首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silver nanoparticles (AgNPs) have been biosynthesised through the extracts of Ribes khorassanicum fruits, which served as the reducing agents and capping agents. Biosynthesised AgNPs have been found to be ultraviolet–visible (UV–vis) absorption spectra since they have displayed one surface plasmon resonance peak at 438 nm, attesting the formation of spherical NPs. These particles have been characterised by UV–vis, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, and transmission electron microscopy analysis. The formation of AgNPs at 1.0 mM concentration of AgNO3 has resulted in NPs that contained mean diameters in a range of 20–40 nm. The green‐synthesised AgNPs have demonstrated high antibacterial effect against pathogenic bacteria (i.e. Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa). Biosynthesising metal NPs through plant extracts can serve as the facile and eco‐friendly alternative for chemical and/or physical methods that are utilised for large‐scale nanometal fabrication in various medical and industrial applications.Inspec keywords: X‐ray diffraction, X‐ray chemical analysis, nanofabrication, surface plasmon resonance, nanoparticles, antibacterial activity, microorganisms, scanning electron microscopy, silver, nanomedicine, visible spectra, ultraviolet spectra, transmission electron microscopy, Fourier transform infrared spectra, field emission scanning electron microscopy, biomedical materialsOther keywords: antibacterial properties, silver nanoparticles, reducing agents, capping agents, surface plasmon resonance peak, spherical NPs, field‐emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, X‐ray diffraction, transmission electron microscopy analysis, plant extracts, ultraviolet‐visible absorption spectra, Fourier transform infrared spectroscopy, antibacterial effect, Ribes khorassanicum fruits, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, surface plasmon resonance, AgNO3 , Ag  相似文献   

2.
In this work, an Fe3 O4 /HZSM‐5 nanocomposite was synthesised in the presence of Juglans regia L. leaf extract. Then, silver nanoparticles (Ag NPs) were immobilised on the surface of prepared magnetically recoverable HZSM‐5 using selected extract for reduction of Ag+ ions to Ag NPs and their stabilisation on the surface of the nanocomposite. The reduction of Ag+ ions occurs at room temperature within a few minutes. Characterisation of the prepared catalysts has been carried out using fourier transform infrared (FT‐IR), X‐ray diffraction, field‐emission scanning electron microscopy (FESEM), energy‐dispersive spectroscopy, Brunauer–Emmett–Teller method, and a vibrating sample magnetometer. According to the FESEM images of the nanocomposites, the average size of the Ag NPs on the Fe3 O4 /HZSM‐5 surface was >70 nm. The Ag/Fe3 O4 /HZSM‐5 nanocomposite was a highly active catalyst for the reduction of methyl orange and 4‐nitrophenol in aqueous medium. The utilisation of recycled catalyst for three times in the reduction process does not decrease its activity.Inspec keywords: silver, X‐ray chemical analysis, X‐ray diffraction, nanocomposites, reduction (chemical), nanofabrication, nanoparticles, transmission electron microscopy, catalysts, Fourier transform infrared spectra, iron compounds, field emission scanning electron microscopy, zeolites, magnetometry, particle sizeOther keywords: Ag‐Fe3 O4 , temperature 293 K to 298 K, green synthesis, catalyst material, 4‐nitrophenol reduction, methyl orange reduction, particle size, vibrating sample magnetometry, Brunauer–Emmett–Teller method, field‐emission scanning electron microscopy, X‐ray diffraction, FT‐IR spectroscopy, silver nanoparticles, Juglans regia L. leaf extract, organic pollutant reduction, magnetically recoverable nanocomposites, energy‐dispersive spectroscopy  相似文献   

3.
In this study, CuO nanoparticles supported on the seashell (CuO NPs/seashell) was prepared using Rumex crispus seeds extract as a chelating and capping agent. The prepared nanocomposite was characterised by Fourier transform infrared spectroscopy, X‐ray diffraction, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy and transmission electron microscopy. The particle size of CuO NPs on the seashell sheets was in the range of 8–60 nm. Catalytic ability of CuO NPs/seashell was investigated for the reduction of 4‐nitrophenol (4‐NP) and Congo red (CR). It was observed that catalyst can be easily recovered and reused several times without any significant loss of catalytic efficiency.Inspec keywords: nanocomposites, nanoparticles, catalysis, dyes, Fourier transform infrared spectra, X‐ray diffraction, field emission electron microscopy, scanning electron microscopy, X‐ray chemical analysis, transmission electron microscopy, particle size, copper compoundsOther keywords: CuO, size 8 nm to 60 nm, Congo red, 4‐nitrophenol, particle size, transmission electron microscopy, energy dispersive X‐ray spectroscopy, field emission scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectroscopy, nanocomposite, capping agent, chelating agent, dye reduction, catalytic application, Rumex crispus seeds extract, seashell surface, nanoparticles, green synthesis  相似文献   

4.
The aqueous extract of Chinese winter jujube (Ziziphus jujuba Mill. cv. Dongzao) was used as reducing and capping agents for the synthesis of silver nanoparticles (AgNPs) for the first time. The resulting AgNPs were characterised by UV/Visible (UV–Vis) spectroscopy, atomic force microscope, transmission electron microscopy, selected area electron diffraction, X‐ray diffraction, scanning electron microscopy, energy‐dispersive X‐ray and Fourier transform infrared spectroscopy (FTIR). The colloidal solution of AgNPs gave a maximum UV–Vis absorbance at 446 nm. The synthesised nanoparticles were almost in the spherical shapes with an average size of 11.5 ± 4. 8 nm. FTIR spectra were applied to identify the functional groups which were possibly responsible for the conversion of metal ions into nanoparticles. The results showed that the prepared AgNPs were coated with the biomolecules in the extract. The biosynthesised AgNPs showed a remarkable catalytic activity at room temperature, and they also showed good antibacterial properties against Escherichia coli and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanofabrication, antibacterial activity, biomedical materials, nanobiotechnology, scanning electron microscopy, X‐ray diffraction, transmission electron microscopy, ultraviolet spectra, visible spectra, X‐ray chemical analysis, Fourier transform infrared spectra, catalysisOther keywords: wavelength 446 nm, temperature 293 K to 298 K, Ag, Escherichia coli, Staphylococcus aureus, biomolecules, catalytic activity, metal ions, colloidal solution, FTIR spectra, UV‐vis absorbance, TEM, SEM, XRD, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, scanning electron microscopy, X‐ray diffraction, selected area electron diffraction, transmission electron microscopy, atomic force microscopy, UV‐visible spectroscopy, catalytic properties, antibacterial properties, Chinese winter jujube extract, silver nanoparticles, facile phyto‐mediated synthesis  相似文献   

5.
A facile and green synthesis of the Ag/ZnO nanocomposite by extract of Valeriana officinalis L. root in the absence of any stabiliser or surfactant has been reported in this work. The green synthesised Ag/ZnO nanocomposite was characterised by Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), energy dispersive X‐ray spectroscopy (EDS), elemental mapping, Fourier‐Transform infrared (FT‐IR), X‐ray diffraction analysis (XRD) and UV‐Vis spectroscopy. According to SEM and TEM images, the Ag and ZnO particles are spherical with diameters of less than 20 and 40–50 nm, respectively. The Ag NPs/ZnO nanocomposite proved to be an effective catalyst in the reduction of various dyes including methyl orange (MO), Congo red (CR) and methylene blue (MB) in the presence of NaBH4 in aqueous media at ambient temperature. A maximum degradation (100%) of dyes was performed using Ag/ZnO nanocomposite. The extraordinary performance of the prepared Ag/ZnO nanocomposite is attributed to the synergetic effect induced by both ZnO and Ag NPs in the catalytic degradation of organic dyes. The catalyst could be reused and recovered several times with no significant loss of catalytic activity.Inspec keywords: nanocomposites, silver, zinc compounds, II‐VI semiconductors, nanofabrication, catalysts, reduction (chemical), field emission electron microscopy, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, ultraviolet spectra, visible spectra, X‐ray diffraction, surface morphology, nanoparticles, dyesOther keywords: green synthesis, nanocomposite, Valeriana officinalis L. root extract, reusable catalyst, reduction, organic dyes, surfactant, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive X‐ray spectroscopy, elemental mapping, Fourier‐transform infrared spectroscopy, X‐ray diffraction analysis, surface morphology, nanoparticles, methyl orange, congo red, methylene blue, UV–Vis spectroscopy, size 40 nm to 50 nm, wavelength 493 nm, wavelength 465 nm, wavelength 663 nm, Ag‐ZnO  相似文献   

6.
Sustainable methods are needed for rapid and efficient detection of environmental and food pollutants. The Sudan group of dyes has been used extensively as adulterants in food and also are found to be polluting the soil and water bodies. There have been several methods for detection of Sudan dyes, but most of them are not practical enough for common use. In this study, the electrochemical detection efficiency and stability of gold nanoparticle (AuNPs), silver NPs and Au–Ag bionanocomposites, synthesised by peanut skin extract, modified glassy carbon electrode has been investigated. The synthesised nanomaterial samples were characterised, for their quality and quantity, using ultra–visible spectroscopy, inductive coupled plasma mass spectrophotometer, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, high‐resolution transmission electron microscope and field emission scanning electron microscope. The nanomaterial hybrid electrodes showed great efficiency and stability in the detection of Sudan IV compared with the other previous electrodes. The peak current of the Sudan IV oxidation and reduction was found to be proportional to its concentration, in the range of 10–80 µM, with a detection limit of 4 µM. The hybrid electrodes showed 90% stability in detection for 20 cycles.Inspec keywords: gold, silver, nanoparticles, nanocomposites, biomedical materials, electrochemical sensors, dyes, nanofabrication, ultraviolet spectra, visible spectra, spectrophotometry, Fourier transform infrared spectra, X‐ray chemical analysis, transmission electron microscopy, scanning electron microscopy, field emission electron microscopyOther keywords: peanut skin extract mediated synthesis, gold nanoparticles, silver nanoparticles, gold–silver bionanocomposites, electrochemical Sudan IV sensing, electrochemical detection efficiency, modified glassy carbon electrode, ultra–visible spectroscopy, inductive coupled plasma mass spectrophotometer, Fourier transform infrared spectroscopy, energy‐dispersive X‐ray spectroscopy, high‐resolution transmission electron microscope, field emission scanning electron microscope, oxidation, reduction, detection limit, Au, Ag, Au‐Ag  相似文献   

7.
A facile and green process to synthesise cuttlebone supported palladium nanoparticles (Pd NPs/cuttlebone) is reported using Conium maculatum leaf extract and in the absence of chemical solvents and hazardous materials. The antioxidant content of the C. maculatum leaf extract played a significant role in converting Pd2+ ions to Pd NPs. Various techniques were used for the characterisation of the Pd NPs/cuttlebone such as field‐emission scanning electron microscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, Fourier transform infrared and ultraviolet–visible spectroscopy. This Pd NPs/cuttlebone showed excellent catalytic activity in the reduction of 2,4‐dinitrophenylhydrazine to 2,4‐diaminophenylhydrazine by sodium borohydride as the source of hydrogen at ambient condition. The catalyst could be separated and recycled up to five cycles with no loss of its activity.Inspec keywords: catalysis, catalysts, chemical engineering, palladium, nanoparticles, field emission electron microscopy, scanning electron microscopy, X‐ray diffraction, X‐ray chemical analysis, sodium compounds, ultraviolet spectroscopy, visible spectroscopyOther keywords: catalytic reduction, 2,4‐dinitrophenylhydrazine, cuttlebone, Conium maculatum leaf extract, green process, palladium nanoparticles, antioxidant content, field‐emission scanning electron microscopy, X‐ray diffraction, energy dispersive X‐ray spectroscopy, Fourier transform infrared, ultraviolet–visible spectroscopy, 2,4‐diaminophenylhydrazine, sodium borohydride  相似文献   

8.
The present study focused on the synthesis of spherical silver nanoparticles (Ag NPs) using Gundelia tournefortii L. aerial part extract. The plant extract could reduce silver ions into Ag NPs. To identify the compounds responsible for the reduction of silver ions, functional groups present in plant extract were investigated by Fourier transform infrared spectroscopy. Techniques used to characterise synthesised nanoparticles included field emission scanning electron microscopy, X‐ray diffraction and transmission electron microscopy. UV‐visible spectrophotometer showed the absorbance peak in the range of 400–450 nm. The Ag NPs showed antibacterial activities against both gram positive (Staphylococcus aureus and Bacillus Cereus) and gram negative (Salmonella typhimurium and Escherichia coli) microorganisms. The results confirmed that this protocol was simple, rapid, eco‐friendly, low‐priced and non‐toxic; therefore, it could be used as an alternative to conventional physical/chemical methods. Only 5 min were required for the conversion of silver ions into Ag NPs at room temperature, without the involvement of any hazardous chemical.Inspec keywords: nanoparticles, silver, nanofabrication, microorganisms, Fourier transform infrared spectra, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: Ag, temperature 293 K to 298 K, chemical method, physical method, Salmonella typhimurium, Escherichia coli, gram negative microorganisms, Bacillus Cereus, Staphylococcus aureus, gram positive microorganisms, antibacterial activities, absorbance peak, UV‐visible spectrophotometer, transmission electron microscopy, X‐ray diffraction, field emission scanning electron microscopy, Fourier transform infrared spectroscopy, functional groups, plant extract, Gundelia tournefortii L. aerial part extract, spherical silver nanoparticle synthesis, silver nanoparticle green synthesis, natural source  相似文献   

9.
In this study, the authors reported the first synthesis process of silver iodide (AgI) nanoparticles (NPs) by pulsed laser ablation of the AgI target in deionised distilled water. The optical and structural properties of AgI NPs were investigated by using UV–vis absorption, X‐ray diffraction, scanning electron microscope (SEM), energy dispersive X‐ray, Fourier transform infrared spectroscopy, and transmission electron microscope (TEM). The optical data showed the presence of plasmon peak at 434 nm and the optical bandgap was found to be 2.6 eV at room temperature. SEM results confirm the agglomeration and aggregation of synthesised AgI NPs. TEM investigation showed that AgI NPs have a spherical shape and the average particle size was around 20 nm. The particle size distribution was the Gaussian type. The results showed that the synthesised AgI NPs have antibacterial activities against both bacterial strains and the activities were more potent against gram‐negative bacteria.Inspec keywords: antibacterial activity, nanoparticles, X‐ray chemical analysis, particle size, transmission electron microscopy, X‐ray diffraction, nanofabrication, scanning electron microscopy, visible spectra, ultraviolet spectra, silver compounds, pulsed laser deposition, Fourier transform infrared spectra, optical constants, energy gap, aggregationOther keywords: synthesis process, pulsed laser ablation, AgI target, deionised distilled water, optical properties, structural properties, UV–vis absorption, X‐ray diffraction, transmission electron microscope, optical data, optical bandgap, antibacterial activities, silver iodide nanoparticles, energy dispersive X‐ray analysis, SEM, wavelength 434.0 nm, temperature 293 K to 298 K, AgI  相似文献   

10.
Development of a green chemistry process for the synthesis of silver nanoparticles (AgNPs) has become a focus of interest. Characteristics of AgNPs were determined using techniques, such as ultraviolet–visible spectroscopy (UV–vis), Fourier transform infrared (FTIR) analysis, scanning electron microscopy (SEM), energy‐dispersive X‐ray spectroscopy and X‐ray diffraction (XRD). The synthesised AgNPs using Thymus kotschyanus had the most growth inhibition against gram‐positive bacteria such as Staphylococcus aureus and Bacillus subtilise, while the growth inhibition of AgNPs at 1000–500 µg/ml occurred against Klebsiella pneumonia and at 1000–250 µg/ml of AgNPs was observed against E. coli. The UV–vis absorption spectra confirmed the formation of the AgNPs with the characteristic peak at 415 nm and SEM micrograph acknowledged spherical particles in a nanosize range. FTIR measured the possible biomolecules that are responsible for stabilisation of AgNPs. XRD analysis exhibited the crystalline nature of AgNPs and showed face‐centred cubic structure. The synthesised AgNPs revealed significant antibacterial activity against gram‐positive bacteria.Inspec keywords: visible spectra, microorganisms, ultraviolet spectra, biomedical materials, nanofabrication, nanoparticles, X‐ray diffraction, scanning electron microscopy, molecular biophysics, X‐ray chemical analysis, nanomedicine, silver, antibacterial activity, Fourier transform infrared spectraOther keywords: green chemistry process, ultraviolet–visible spectroscopy, gram‐positive bacteria, silver nanoparticles, Thymus kotschyanus aqueous extract, UV–vis spectroscopy, Fourier transform infrared spectroscopy, FTIR analysis, scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, SEM micrograph, X‐ray diffraction, XRD, Staphylococcus aureus, Bacillus subtilise, Klebsiella pneumonia, E. coli, UV–vis absorption spectra, face‐centred cubic structure, antibacterial activity, antimicrobial activity, wavelength 415.0 nm, Ag  相似文献   

11.
Through this study an eco‐friendly, simple, efficient, cheap and biocompatible approach to the biosynthesis and stabilisation of CuO nanoparticles (NPs) using the Euphorbia Chamaesyce leaf extract is presented. The CuO NPs were monitored and characterised by field emission scanning electron microscopy, energy dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy, transmission electron microscope and UV‐visible spectroscopy. The biosynthesised CuO NPs showed good catalytic activity for the reduction of 4‐nitrophenol (4‐NP) in water during 180 s and reused 4 times without considerable loss of activity.Inspec keywords: copper compounds, nanoparticles, nanofabrication, catalysis, reduction (chemical), field emission electron microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, transmission electron microscopy, ultraviolet spectra, visible spectraOther keywords: biosynthesis, CuO nanoparticles, Euphorbia Chamaesyce leaf extract, catalytic activity, 4‐nitrophenol reduction, nanoparticle stabilisation, field emission scanning electron microscopy, energy dispersive X‐ray spectroscopy, Fourier transformed infrared spectroscopy, transmission electron microscope, UV‐visible spectroscopy, CuO  相似文献   

12.
Silver phosphate nanoparticles were biologically synthesised, for the first time, using a dilute silver nitrate solution as the silver ion supplier, and without any source of phosphate ion. The applied bacterium was Sporosarcina pasteurii formerly known as Bacillus pasteurii which is capable of solubilising phosphate from soils. It was speculated that the microbe accumulated phosphate from the organic source during the growth period, and then released it to deionised water. According to the transmission electron microscopy images and X‐ray diffraction results, the produced nanoparticles were around 20 nm in size and identified as silver phosphate nanocrystals. The outcomes were also approved by energy‐dispersive X‐ray analysis, thermogravimetric and differential scanning calorimetry analyses, ultraviolet–visible spectroscopy, and Fourier transform infrared spectroscopy analysis. Finally, the antibacterial effect of the obtained nanoparticles was verified by testing them against Bacillus cereus, Staphylococcus aureus, Escherichia coli, and Salmonella typhimurium. The activity of silver phosphate nanoparticles against gram‐negative strains was better than the gram positives. It should be mentioned that the concentrations of 500 and 1000 mg/l were found to be strongly inhibitory for all of the strains.Inspec keywords: nanoparticles, silver compounds, nanofabrication, microorganisms, antibacterial activity, transmission electron microscopy, X‐ray diffraction, X‐ray chemical analysis, differential scanning calorimetry, ultraviolet spectra, visible spectra, Fourier transform infrared spectraOther keywords: biosynthesis, phosphate source, phosphorus mineralising bacterium, silver phosphate nanoparticles, Sporosarcina pasteurii, Bacillus pasteurii, deionised water, transmission electron microscopy images, X‐ray diffraction, energy‐dispersive X‐ray analysis, thermogravimetric analyses, differential scanning calorimetry analyses, ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, antibacterial effect, Bacillus cereus, Staphylococcus aureus, Escherichia coli, Salmonella typhimurium, Ag3 PO4   相似文献   

13.
In the present study, high purity copper oxide nanoparticles (NPs) were synthesised using Tridax procumbens leaf extract. Green syntheses of nano‐mosquitocides rely on plant compounds as reducing and stabilising agents. Copper oxide NPs were characterised using X‐ray diffraction (XRD) analysis, Fourier transform infrared (FT‐IR), Field‐emission scanning electron microscopy with energy dispersive spectroscopy, Ultraviolet–visible spectrophotometry and fluorescence spectroscopy. XRD studies of the NPs indicate crystalline nature which was perfectly matching with a monoclinic structure of bulk CuO with an average crystallite size of 16 nm. Formation of copper oxide NPs was confirmed by FT‐IR studies and photoluminescence spectra with emission peaks at 331, 411 and 433 nm were assigned to a near‐band‐edge emission band of CuO in the UV, violet and blue region. Gas chromatography–mass spectrometry studies inferred the phytochemical constituents of the leaf extract. Larvicidal activity of synthesised NPs using T. procumbens leaf extract was tested against Aedes aegypti species (dengue, chikungunya, zika and yellow fever transmit vector).Inspec keywords: photoluminescence, spectrophotometry, thermal analysis, chromatography, nanoparticles, antibacterial activity, field emission electron microscopy, microorganisms, wide band gap semiconductors, scanning electron microscopy, X‐ray diffraction, copper compounds, ultraviolet spectra, nanofabrication, X‐ray chemical analysis, crystallites, visible spectra, field emission scanning electron microscopy, nanobiotechnology, semiconductor materials, semiconductor growth, fluorescence, mass spectraOther keywords: energy dispersive spectroscopy, ultraviolet–visual spectrophotometry, fluorescence spectroscopy, chikungunya, green synthesis, mosquito larvicidal activity, zika, X‐ray diffraction analysis, field‐emission scanning electron microscopy, XRD, gas chromatography–mass spectrometry, copper oxide nanoparticles, dengue, tridax procumben leaf extract, nanomosquitocides, FTIR, monoclinic structure, crystallite size, photoluminescence spectra, near‐band‐edge emission band, phytochemical constituents, Aedes aegypti species, yellow fever transmit vector, CuO  相似文献   

14.
The current research study focuses on biosynthesis of silver nanoparticles (Ag NPs) for the first time from silver acetate employing methanolic root extract of Diospyros assimilis. The UV–Vis absorption spectrum of biologically synthesised nanoparticles displayed a surface plasmon peak at 428 nm indicating the formation of Ag NPs. The influence of metal ion concentration, reaction time and amount of root extract in forming Ag NPs by microscopic and spectral analysis was thoroughly investigated. Structural analysis from transmission electron microscopy confirmed the nature of metallic silver as face‐centered cubic (FCC) crystalline with an average diameter of 17 nm, which correlates with an average crystallite size (19 nm) calculated from X‐ray diffraction analysis. Further, the work was extended for the preliminary examination of antimicrobial activity of biologically synthesised Ag NPs that displayed promising activity against all the tested pathogenic strains.Inspec keywords: antibacterial activity, nanoparticles, silver, particle size, nanofabrication, nanomedicine, biomedical materials, ultraviolet spectra, visible spectra, optical microscopy, surface plasmon resonance, transmission electron microscopy, crystallites, X‐ray diffraction, microorganismsOther keywords: Diospyros assimilis root extract assisted biosynthesised silver nanoparticles, antimicrobial activity, silver acetate, methanolic root extract, UV‐visible absorption spectrum, biologically synthesised nanoparticles, surface plasmon peak, Ag NPs formation, metal ion concentration, reaction time, microscopic analysis, spectral analysis, structural analysis, transmission electron microscopy, metallic silver, FCC crystalline phase, average crystallite size, X‐ray diffraction analysis, pathogenic strains, Ag  相似文献   

15.
Biogenic synthesis of gold (Au), silver (Ag) and bimetallic alloy Au–Ag nanoparticles (NPs) from aqueous solutions using Cannabis sativa as reducing and stabilising agent has been presented in this report. Formation of NPs was monitored using UV–visible spectroscopy. Morphology of the synthesised metallic and bimetallic NPs was investigated using X‐ray diffraction and scanning electron microscopy. Elemental composition and the surface chemical state of NPs were confirmed by energy dispersive X‐ray spectroscopy analysis. Fourier transform‐infrared spectroscopy was utilised to identify the possible biomolecules responsible for the reduction and stabilisation of the NPs. Biological applicability of biosynthesised NPs was tested against five bacterial strains namely Klebsiella pneumonia, Bacillus subtilis (B. subtilis), Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa (P. aeruginosa) and Leishmania major promastigotes. The results showed considerable antibacterial and anti‐leishmanial activity. The Au–Ag bimetallic NPs showed improved antibacterial activity against B. subtilis and P. aeruginosa as compared to Au and Ag alone, while maximum anti‐leishmanial activity was observed at 250 μg ml−1 NP concentration. These results suggest that biosynthesised NPs can be used as potent antibiotic and anti‐leishmanial agents.Inspec keywords: silver, silver alloys, gold, gold alloys, nanoparticles, nanofabrication, reduction (chemical), ultraviolet spectra, visible spectra, X‐ray diffraction, scanning electron microscopy, X‐ray chemical analysis, Fourier transform infrared spectra, microorganisms, antibacterial activityOther keywords: biogenic synthesis, Cannabis sativa leaf extract, bimetallic alloy Au–Ag nanoparticles, aqueous solutions, reducing agent, stabilising agent, UV–visible spectroscopy, X‐ray diffraction, scanning electron microscopy, elemental composition, surface chemical state, energy dispersive X‐ray spectroscopy analysis, Fourier transform‐infrared spectroscopy, biomolecules, bacterial strains, Klebsiella pneumonia, Bacillus subtilis, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, Leishmania major promastigotes, antibacterial activity, anti‐leishmanial activity, Ag, Au, AuAg  相似文献   

16.
Biological routes of synthesising metal nanoparticles (NPs) using microbes have been gaining much attention due to their low toxicity and eco‐friendly nature. Pseudomonas aeruginosa JP2 isolated from metal contaminated soil was evaluated towards extracellular synthesis of silver NPs (AgNPs). Cell‐free extract (24 h) of the bacterial isolate was reacted with AgNO3 for 24 h in order to fabricate AgNPs. Preliminary observations were recorded in terms of colour change of the reaction mixture from yellow to greyish black. UV‐visible spectroscopy of the reaction mixture has shown a progressive increase in optical densities that correspond to peaks near 430 nm, depicting reduction of ionic silver (Ag+) to atomic silver (Ag0) thereby synthesising NPs. X‐ray diffraction spectra exhibited the 2θ values to be 38.4577° confirming the crystalline and spherical nature of NPs [9.6 − 26.7 (Ave. = 17.2 nm)]. Transmission electron microscopy finally confirmed the size of the particles varying from 5 to 60 nm. Moreover, rhamnolipids and proteins were identified as stabilising molecules for the AgNPs through Fourier transform‐infrared spectroscopy. Characterisation of bacterial crude and purified protein fractions confirmed the involvement of nitrate reductase (molecular weight 66 kDa and specific activity = 3.8 U/mg) in the Synthesis of AgNPs.Inspec keywords: microorganisms, silver, nanoparticles, enzymes, molecular biophysics, ultraviolet spectra, visible spectra, X‐ray diffraction, transmission electron microscopy, Fourier transform infrared spectra, catalysis, biochemistry, nanobiotechnologyOther keywords: catalytic protein, stabilising agents, Pseudomonas aeruginosa, metal nanoparticles, UV–visible spectroscopy, optical densities, ionic silver, atomic silver, X‐ray diffraction spectra, transmission electron microscopy, nitrate reductase, rhamnolipids, Fourier transform‐infrared spectroscopy, Ag  相似文献   

17.
Consistent search of plants for green synthesis of silver nanoparticles (SNPs) is an important arena in Nanomedicine. This study focuses on synthesis of SNPs using bioreduction of silver nitrate (AgNO3) by aqueous root extract of Decalepis hamiltonii. The biosynthesis of SNPs was monitored by UV–vis analysis at absorbance maxima 432 nm. The fluorescence emission spectra of SNPs illustrated the broad emission peak 450–483 nm at different excitation wavelengths. The surface characteristics were studied by scanning electron microscope and atomic force microscopy, showed spherical shape of SNPs and dynamic light scattering analysis confirmed the average particle size 32.5 nm and the presence of metallic silver was confirmed by energy dispersive X‐ray. Face centred cubic structure with crystal size 33.3 nm was revealed by powder X‐ray diffraction. Fourier transform infrared spectroscopy indicated the biomolecules involved in the reduction mainly polyols and phenols present in root extracts were found to be responsible for the synthesis of SNPs. The stability and charge on SNPs were revealed by zeta potential analysis. In addition, on therapeutic forum, the synthesised SNPs elicit antioxidant and antimicrobial activity against Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus.Inspec keywords: silver, nanoparticles, nanomedicine, antibacterial activity, biomedical materials, nanofabrication, particle size, microorganisms, ultraviolet spectra, visible spectra, fluorescence, scanning electron microscopy, atomic force microscopy, light scattering, X‐ray diffraction, X‐ray chemical analysis, Fourier transform infrared spectra, molecular biophysics, electrokinetic effectsOther keywords: phenols, zeta potential analysis, therapeutic forum, antioxidant activity, antimicrobial activity, Bacillus cereus, Bacillus licheniformis, Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Ag, polyols, biomolecules, Fourier transform infrared spectroscopy, powder X‐ray diffraction, crystal size, face centred cubic structure, energy dispersive X‐ray analysis, metallic silver, particle size, dynamic light scattering analysis, spherical shape, atomic force microscopy, scanning electron microscopy, surface characteristics, excitation wavelengths, fluorescence emission spectra, UV‐visible analysis, biosynthesis, silver nitrate bioreduction, nanomedicine, Decalepis hamiltonii aqueous root extract, bioactivity, plant‐mediated silver nanoparticles, green synthesis  相似文献   

18.
In the present study, silver (Ag) and Ag–zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound‐healing efficacy on rat model. Ultraviolet–visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X‐ray diffraction analysis Ag–ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face‐centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag–ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi‐hexagonal NPs with distribution of particle size of 20–40 nm. Furthermore, the authors investigated the wound‐healing properties of Ag–ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.Inspec keywords: wounds, tissue engineering, biomedical materials, nanocomposites, nanofabrication, nanomedicine, silver, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, visible spectra, nanoparticles, particle size, surface plasmon resonance, spectral line shift, X‐ray diffraction, scanning electron microscopy, transmission electron microscopyOther keywords: enhanced wound healing activity, Ag‐ZnO composite nanoparticles, Wistar Albino rats, wound‐healing efficacy, ultraviolet‐visible spectroscopy, intense surface plasmon resonance absorption, aqueous Zn acetate solution, SP resonance band, blue shift, X‐ray diffraction analysis, diffraction peaks, face‐centred cubic structures, scanning electron microscope, SEM, transmission electron microscope, TEM, monodispersed hexagonal nanoparticles, quasihexagonal nanoparticles, particle size, animal model, time 10 d, size 20 nm to 40 nm, Ag‐ZnO  相似文献   

19.
Silver nanoparticles (Ag NPs) were synthesised using the crude ethyl acetate extracts of Ulva lactuca and evaluated their bioefficacy against two crop‐damaging pathogens. The sets of lattice planes in the XRD spectrum for the Ag NPs were indexed to the 111, 200, 220 and 311 orientations and support the crystalline nature of the Ag NPs. The 3414 and 2968 cm−1 peaks were observed in crude algal thallus extract and they were characteristic of terpenoids. Further, a peak at 1389 cm−1 was observed as fatty acids. The marine macroalgae terpenoids and palmitic acid acted as reducing agent and stabiliser, respectively. The size (3 and 50 nm) and shape (spherical) of Ag NPs were recorded. The energy‐dispersive X‐ray spectroscopy analysis exemplified the presence of silver in its elemental nature. Moreover, U. lactuca Ag NPs were effective against two cotton phytopathogens namely Fusarium oxysporum f.sp. vasinfectum (FOV) and Xanthomonas campestris pv. malvacearum (XAM). The minimum inhibitory concentration was found to be 80.0 and 43.33 μg ml−1 against FOV and XAM, respectively. Results confirmed the anti‐microbial activity of green nanoparticles against select pathogens and suggest their possible usage in developing antifungal agents for controlling destructive pathogens in a cotton agroecosystem.Inspec keywords: nanoparticles, biotechnology, antibacterial activity, silver, microorganisms, X‐ray chemical analysis, crops, X‐ray diffraction, cottonOther keywords: crude ethyl acetate extracts, crop‐damaging pathogens, lattice planes, XRD spectrum, crystalline nature, crude algal thallus, fatty acids, marine macroalgae terpenoids, palmitic acid, energy‐dispersive X‐ray spectroscopy analysis, elemental nature, cotton phytopathogens, green nanoparticles, destructive pathogens, cotton agroecosystem, green preparation, seaweed‐based silver nanoliquid, cotton pathogenic fungi management, silver nanoparticles, Ag NP, Ag  相似文献   

20.
The authors have investigated beneficial effects of 1 mM of silver nanoparticles (AgNPs) on agriculturally important plant Pennisetum glaucum (Bajara). The extracellular AgNPs were synthesised using Bacillus subtilis spizizenni and characterised using ultraviolet–visible absorption spectroscopy, Fourier transform infrared spectroscopy (FT‐IR) and transmission electron microscopy (TEM). Optical absorption spectrum showed characteristic peak of AgNPs at 423 nm. FT‐IR analysis of AgNPs showed peak at 3435 cm−1, which indicates the presence of N–H group (primary, secondary amines and amides) on the surface of AgNPs. TEM studies indicate that synthesised AgNPs have average size of ∼2 nm. Energy dispersive X‐ray spectroscopy showed strong signal of Ag at 3 keV. Treatment of 1 mM AgNPs to the bajara seeds was found to be sufficient for excellent germination of seeds within 3 days. There was also significant increase in radicle and plumule length as compared with control bajara seeds according to statistical analysis by one‐way analysis of variance, followed by Tukey''s test. The percentage of AgNPs detected in root samples was 0.003% (by inductively coupled plasma atomic emission spectroscopy), which is negligible. There is still need to study the bioavailability and the type of interaction of AgNPs with plants, necessary for application in agriculture.Inspec keywords: transmission electron microscopy, ultraviolet spectra, scanning electron microscopy, nanofabrication, X‐ray diffraction, nanoparticles, visible spectra, silver, atomic emission spectroscopy, X‐ray chemical analysis, Fourier transform infrared spectra, statistical analysis, agricultureOther keywords: ultraviolet–visible absorption spectroscopy, transmission electron microscopy, Pennisetum glaucum, Bacillus subtilis spizizenni, energy dispersive X‐ray spectroscopy, Fourier transform infrared spectroscopy, optical absorption spectrum, plumule length, radicle length, silver nanoparticles, Tukey''s test, inductively coupled plasma atomic emission spectroscopy, statistical analysis, Bajara seeds, scanning electron microscopy, X‐ray diffraction, analysis of variance, electron volt energy 3.0 keV, time 3.0 d, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号