg-1和~300 mg·kg-1.采用氦环境培养-气体及碳氮底物直接同步测定系统,研究了完全厌氧条件下碳底物水平对上述气体排放的影响.结果表明,CK处理无CH4排放,而C+处理可观测到CH4排放;C+处理的综合增温潜势显著高于CK处理(P<0.01);NO、N2O和N2排放量占这3种氮素气体排放总量的比重,在CK处理分别约为9%、35%和56%,在C+处理分别约为31%、50%和19%,处理间差异显著(P<0.01).由此表明,碳底物水平可显著改变所排放氮素气体的组成;对于旱地阶段硝态氮比较丰富的水稻土,避免在淹水前或淹水期间施用有机肥,有利于削减温室气体排放.  相似文献   

16.
The temperature, moisture and CO2 content of an uncultivated and an irrigated soil in the western San Joaquin Valley of California were monitored for more than 1 year in order to determine the degree to which irrigated agriculture affected the annual variations of these important ecological properties. The uncultivated soil underwent strong seasonal changes in moisture and CO2, the highest values being obtained in the late winter and early spring and the lowest occuring in the late summer and early autumn. In contrast, as adequate moisture for biological activity was available year round in the irrigated soil, the CO2 levels varied in response to variations in temperature. The organic C content of the irrigated soil was half that of the uncultivated soil (1.8 versus 3.6 kg m−2), presumably owing to an enhanced level of organic matter decomposition in the irrigated soil. Calculated annual rates of soil respiration for the two soils were nearly identical (0.25 g m−2 h−1). Based on estimates of annual biomass production in the uncultivated soil, it was estimated that the mean residence time of soil organic matter was approximately 61 years. Although this estimate indicates a relatively rapid turnover of C, it is consistent with previous work indicating rapid nutrient cycling in annual grasslands.  相似文献   

17.
张嫒  郑朝霞  赵志远  冯天宇  郑伟  翟丙年 《环境科学》2023,44(10):5823-5831
有机肥的施用可以提高土壤总有机碳和活性有机碳含量,在改善土壤质量,提升土壤肥力方面有重要意义.设4个处理:不施肥(CK)、单施有机肥(M)、单施化肥(NPK)和有机无机肥配施(MNPK),研究长期有机无机配施下土壤有机碳和其活性组分含量变化,分析不同施肥措施对温室气体排放的影响,并评估了土壤碳库管理指数的变化.结果表明,与CK处理相比,MNPK处理的土壤总有机碳(TOC)、微生物量碳(MBC)、可溶性有机碳(DOC)、易氧化有机碳(EOC)和颗粒有机碳(POC)含量分别增加了82.84%、66.30%、21.12%、93.28%和145.80%.NPK处理对土壤总有机碳和有机碳组分含量无显著差异.有机无机配施有利于提高土壤碳库活度指数(LI)、土壤碳库指数(CPI)和土壤碳库管理指数(CPMI),LI和CPI的增加是CPMI增加的主要原因.相关分析表明土壤有机碳组分和CPMI与温室气体排放呈显著正相关关系;有机无机配施增加了CO2累积排放量和增温潜势(GWP),但却能够降低温室气体排放强度(GHGI);MNPK处理产量最高,为56365 kg ·hm-2,较CK处理(29073 kg ·hm-2)提高了93.87%.因此,旱地苹果园有机无机肥配施,可促进有机碳的累积,稳定土壤碳库,更有利于果园的可持续发展.  相似文献   

18.
土壤质地对自养固碳微生物及其同化碳的影响   总被引:2,自引:0,他引:2  
自养微生物可同化大气中的CO2并将其转化为土壤有机碳,对提高农田土壤的碳吸收和碳储存有重要意义,然而土壤质地对自养固碳微生物功能种群及其同化碳的影响机制还不清楚.本研究选取亚热带地区同一母质发育而成的两种质地水稻土壤(壤质黏土和砂质黏壤土),通过14C-CO2连续标记技术结合室内模拟培养实验,探讨土壤质地对自养微生物同化碳(14C-SOC)、自养微生物截留碳(14C-MBC)和自养微生物可溶性碳(14C-DOC)的影响.以固碳功能基因(cbb L基因)作为指示基因,结合PCR和克隆测序技术,分析不同质地土壤自养固碳微生物群落结构和多样性的差异.结果表明,壤质黏土14C-SOC、14C-MBC和14C-DOC平均含量分别为133.81、40.16和8.10 mg·kg-1,均显著高于砂质黏壤土14C-SOC(104.95 mg·kg-1)、14C-MBC(33.26 mg·kg-1)和14C-DOC(4.18 mg·kg-1)平均含量(P0.05),说明土壤质地显著影响了土壤自养微生物碳同化量以及自养微生物同化碳在土壤中的转化.稀疏曲线、细菌cbb L基因文库覆盖度以及多样性指数分析结果显示壤质黏土固碳细菌群落多样性高于砂质黏壤土.系统发育分析表明,壤质黏土细菌cbb L基因序列与Rhodoblastus acidophilus、Blastochloris viridis、Thauera humireducens、Mehylibium sp.、Variovorax sp.等具有一定的同源性,而砂质黏壤土cbb L基因序列主要与根瘤菌和放线菌同源.可见,土壤质地对自养固碳微生物群落结构和多样性产生了深刻的影响,壤质黏土中较高的黏粒含量、土壤养分含量和阳离子交换量可能有利于维持更高的自养固碳微生物多样性和活性,从而导致不同质地土壤自养微生物碳同化量及其转化存在显著差异.  相似文献   

19.
Crop derived biofuels such as (bio)ethanol are increasingly applied for automotive purposes. They have, however, a relatively low efficiency in converting solar energy into automotive power. The outcome of life cycle studies concerning ethanol as to fossil fuel inputs and greenhouse gas emissions associated with such inputs depend strongly on the assumptions made regarding e.g. allocation, inclusion of upstream processes and estimates of environmentally relevant in- and outputs. Peer reviewed studies suggest that CO2 emissions linked to life cycle fossil fuel input are typically about 2.1–3.0 kg CO2 kg−1 starch-derived ethanol. When biofuel production involves agricultural practices that are common in Europe there are net losses of carbon from soil and emissions of the greenhouse gas N2O. Dependent on choices regarding allocation, they may, for wheat (starch) be in the order of 0.6–2.5 kg CO2 equivalent kg−1 of ethanol. This makes ethanol derived from starch, or sugar crops, in Europe still less attractive for mitigating climate change. In case of wheat, changes in agricultural practice may reduce or reverse carbon loss from soils. When biofuel production from crops leads to expansion of cropland while reducing forested areas or grassland, added impetus will be given to climate change.  相似文献   

20.
This paper compares the life cycle global warming potential of three of Australia’s important agricultural production activities – the production of wheat, meat and wool in grazed subterranean clover (sub-clover) dominant pasture and mixed pasture (perennial ryegrass/phalaris/sub-clover/grass and cape weed) systems. Two major stages are presented in this life cycle assessment (LCA) analysis: pre-farm, and on-farm. The pre-farm stage includes greenhouse gas (GHG) emissions from agricultural machinery, fertilizer, and pesticide production and the emissions from the transportation of these inputs to paddock. The on-farm stage includes GHG emissions due to diesel use in on-farm transport and processing (e.g. seeding, spraying, harvesting, topdressing, sheep shearing), and non-CO2 (nitrous oxide (N2O), and methane (CH4)) emissions from pastures and crop grazing of lambs.The functional unit of this life cycle analysis is the GHG emissions (carbon dioxide equivalents – CO2 -e) from 1 kg of wheat, sheep meat and wool produced from sub-clover, wheat and mixed pasture plots. The GHG emissions (e.g. CO2, N2O and CH4 emission) from the production, transportation and use of inputs (e.g. fertilizer, pesticide, farm machinery operation) during pre-farm and on-farm stages are also included. The life cycle GHG emissions of 1 kg of wool is significantly higher than that of wheat and sheep meat. The LCA analysis identified that the on-farm stage contributed the most significant portion of total GHG emissions from the production of wheat, sheep meat and wool. This LCA analysis also identified that CH4 emissions from enteric methane production and from the decomposition of manure accounted for a significant portion of the total emissions from sub-clover and mixed pasture production, whilst N2O emissions from the soil have been found to be the major source of GHG emissions from wheat production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号