首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Chitosan‐poly (vinyl alcohol) (Cs: PVA) (2:3) and poly (caprolactone)‐chitosan‐poly (vinyl alcohol) (PCL: Cs: PVA) (2:1:1.5) nanofibrous blend scaffolds were fabricated using the electrospinning technique in the authors’ previous studies. The results of the previous studies confirmed the high biological properties of the scaffolds and their ability in healing of burn and excision wounds on rat model. In the present study, the biological scaffolds were applied on diabetic dorsum skin wounds and diabetic foot wound on rat models (n = 16). Macroscopic and microscopic investigations were carried out using digital images and haematoxylin and eosin (H&E) staining respectively, to measure the wound areas and to track wound healing rate. It was found that at all time points the areas of wounds treated with nanofibrous scaffolds were smaller compared with the controls. Pathological results showed much better healing efficacy for the test samples compared with the control ones. Pathological investigations proved the presence of more pronounced granulation tissues in the scaffold‐treated wounds compared with the control ones. At 20 days post excision, the scaffold‐treated groups achieved complete repair. The results indicated that Cs: PVA and PCL: Cs: PVA nanofibrous webs could be considered to be promising materials for burn, excision and diabetic wounds healing.Inspec keywords: wounds, diseases, biomedical materials, polymer blends, nanofibres, polymer fibres, nanomedicine, nanofabrication, electrospinning, skin, cellular biophysics, caesium, medical image processing, patient treatmentOther keywords: chitosan‐poly (vinyl alcohol), poly (caprolactone)‐chitosan‐poly (vinyl alcohol), nanofibrous blend scaffolds, electrospinning, biological properties, rat model, diabetic dorsum skin wound healing, diabetic foot wounds, rat models, digital imaging, H&E staining, pathology, granulation tissues, PCL‐Cs‐PVA nanofibrous webs, excision wound healings, burn wound healings  相似文献   

2.
The biologically synthesised tellurium nanoparticles (Te NPs) were applied in the fabrication of Te NP‐embedded polycaprolactone/gelatin (PCL/GEL) electrospun nanofibres and their antioxidant and in vivo wound healing properties were determined. The as‐synthesised nanofibres were characterised using scanning electron microscopy (SEM), energy‐dispersive X‐ray (EDX) spectroscopy and elemental mapping, thermogravimetric analysis (TGA), and Fourier‐transform infrared (FTIR) spectroscopy. The mechanical properties and surface hydrophobicity of scaffolds were investigated using tensile analysis and contact angle tests, respectively. The biocompatibility of the produced scaffolds on mouse embryonic fibroblast cells (3T3) was evaluated using MTT assay. The highest wound healing activity (score 15/19) was achieved for scaffolds containing Te NPs. The wounds treated with PCL/GEL/Te NPs had inflammation state equal to the positive control. Also, the mentioned scaffold represented positive effects on collagen formation and collagen fibre''s horizontalisation in a dose‐dependent manner. The antioxidative potency of Te NP‐containing scaffolds was demonstrated with lower levels of malondialdehyde (MDA) and catalase (∼3 times) and a higher level of glutathione (GSH) (∼2 times) in PCL/GEL/Te NP‐treated samples than the negative control. The obtained results strongly demonstrated the healing activity of the produced nanofibres, and it can be inferred that scaffolds containing Te NPs are suitable for wound dressing.  相似文献   

3.
Chitosan-polyvinyl alcohol (PVA) blend nanofibrous webs were fabricated in different blend ratios through electrospinning procedures. From scanning electron microscopy (SEM) results, 25/75 blend ratio of chitosan-PVA was selected for biological studies. In vivo studies were carried out on the dorsum of rats of two types: longitudinal incisional wounds (n=8 rats) and round excisional wounds (n=8). Pathological study was done on the wounds to investigate the healing process. The histological study in wound healing indicated that the administration of chitosan nanofibrous web improved the wound healing, qualitatively and quantitatively.  相似文献   

4.
There is a great need for the progress of composite biomaterials, which are effective for tissue engineering applications. In this work, the development of composite electrospun nanofibres based on polycaprolactone (PCL) and collagen hydrolysate (CH) loaded with ferulic acid (FA) for the treatment of chronic wounds. Response Surface Methodology (RSM) has been applied to nanofibres factor manufacturing assisted by electrospinning. For wound healing applications, the authors have created the efficacy of CH, and PCL membranes can act as a stable, protective cover for wound, enabling continuous FA release. The findings of the RSM showed a reasonably good fit with a polynomial equation of the second order which was statistically acceptable at P  < 0.05. The optimised parameters include the quantity of hydrolysate collagen, the voltage applied and the distance from tip‐to‐collector. Based on the Box–Behnken design, the RSM was used to create a mathematical model and optimise nanofibres with minimum diameter production conditions. Using FTIR, TGA and SEM, optimised nanofibres were defined. In vitro, cytocompatibility trials showed that there was an important cytocompatibility of the optimised nanofibres, which was proved by cell proliferation and cell morphology. In this research, the mixed nanofibres of PCL and CH with ferulic could be a potential biomaterial for wound healing.Inspec keywords: tissue engineering, polymer fibres, wounds, electrospinning, nanofibres, response surface methodology, cellular biophysics, proteins, molecular biophysics, scanning electron microscopy, biomedical materials, nanomedicine, nanocomposites, nanofabrication, Fourier transform infrared spectraOther keywords: wound healing applications, PCL membranes, stable cover, protective cover, continuous FA release, RSM, optimised parameters, hydrolysate collagen, mathematical model, optimised nanofibres, polycaprolactone nanofibres, tissue engineering applications, composite biomaterials, composite electrospun nanofibres, collagen hydrolysate, ferulic acid, chronic wounds, Response Surface Methodology, nanofibres factor  相似文献   

5.
Umbilical cord‐derived mesenchymal stem cells (UCDMSC) are attractive candidates for cell‐based regenerative medicine. However, they are susceptible to replicative senescence during repetitive passaging for in‐vitro expansion and induced senescence in an oxidative, inflammatory microenvironment in vivo. Aim of this study is to investigate if honey‐incorporated matrices can be employed to reduce senescence of UCDMSC. Matrices were prepared by electrospinning solutions of honey with poly‐vinyl alcohol (PVA). PVA:honey matrices exhibited free radical scavenging activity. Culture of UCDMSC on PVA:honey matrices showed improvement in cell proliferation compared to pure PVA nanofibres. Expression of vimentin indicated that mesenchymal phenotype is preserved after culturing on these matrices. Further, UCDMSC were serially subcultured and cells of two passages (P2 and P6) were evaluated for reactive oxygen species (ROS) load and senescence parameters. P6 cells showed a higher ROS load and β‐galactosidase (β‐gal) positive senescent cells compared to P2. However, culturing on PVA:honey substrates significantly reduced both ROS and β‐gal markers compared to cells on PVA substrates. Honey contains several antioxidant and anti‐inflammatory components, which can reduce the ROS‐related senescence. Thus, it is concluded that honey containing nanofibres can be effective substrates for stem cell‐based wound healing and regenerative medicine.Inspec keywords: molecular biophysics, nanofibres, nanomedicine, polymer fibres, cellular biophysics, nanofabrication, enzymes, biochemistry, electrospinning, wounds, biomedical materialsOther keywords: pure PVA nanofibres, UCDMSC, PVA:honey substrates, PVA substrates, ROS‐related senescence, honey containing nanofibres, stem cell‐based wound healing, honey‐incorporated nanofibre, replicative senescence, umbilical cord‐derived mesenchymal stem cells, cell‐based regenerative medicine, induced senescence, PVA:honey matrices, cell proliferation, honey‐incorporated matrices, electrospinning solutions, poly‐vinyl alcohol, free radical scavenging activity, vimentin expression, mesenchymal phenotype, reactive oxygen species load, senescence parameters, P6 cells, β‐galactosidase positive senescent cells, β‐gal markers, antiinflammatory components, antioxidant components  相似文献   

6.
In this report, a novel wound dressing material has been woven by electrospinning technique and tested for its various properties. For the nanofibre mat, a mixture of polyurethane (PU) and soy protein isolate (SPI) was electrospun in conjugation with zinc oxide nanoparticles (ZnO Nps) and ciprofloxacin hydrochloride (CipHCl) to produce fibrous mats viz. PU/SPI/ZnO and PU/SPI/CipHCl. An optimum ratio (1 : 1) of PU/SPI was used as suitable polymeric ratio in order to produce homogenous nanofibres without beads having an average diameter in the range of 300–350 nm. The electrospun nanofibre‐based mats were characterised using X‐ray diffraction, Fourier transform infrared spectroscopy, ultraviolet‐visible spectroscopy, thermogravimetric analysis and scanning electron microscope. The mechanical properties of the nanofibrous mats were tested using universal testing machine. The wettability analysis was done using the contact angle measurement based on the sessile drop test. This study revealed that the electrospun PU/SPI‐based nanofibres are non‐sensitizing, non‐allergic and non‐toxic and that it can be used as a peculiar wound healing material.Inspec keywords: polymer fibres, nanofibres, nanomedicine, biomedical materials, wounds, electrospinning, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, nanoparticles, nanofabrication, X‐ray diffraction, Fourier transform spectra, infrared spectra, ultraviolet spectra, visible spectra, thermal analysis, scanning electron microscopy, wetting, contact angle, toxicologyOther keywords: electrospun polyurethane nanofibres, soy protein nanofibres, wound dressing applications, electrospinning, nanofibre mat, soy protein isolate, zinc oxide nanoparticles, ciprofloxacin hydrochloride, X‐ray diffraction, Fourier transform infrared spectroscopy, ultraviolet‐visible spectroscopy, thermogravimetric analysis, scanning electron microscope, mechanical properties, universal testing machine, wettability, contact angle measurement, sessile drop test, nonsensitizing nanofibres, nonallergic nanofibres, nontoxic nanofibres, wound healing material, wavelength 300 nm to 350 nm, ZnO  相似文献   

7.
The present study focuses on fabrication and characterisation of porous composite scaffold containing hydroxyapatite (HAP), chitosan, and gelatin with an average pore size of 250–1010 nm for improving wound repair and regeneration by Electrospinning method. From the results of X ‐Ray Diffraction (XRD) study, the peaks correspond to crystallographic structure of HAP powder. The presence of functional group bonds of HAP powder, Chitosan and scaffold was studied using Fourier Transform Infrared Spectroscopy (FTIR). The surface morphology of the scaffold was observed using Scanning Electron Microscope (SEM). The Bioactivity of the Nano composite scaffolds was studied using simulated body fluid solution at 37 ± 1°C. The biodegradability test was studied using Tris‐Buffer solution for the prepared nanocomposites [nano Chitosan, nano Chitosan gelatin, Nano based Hydroxyapatite Chitosan gelatin]. The cell migration and potential biocompatibility of nHAP‐chitosan‐gelatin scaffold was assessed via wound scratch assay and were compared to povedeen as control. Cytocompatibility evaluation for Vero Cells using wound scratch assay showed that the fabricated porous nanocomposite scaffold possess higher cell proliferation and growth than that of povedeen. Thus, the study showed that the developed nanocomposite scaffolds are potential candidates for regenerating damaged cell tissue in wound healing process.Inspec keywords: nanofabrication, tissue engineering, electrospinning, wounds, cellular biophysics, scanning electron microscopy, surface morphology, X‐ray diffraction, biomedical materials, nanomedicine, porosity, biodegradable materials, nanoporous materials, calcium compounds, gelatin, nanocomposites, Fourier transform infrared spectra, nanoparticles, precipitation (physical chemistry)Other keywords: average pore size, wound repair, crystallographic structure, HAP powder, functional group bonds, simulated body fluid solution, biodegradability test, Tris‐Buffer solution, cell migration, wound scratch assay, tissue engineering, electrospinning method, X‐ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, biocompatibility, cytocompatibility, porous nanocomposite scaffold, cell tissue, nHAP‐chitosan‐gelatin scaffold composites, wet chemical precipitation method, surface morphology, nanohydroxyapatite‐nanochitosan‐gelatin scaffold composites, cell proliferation, wound healing, (Ca10 (PO4)6 (OH)2)  相似文献   

8.
In this work, polyvinyl alcohol (PVA), poly(ε-caprolactone) (PCL), and their electrospun PVA/PCL (80/20) hybrid nanofibrous mats were used for the development of active wound dressings. The biocompatibility and therapeutic effects of the developed products were studied by in vitro cell culture and in vivo experimental rat wound model. The release rate measurements by HPLC showed that the PVA nanofibrous sample containing phenytoin sodium (PHT-Na) has a higher level of the drug release compared to the hybrid PVA/PCL (80/20) and PCL nanofibrous mats. A mesenchymal stem cell was seeded on neat as well as drug-loaded PVA nanofibrous mats. The results represented that the mats provide a suitable environment for cell growth and viability. PVA nanofibers containing PHT-Na have a unique performance for fibroblasts and myofibroblasts cells formation and consequently reaching to the remodeling phase and faster healing of the wounds. Also, PHT-Na-loaded electrospun PVA nanofibrous mats showed a remarkable efficiency in wound closure compared with the treatments results from gauze, commercial wound dressing Comfeel®Plus, and 2 % PHT-Na ointment. Histology analysis showed the formation of epidermis, the lack of necrosis, and accumulation of collagen fibers in dermis for PVA nanofibrous mats containing PHT-Na.  相似文献   

9.
In this study, we investigated whether the nanofibers produced by natural‐synthetic polymers can probably promote the proliferation of co‐cultured adipose‐derived stem cells/human fibroblast cells (ADSs/HFCs) and synthesis of collagen. Nanofiber was fabricated by blending gelatin and poly (L‐lactide co‐ɛ‐caprolactone) (PLCL) polymer nanofiber (Gel/PLCL). Cell morphology and the interaction between cells and Gel/PLCL nanofiber were evaluated by FESEM and fluorescent microscopy. MTS assay and quantitative real‐time polymerase chain reaction were applied to assess the proliferation of co‐cultured ADSs/HFCs and the collagen type I and III synthesis, respectively. The concentrations of two cytokines including fibroblast growth factor‐basic and transforming growth factor‐β1 were also measured in culture medium of co‐cultured ADSs/HDCs using enzyme‐linked immunosorbent assay assay. Actually, nanofibers exhibited proper structural properties in terms of stability in cell proliferation and toxicity analysis processes. Gel/PLCL nanofiber promoted the growth and the adhesion of HFCs. Our results showed in contact co‐culture of ADSs/HFCs on the Gel/PLCL nanofiber increased cellular adhesion and proliferation synergistically compared to non‐coated plate. Also, synthesis of collagen and cytokines secretion of co‐cultured ADSs/HFCs on Gel/PLCL scaffolds is significantly higher than non‐coated plates. To conclude, the results suggest that Gel/PLCL nanofiber can imitate physiological characteristics in vivo and enhance the efficacy of co‐cultured ADSs/HFCs in wound healing process.Inspec keywords: biomedical materials, enzymes, adhesion, fluorescence, polymer fibres, tissue engineering, wounds, nanofibres, cellular biophysics, molecular biophysics, gelatin, biochemistry, nanomedicine, field emission scanning electron microscopy, nanofabricationOther keywords: cell morphology, cell proliferation, efficient cocultivation, HFCs, ADSs, gelatin‐PLCL nanofiber, natural‐synthetic polymers, cocultured adipose‐derived stem cells‐human fibroblast cells, FESEM, fluorescent microscopy, MTS assay, quantitative real‐time polymerase chain reaction, collagen type I synthesis, collagen type III synthesis, cytokines, transforming growth factor‐β1, fibroblast growth factor‐basic growth factor‐β1, culture medium, enzyme‐linked immunosorbent assay assay, structural properties, toxicity analysis, cellular adhesion, physiological characteristics in vivo, wound healing  相似文献   

10.
The artificial materials for bone implant applications are gaining more importance in the recent years. The series titania‐chitosan‐chondroitin 4–sulphate nanocomposites of three different concentrations (2:1:x, where x ‐ 0.125, 0.25, 0.5) have been synthesised by in situ sol–gel method and characterised by various techniques. The particle size of the nanocomposites ranges from 30–50 nm. The bioactivity, swelling nature, and the antimicrobial nature of the nanocomposites were investigated. The swelling ability and bioactivity of the composites is significantly greater and they possess high zone of inhibition against the microorganisms such as Staphylococcus aureus and Escherichia coli. The cell viability of the nanocomposites were evaluated by using MG‐63 and observed the composites possess high cell viability at low concentration. The excellent bioactivity and biocompatibility makes these nanocomposites a promising biomaterial for bone implant applications.Inspec keywords: titanium compounds, filled polymers, nanocomposites, bone, orthopaedics, biomedical materials, sol‐gel processing, nanofabrication, particle size, swelling, microorganisms, cellular biophysics, nanomedicine, prostheticsOther keywords: in situ synthesised TiO2 ‐chitosan‐chondroitin 4‐sulphate nanocomposites, bone implant applications, artificial materials, in situ sol‐gel method, particle size, swelling nature, antimicrobial nature, microorganisms, Staphylococcus aureus, Escherichia coli, cell viability, MG‐63, biomaterial, size 30 nm to 50 nm, TiO2   相似文献   

11.
Currently, the use of ‘green’ synthesised nanoparticles with environmentally friendly properties is considered a novel therapeutic approach in medicine. Here, the authors evaluated gold nanoparticles (AuNPs) conjugated with Tragopogon dubius leaf extract and their antibacterial activity in vitro and in vivo. Colour changes from yellow to dark brown and a peak at 560 nm on ultraviolet–visible spectroscopy confirmed the formation of nanoparticles. Additionally, transmission electron microscopy, X‐ray diffraction, and Fourier transform infrared spectroscopy analyses were performed to determine particle sizes and functional groups involved in gold reduction. Moreover, using standard micro‐dilution and disc‐diffusion assays against Klebsiella pneumoniae, Bacillus cereus, Escherichia coli, and Staphylococcus aureus, the antimicrobial properties of synthesised AuNPs were investigated. To confirm antibacterial activity, synthesised AuNPs were applied in a rat model on burn wounds infected with S. aureus, and the nanoparticles were as effective as tetracycline in bacterial reduction and wound healing. In conclusion, the synthesis of AuNPs with aqueous T. dubius extract was rapid, simple, and inexpensive, and the synthesised nanoparticles had significant antibacterial activity in vitro and in vivo.Inspec keywords: transmission electron microscopy, wounds, nanoparticles, ultraviolet spectra, reduction (chemical), particle size, nanofabrication, gold, X‐ray diffraction, antibacterial activity, microorganisms, visible spectra, nanomedicine, biomedical materials, Fourier transform infrared spectraOther keywords: biological activity, gold nanoparticles, antibacterial agent, therapeutic approach, colour changes, ultraviolet–visible spectroscopy, transmission electron microscopy, gold reduction, antimicrobial properties, Fourier transform infrared spectroscopy analyses, disc‐diffusion assay, green synthesis, Tragopogon dubius leaf, in vitro antibacterial activity, in vivo antibacterial activity, X‐ray diffraction, particle sizes, functional groups, standard microdilution assay, burn wounds, S. aureus, tetracycline, bacterial reduction, wound healing, wavelength 560.0 nm  相似文献   

12.
In the present study, silver (Ag) and Ag–zinc oxide (ZnO) composite nanoparticles (NPs) were synthesised and studied their wound‐healing efficacy on rat model. Ultraviolet–visible spectroscopy of AgNPs displayed an intense surface plasmon (SP) resonance absorption at 450 nm. After the addition of aqueous Zn acetate solution, SP resonance band has shown at 413.2 nm indicating a distinct blue shift of about 37 nm. X‐ray diffraction analysis Ag–ZnO composite NPs displayed existence of two mixed sets of diffraction peaks, i.e. both Ag and ZnO, whereas AgNPs exhibited face‐centred cubic structures of metallic Ag. Scanning electron microscope (EM) and transmission EM analyses of Ag–ZnO composite NPs revealed the morphology to be monodispersed hexagonal and quasi‐hexagonal NPs with distribution of particle size of 20–40 nm. Furthermore, the authors investigated the wound‐healing properties of Ag–ZnO composite NPs in an animal model and found that rapid healing within 10 days when compared with pure AgNPs and standard drug dermazin.Inspec keywords: wounds, tissue engineering, biomedical materials, nanocomposites, nanofabrication, nanomedicine, silver, zinc compounds, II‐VI semiconductors, wide band gap semiconductors, ultraviolet spectra, visible spectra, nanoparticles, particle size, surface plasmon resonance, spectral line shift, X‐ray diffraction, scanning electron microscopy, transmission electron microscopyOther keywords: enhanced wound healing activity, Ag‐ZnO composite nanoparticles, Wistar Albino rats, wound‐healing efficacy, ultraviolet‐visible spectroscopy, intense surface plasmon resonance absorption, aqueous Zn acetate solution, SP resonance band, blue shift, X‐ray diffraction analysis, diffraction peaks, face‐centred cubic structures, scanning electron microscope, SEM, transmission electron microscope, TEM, monodispersed hexagonal nanoparticles, quasihexagonal nanoparticles, particle size, animal model, time 10 d, size 20 nm to 40 nm, Ag‐ZnO  相似文献   

13.
This study provides the optimum preparation parameters of chitosan‐silver nanoparticles composite (CSNC) with promising antibacterial activity against the most common bacterial infections found on burn wounds. CSNC was synthesised by simple green chemical reduction method with different preparation factors. Chitosan was used to reduce silver nitrate and stabilise silver nanoparticles in the medium. For this reason, spectroscopic and microscopic techniques as, ultraviolet‐visible Fourier transform infrared spectroscopy and transmission electron microscopy were used in the study of the molecular and morphological properties of the resultant composites. Furthermore, the composite was assessed in terms of Ag‐ions release by AAS and its efficacy as antibacterial material. As a result, CSNC showed stronger antibacterial effect than its individual components (chitosan and silver nitrate solutions) towards Gram‐positive (Staphylococcus aureus) and Gram‐negative (Pseudomonas aeruginosa and Escherichia coli) bacteria. CSNC prepared in this study showed highest inhibition percentage of bacterial growth up to 96% at concentration of 220 μg/ml.Inspec keywords: silver, nanocomposites, nanoparticles, filled polymers, biomedical materials, nanomedicine, antibacterial activity, wounds, reduction (chemical), ultraviolet spectra, visible spectra, Fourier transform spectra, infrared spectra, transmission electron microscopy, microorganisms, nanofabricationOther keywords: antibacterial activity, chitosan‐silver nanocomposite, optimum preparation parameters, chitosan‐silver nanoparticles composite, CSNC, bacterial infections, burn wounds, green chemical reduction method, ultraviolet‐visible Fourier transform infrared spectroscopy, transmission electron microscopy, molecular properties, morphological properties, Gram‐positive bacteria, Gram‐negative bacteria, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, bacterial growth, Ag  相似文献   

14.
Biodegradable polymeric nanofibrous coatings were obtained by electrospinning different polymers onto sintered 45S5 Bioglass®-based glass-ceramic pellets. The investigated polymers were poly(3-hydroxybutyrate) (P3HB), poly(3-hydroxybutyrate-co-hydroxyvalerate) (PHBV) and a composite of poly(caprolactone) (PCL) and poly(ethylene oxide) (PEO) (PCL–PEO). The fibrous coatings morphology was evaluated by optical microscopy and scanning electron microscopy. The electrospinning process parameters were optimised to obtain reproducible coatings formed by a thin web of polymer nanofibres. In-vitro studies in simulated body fluid (SBF) were performed to investigate the bioactivity and mineralisation of the substrates by inducing the formation of hydroxyapatite (HA) on the nanofiber-coated pellets. HA crystals were detected on all samples after 7 days of immersion in SBF, however the morphology of the HA layer depended on the characteristic fibre diameter, which in turn was a function of the specific polymer-solvent system used. The bioactive and resorbable nanofibrous coatings can be used to tailor the surface topography of bioactive glass-ceramics for applications in tissue engineering scaffolds.  相似文献   

15.
Wound healing is a series of different dynamic and complex phenomena. Many studies have been carried out based on the type and severity of wounds. However, to recover wounds faster there are no suitable drugs available, which are highly stable, less expensive as well as has no side effects. Nanomaterials have been proven to be the most promising agent for faster wound healing among all the other wound healing materials. This review briefly discusses the recent developments of wound healing by nanotechnology, their applicability and advantages. Nanomaterials have unique physicochemical, optical, and biological properties. Some of them can be directly applied for wound healing or some of them can be incorporated into scaffolds to create hydrogel matrix or nanocomposites, which promote wound healing through their antimicrobial, as well as selective anti‐ and pro‐inflammatory, and proangiogenic properties. Owing to their high surface area to volume ratio, nanomaterials have not only been used for drug delivery vectors but also can affect wound healing by influencing collagen deposition and realignment and provide approaches for skin tissue regeneration.Inspec keywords: skin, wounds, cellular biophysics, drug delivery systems, tissue engineering, hydrogels, nanocomposites, proteins, nanomedicineOther keywords: wound healing materials, nanomaterials, nanotechnology, proangiogenic properties, proinflammatory properties, collagen deposition, drug delivery vectors, skin tissue regeneration  相似文献   

16.
Biotinylated chitosan/poly(methyl vinyl ether‐alt ‐maleic acid) (PMVEMA) copolymer was synthesised by an amide reaction in two steps. Structural characterisation was performed using 1 HNMR and Fourier transform infra‐red (FTIR) spectra. Critical micelle concentration (CMC) of the copolymer was determined by pyrene as a fluorescent probe. Doxorubicin (DOX) was loaded in the micelles by the direct dissolution method. The effects of different variables including type of copolymer, copolymer concentration, stirring rate and stirring time were studied on the physicochemical properties of the micelles including: particle size, zeta potential, release efficiency and loading efficiency of nanoparticles using an irregular factorial design. The in vitro cytotoxicity of DOX‐loaded biotin‐targeted micelles was studied in HepG2 cells which over express biotin receptors by 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay. The successful synthesis of the biotinylated copolymer of chitosan/PMVEMA was confirmed by FTIR and 1 HNMR. The optimised micelles showed the CMC of 33 μg/ml, particle size of 247 ± 2 nm, zeta potential of +9.46 mV, polydispersity index of 0.22, drug‐loading efficiency of 71% and release efficiency of 84.5 ± 1.6%. The synthesised copolymer was not cytotoxic. The cytotoxicity of DOX‐loaded in targeted micelles on HepG2 cell line was about 2.2‐fold compared with free drug.Inspec keywords: biomedical materials, cellular biophysics, dissolving, drug delivery systems, drugs, electrokinetic effects, fluorescence, Fourier transform infrared spectra, particle size, polymer blends, spectrochemical analysis, toxicologyOther keywords: 1 HNMR spectra, biotin‐targeted chitosan‐poly (methyl vinyl ether‐alt‐maleic acid) copolymeric micelles, doxorubicin delivery, amide reaction, structural characterisation, Fourier transform infrared spectra, pyrene, fluorescent probe, direct dissolution method, physicochemical properties, particle size, zeta potential, nanoparticles, irregular factorial design, in vitro cytotoxicity, DOX‐loaded biotin‐targeted micelles, 3, 5‐[dimethylthiazol‐2‐yl]‐2, 5‐diphenyl tetrazolium bromide assay, polydispersity index, drug‐loading efficiency, HepG2 cell line, voltage 9.46 mV  相似文献   

17.
Wound healing has long been recognised as a major clinical challenge for which stablishing more effective wound therapies is necessary. The generation of metallic nanocomposites using biological compounds is emerging as a new promising strategy for this purpose. In this study, four metallic nanoparticles (NPs) with propolis extract (Ext) and one without propolis including ZnO/Ext, ZnO/Ag/Ext, ZnO/CuO/Ext, ZnO/Ag/CuO/Ext and ZnO/W were prepared by microwave method and assessed for their wound healing activity on excision experimental model of wounds in rats. The developed nanocomposites have been characterised by physico‐chemical methods such as X‐ray diffraction, scanning electron microscopy, diffuse reflectance UV–vis spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis and Brunauer–Emmett–Teller analyses. The wounded animals treated with the NPs/Ext in five groups for 18 days. Every 6 days, for measuring wound closure rate, three samples of each group were examined for histopathological analysis. The prepared tissue sections were investigated by haematoxylin and Eosin stainings for the formation of epidermis, dermis and muscular and Masson''s trichrome staining for the formation of collagen fibres. These findings toughly support the probability of using this new ZnO/Ag/Ext materials dressing for a wound care performance with significant effect compared to other NPs.Inspec keywords: nanomedicine, X‐ray diffraction, II‐VI semiconductors, visible spectra, ultraviolet spectra, nanocomposites, biomedical materials, proteins, wounds, nanoparticles, scanning electron microscopy, nanofabrication, skin, zinc compounds, silver, antibacterial activity, Fourier transform infrared spectra, copper compounds, molecular biophysicsOther keywords: propolis, wound healing applications, effective wound, metallic nanocomposites, biological compounds, metallic nanoparticles, microwave method, wound healing activity, physico‐chemical methods, Fourier transform infrared spectroscopy, diffuse reflectance UV‐vis spectroscopy, Brunauer‐Emmett‐Teller analyses, wounded animals, wound closure rate, wound care performance, histopathological analysis, scanning electron microscopy, X‐ray diffraction, thermogravimetric analysis, haematoxylin, Eosin stainings, Masson trichrome, epidermis, muscular trichrome, collagen fibres, time 18.0 d, time 6.0 d, ZnO‐CuO‐Ag  相似文献   

18.
The electrospinning technique was used for the nanofiber production of Alyssum lepidium mucilage with acetic acid and polyvinyl alcohol (PVA) polymer. Some parameters such as voltage, polymer concentration, tip‐to‐collector distance, and feed rate were optimised and applied for the fabrication of the nanofiber membranes of the seeds mucilage. The scanning electron microscopy images were used to find the optimised conditions for the electrospinning process. It was found that the aqueous solution of Alyssum mucilage/PVA (80:20), voltage (18 kV), polymer concentration (50%), tip‐to‐collector distance (10 cm) and feed rate (0.125 ml/h) could be successfully used to obtain uniform nanofibers with diameters as low as 139.9 nm. X‐ray diffraction and Fourier transform infrared spectrometer analysis also proved the presence of the alyssum mucilage/PVA nanofiber. In this study, the used electrospun procedure was biodegradable, inexpensive, non‐toxic, and maintainable enough to optimise the mucilage nanofiber fabrication as a new source, thereby improving the potential application of the nanofiber biomembrane in filtration and medical systems with biocompatible and biodegradable properties.Inspec keywords: electrospinning, nanofibres, nanofabrication, polymer fibres, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectraOther keywords: Alyssum lepidium mucilage, electrospinning, physicochemical characterisation, nanofiber production, acetic acid, polyvinyl alcohol, PVA polymer, polymer concentration, tip‐to‐collector distance, feed rate, scanning electron microscopy, X‐ray diffraction, Fourier transform infrared spectrometer analysis, voltage 18 kV, distance 10 cm  相似文献   

19.
Bridging strategies are required to repair peripheral nerve injuries that result in gaps >5–8 mm. Limitations such as donor‐site morbidity and size mismatches with receptor sites for autografts, together with immunological problems associated with allografts and xenografts, have created an increased interest in the field of manufactured nerve guide conduits. In this study, zein, a plant protein‐based polymer, was electrospun to prepare nanofibrous mats. An important challenge with zein mats is the rapid change from fibre to film under aqueous conditions. Tannic acid (TA), which is a polyphenol, was selected to prepare a blend of zein/TA with different weight ratios to investigate its effect on the wetting resistance of nanofibres. The electrospun mats were characterised and evaluated by Fourier transform infrared spectroscopy and scanning electron microscopy (SEM). Also, degradation and mechanical properties of the mats were studied. Results showed that TA had a significant effect on the resistance to film formation in nanofibres. Moreover, the degradation and elongation at break of mats were increased with increase in TA concentration. For the investigation of the peripheral nerve regeneration potential, Schwann cells were selected for cytotoxicity evaluation by the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5 diphenyltetrazolium bromide assay and cell morphology by SEM. Schwann cells had good biocompatibility with zein/TA blends (%) of 90/10 and 80/20.Inspec keywords: polymer fibres, biomedical materials, electrospinning, cellular biophysics, tissue engineering, proteins, molecular biophysics, neurophysiology, nanofibres, injuries, nanomedicine, toxicology, scanning electron microscopy, nanofabrication, polymer blends, polymer films, wetting, Fourier transform infrared spectra, elongationOther keywords: SEM, Schwann cells, nerve tissue regeneration, peripheral nerve injuries, donor‐site morbidity, size mismatches, receptor sites, immunological problems, allografts, xenografts, manufactured nerve guide conduits, plant protein‐based polymer, nanofibrous mats, zein mats, aqueous conditions, tannic acid, wetting resistance, electrospun mats, scanning electron microscopy, film formation, TA concentration, peripheral nerve regeneration potential, cell morphology, weight ratios, zein‐polyphenol nanofibres, electrospinning, zein‐TA blends, Fourier transform infrared spectroscopy, mechanical properties, elongation‐at‐break, cytotoxicity evaluation, 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5 diphenyltetrazolium bromide assay, biocompatibility  相似文献   

20.
In this study, chlorhexidine (CHX)–silver (Ag) hybrid nanoparticles (NPs) coated gauze was developed, and their bactericidal effect and in vivo wound healing capacities were tested. A new method was developed to synthesise the NPs, wherein Ag nitrate mixed with sodium (Na) metaphosphate and reduced using Na borohydride. Finally, CHX digluconate was added to form the hybrid NPs. To study the antibacterial efficacy of particles, the minimal inhibition concentration and biofilm degradation capacity against Gram‐positive and Gram‐negative bacteria was studied using Escherichia coli and Staphylococcus aureus. The results indicated that the NP inhibited biofilm formation and was bactericidal as well. The gauze was doped with NPs, and its wound healing property was evaluated using mice model. Results indicated that the wound healing process was fastened by using the NPs gauze doped with NPs without the administration of antibiotics.Inspec keywords: nanomedicine, nanoparticles, wounds, silver, cellular biophysics, biomedical materials, nanofabrication, microorganisms, antibacterial activityOther keywords: NPs gauze, antimicrobial wound healing applications, hybrid NPs, chlorhexidine–silver hybrid nanoparticles, CHX, coated gauze, bactericidal effect, minimal inhibition concentration, biofilm degradation capacity, Gram‐negative bacteria, wound healing property, wound healing process, in vivo wound healing capacities, Staphylococcus aureus, Escherichia coli, antibiotics administration, Na borohydride, Ag nitrate mixing, sodium metaphosphate, CHX digluconate, NP inhibited biofilm formation, Ag  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号