首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Despite a point mutation in the pore-forming segment of the Rdl GABA receptor subunit that is widespread and persistent in insect populations and confers high levels of resistance to dieldrin and other polychlorocycloalkane (PCCA) insecticides, the phenylpyrazole insecticide fipronil, which binds at same site, has proven to be effective in controlling many insects, including dieldrin-resistant populations. Fipronil and its major sulfone metabolite are unique among chloride channel blocking insecticides in that they also potently block GluCls. We present here a patch clamp study of the action of fipronil sulfone on native GABA receptors and GluCl receptors from susceptible and dieldrin-resistant German cockroaches, to provide a better understanding of the effect of the Rdl mutation on the function and insecticide sensitivity of these two targets, and its role in resistance. Dieldrin blocked GABA currents with an IC50 of 3 nM in wild-type cockroaches, and 383 nM in resistant insects, yielding a resistance ratio of 128. Fipronil sulfone blocked GABA currents with an IC50 of 0.8 nM in susceptible insects and 12.1 nM, or 15-fold higher, in resistant insects. While both GluClD (desensitizing) and GluClN (non-desensitizing) receptors were found in German cockroach neurons, GluClN receptors were rare and could not be included in this study. GluClD receptors from resistant insects had reduced sensitivity to glutamate and a lower rate of desensitization than those from susceptible insects, but their sensitivity to block by fipronil sulfone was not significantly changed, with an IC50 of 38.5 ± 2.4 nM (n = 8) in the susceptible strain and 40.3 ± 1.0 nM (n = 7) in the resistant strain. Fipronil sulfone also slowed the decay time course of GluClD currents. These results suggest that GluClD receptors contain the Rdl subunit, but their sensitivity to fipronil sulfone is not altered in resistant insects.  相似文献   

2.
2,6,7-Trioxa-1-phosphabicyclo[2.2.2]octane 1-sulfides (bicyclophosphorothionates) with various C1–4 alkyl groups at the 3- and 4-positions were synthesized and tested for their ability to compete with [3H]4′-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a non-competitive antagonist of γ-aminobutyric acid (GABA) receptors, for specific binding to rat-brain and housefly-head membranes, and for their insecticidal activity against houseflies. Among the 3,4-substituted analogues, 20 compounds were selectively active for housefly GABA receptors versus rat GABA receptors. The 3-alkyl groups of C3 length and the 4-alkyl groups of C4 length were tolerated in housefly receptors, whereas such bulky substituents were deleterious in rat receptors. The 4-isobutyl-3-isopropyl analogue was the most potent in housefly receptors (IC50 = 45.2 nM ), and tert-butylbicyclophosphorothionate (TBPS), with the 4-tert-butyl group and no 3-substituent, was the most potent in rat receptors (IC50 = 62.2 nM ). Their receptor selectivities (rat IC50/housefly IC50) were 52 and 0.038, respectively. The insecticidal activity (LD50) of 20 active analogues was well correlated with their potency (IC50) in inhibiting [3H]EBOB binding to housefly-head membranes (r = 0.93). The results obtained in the present study indicate that the introduction of appropriate alkyl groups into the 3- and 4-positions of bicyclophosphorothionate leads to non-competitive antagonists with increased affinity and selectivity for housefly ionotropic GABA receptors versus rat GABAA receptors. © 1999 Society of Chemical Industry  相似文献   

3.
We found the A2′N mutation (index number for M2 membrane spanning region) in the GABA receptor subunit of fipronil-resistant Sogatella furcifera, by analyzing DNA sequences amplified from fipronil-resistant and -susceptible S. furcifera. In order to confirm the role of A2′N mutation in the fipronil resistance, we expressed the wild-type and A2′N mutant Drosophila GABA receptors in Drosophila Mel-2 cells stably. Amino acid sequences of three membrane spanning regions (M1-M3), which are important for binding of fipronil, are conserved between Drosophila and S. furcifera. So the results of A2′N mutant Drosophila GABA receptor suggest the role of A2′N mutation in fipronil-resistant S. furcifera. The membrane potential assay showed that the A2′N mutant Drosophila GABA receptor was not inhibited by fipronil at all, while the IC50 value of fipronil for wild-type Drosophila GABA receptor was 172 nM. These results suggest that A2′N mutation confers the resistance of fipronil in S. furcifera.  相似文献   

4.
氟虫腈与斑马鱼GABA_A及果蝇RDL受体作用的差异性研究   总被引:1,自引:1,他引:0  
采用同源建模的方法构建了斑马鱼γ-氨基丁酸A型(GABA A)受体和果蝇RDL(resistance to dieldrin)受体跨膜区的三维结构,研究了氟虫腈在两个受体中作用位点的差异;采用分子对接和分子动力学方法,探讨了氟虫腈与斑马鱼GABA A受体和果蝇RDL受体的结合模式,并比较了氟虫腈与两个受体作用的差异性。结果表明:斑马鱼GABA A受体和氟虫腈作用位点的结构与果蝇RDL受体和氟虫腈作用位点的结构存在一定的差异,果蝇RDL受体中的Ala301对应斑马鱼GABA A受体α1亚基中的Val284和γ2亚基中的Ser306,氨基酸构象的差异较大;氟虫腈与斑马鱼GABA A受体的结合位点靠近胞内区一端,而与果蝇RDL受体的结合位点则位于受体第二跨膜区的Ala301~Leu308区域内。复合物分子动力学模拟结果表明,在模拟过程中,两个受体与氟虫腈复合物体系的势能可很快达到平衡状态。斑马鱼GABA A受体与氟虫腈之间形成4个氢键,其中概率大于60%的氢键有2个;而尽管果蝇RDL受体与氟虫腈形成了6个氢键,但只有1个氢键的概率大于50%,其复合物结合的稳定性比前者低。  相似文献   

5.
This study assessed the toxicity and mode of action of a new experimental insecticide, LY219048 in insects and mammals. LY219048 produced rapid convulsions in mice and had LD50 values of 0.7 mg kg?1 and 4 mg kg?1 after intracerebral and intraperitoneal injection, respectively. In initial screens against insects, LY219048 showed low activity against the German cockroach (Blatella germanica L.). Lethality from dietary exposure required one to two weeks, even at concentrations as high as 10000 mg kg?1 (LC50 = 485 mg kg?1). In contrast, it had an LC50 value of 8.3 mg kg?1 against insecticide-susceptible Drosophila melanogaster (Meig.) when synergized with piperonyl butoxide. Significant resistance to LY219048 (> 12-fold) was detected in a cyclodiene-resistant strain of D. melanogaster possessing an altered target site resistance mechanism. This finding suggested that LY219048 blocked the 4-aminobutyric acid (GABA)-gated chloride channel in a manner similar to that of the cyclodienes. In physiological studies in larval D. melanogaster central neurons, LY219048 antagonized the reduction of firing caused by 1 mM GABA. Dose-response experiments showed that the ED50 for blocking inhibition under these conditions was c. 1 μ. Studies of 36CI uptake into bovine brain synaptosomes found that LY219048 was a potent antagonist. At 10 μ it completely blocked chloride flux stimulated by 50 μM GABA. LY219048 competitively displaced [3H]TBOB binding from bovine brain membranes, with an IC50 of 42 nM, which was comparable to values determined for TBPS (35 nM) and picrotoxinin (267 nM). There was little or no displacement (<25%) of [3H]flunitrazepam or [3H]muscimol binding by 10 μM LY219048. Taken together, these results provide strong evidence that this new chemical class of insecticide manifests its acute toxicity by blocking the GABA-gated chloride channel.  相似文献   

6.
BACKGROUND: Bicyclophosphorothionates (2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane‐1‐sulfides) are blockers (or non‐competitive antagonists) of γ‐aminobutyric acid (GABA) receptor channels. Twenty‐two bicyclophosphorothionates with different 3‐ and 4‐substituents were synthesised, and [3H]4′‐ethynyl‐4‐n‐propylbicycloorthobenzoate (EBOB) binding assays were performed to evaluate their affinities for housefly and rat GABA receptors. RESULTS: Introduction of an isopropyl group at the 3‐position enhanced the affinity of bicyclophosphorothionates for housefly GABA receptors and reduced the affinity towards rat GABA receptors. The 4‐isopentyl‐3‐isopropylbicyclophosphorothionate showed the highest affinity for housefly GABA receptors (IC50 = 103 nM ) among the analogues tested, while the 4‐cyclohexylbicyclophosphorothionate showed the highest affinity for rat GABA receptors (IC50 = 125 nM ). Among the bicyclophosphorothionates synthesised to date, the former analogue exhibited the highest selectivity for housefly GABA receptors, with an IC50rat/IC50fly ratio of approximately 97. Three‐dimensional GABA receptor models successfully explained the structure–activity relationships of the bicyclophosphorothionates. CONCLUSION: The results indicate that minor structural modifications of blockers can change their selectivity for insect versus mammalian GABA receptors. The substituent at the 3‐position of the bicyclophosphorothionates dictates selectivity for housefly versus rat GABA receptors. This information should prove useful for the design of safer insecticides and parasiticides. Copyright © 2010 Society of Chemical Industry  相似文献   

7.
The silphinenes are tricyclic sesquiterpenes that have antifeedant and toxic effects in insects and structural similarity to the known GABA antagonist, picrotoxinin. In murine synaptoneurosomes, silphinenes block GABA-stimulated influx of 36Cl with EC50s in the range of 10-30 μM. In insects, silphinenes were tested in neurophysiological recordings of central neurons from third instar Drosophila melanogaster larvae. Silphinenes reversed the blockage of neuronal firing induced by GABA, but had little effect below 100 μM. The structure-activity profile observed in the murine chloride flux assay was also observed in the larval neurophysiological assay, indicating little selectivity for the silphinenes. A reference silphinene was equally active on nerve preparations from the rdl strain of D. melanogaster, which is resistant to channel-blocking antagonists via an altered GABA receptor. This latter finding suggests that silphinenes interact with the insect GABA receptor in a manner somewhat different from PTX, and that rdl resistance in the field may have little effect on silphinene efficacy.  相似文献   

8.
Among insect GABA receptors, the GABA-gated chloride channel subtype is insensitive to bicuculline and has been thought to be composed of two populations because of differences in chloride conductance increase, GABA and picrotoxin (PTX) sensitivity. To characterize this possible diversity in GABA-gated chloride channels, electropharmacological experiments were performed on giant interneuron synaptic GABA receptors and on somatic GABA receptors of dorsal unpaired median (DUM) neuron and fast coxal depressor (Df) motoneuron of the cockroach Periplaneta americana (L). Electrophysiological assays performed at cercal-afferent giant interneuron synapses demonstrated that a biphasic increase in membrane conductance, in response to long-lasting (30 s) neuropilar microapplication of GABA, could be explained by the existence of two GABA-operated chloride channel receptor subtypes. The low stable membrane conductance increase, representing less than 30% of the maximum reached during the early transient phase, was not desensitized quickly. It was reproduced by neuropilar microapplication of cis-4-aminocrotonic acid (CACA) and, in contrast to the fast phase, was not antagonized by bath application of 10−5 M PTX. Long-lasting (3 min) pneumatic pressure application of GABA on the cell body of motoneuron Df evoked a fast transient hyperpolarization followed by a slower phase of further hyperpolarization. PTX (10−5 M ) blocked the fast transient phase and revealed a slow stable hyperpolarization. PTX (10−4 M ) blocked the major part of the remaining GABA response. The slow hyperpolarization was reproduced by application of CACA. Similar effects of GABA and CACA were recorded on DUM neuron cell bodies. All of these observations are consistent with the possible existence of two GABA-gated chloride channel subtypes in the insect CNS. © 1999 Society of Chemical Industry  相似文献   

9.
Monoterpenoids and their derivatives from plant essential oils showed good insecticidal activities in previous studies, but the mechanisms of their action as natural insecticides are not known yet. In the present work, we evaluated the pharmacological action of five monoterpenoids (α-terpineol, carvacrol, linalool, pulegone, and thymol) on native insect GABA receptors from house flies and American cockroaches using radiotracer methods. In the [3H]-TBOB binding assay, carvacrol, pulegone, and thymol all enhanced the [3H]-TBOB binding to membrane preparation of house fly heads with EC50 values of 48 μM, 432 μM, and 6 mM, respectively. Moreover, these three monoterpenoids at concentrations of 500 μM and 1 mM also significantly increased the 36Cl uptake induced by GABA in membrane microsacs prepared from American cockroach ventral nerve cords. These results revealed that carvacrol, pulegone, and thymol are all positive allosteric modulators at insect GABA receptors. The other two monoterpenoids that were tested, α-terpineol and linalool, showed little or no effect in both the [3H]-TBOB binding and 36Cl uptake assays.  相似文献   

10.
11.
谷氨酸门控氯离子通道(GluCls)介导快速抑制性神经传导,目前只发现于无脊椎动物中,是开发新型杀虫剂的理想作用靶标。GluCls属于半胱氨酸环超家族的配体门控离子通道,在昆虫中只发现有1个α亚基,但可以通过选择性剪接生成多种亚基剪接变体并且能够形成功能性受体。除了典型的神经传导功能外,GluCls还参与调控昆虫保幼激素合成及生长发育等生理功能。GluCls的氨基酸突变和表达量变化是导致昆虫对杀虫剂产生抗药性的部分原因。本文主要从GluCls的分子特征、选择性剪接、药理学性质、生理功能和昆虫的抗药性5个方面对昆虫GluCls的研究进展作一综述,为新型杀虫剂的研发提供理论基础。  相似文献   

12.
N-[4-Chloro-2-fluoro-5-{3-(2-fluorophenyl)-5-methyl-4,5-dihydroisoxazol-5-yl-methoxy}-phenyl]-3,4,5,6-tetrahydrophthalimide (EK-5385) is an experimental substituted bicyclic herbicide. Soil-applied EK-5385 showed good rice selectivity and potent herbicidal activity on barnyardgrass (Echinochloa crus-galli var. oryzicola) at rates of 3.9-250 g a.i./ha. Barnyardgrass was exhibited normal growth under dark condition, however, the growth of shoot and root was severely inhibited under light condition (14/10 h of light/dark, 50 μmol/m2/s of photosynthetically active radiation) when treated with EK-5385, oxadiazon, and oxadiargyl. IC50 of EK-5385 and oxadiargyl to chlorophyll loss in cucumber cotyledons was approximately 0.3 and 0.7 μM, respectively. IC50 of EK-5385 and oxadiargyl to carotenoids loss in cucumber cotyledons was about 0.26 and 0.1 μM, respectively. IC50 concentration of EK-5385 and oxadiargyl on Protox activity was approximately 5.5 and 8 nM, respectively. Cellular leakage occurred without lag period from cucumber leaf squares treated with 1 μM of EK-5385 and oxadiargyl under light exposure.  相似文献   

13.
Ecdysteroid signal transduction is a key process in insect development and therefore an important target for insecticide development. We employed an in vitro cell-based reporter bioassay for the screening of potential ecdysone receptor (EcR) agonistic and antagonistic compounds. Natural ecdysteroids were assayed with ecdysteroid-responsive cell line cultures that were transiently transfected with the reporter plasmid ERE-b.act.luc. We used the dipteran Schneider S2 cells of Drosophila melanogaster and the lepidopteran Bm5 cells of Bombyx mori, representing important pest insects in medicine and agriculture. Measurements showed an EcR agonistic activity only for cyasterone both in S2 (EC50 = 3.3 μM) and Bm5 cells (EC50 = 5.3 μM), which was low compared to that of the commercial dibenzoylhydrazine-based insecticide tebufenozide (EC50 = 0.71 μM and 0.00089 μM, respectively). Interestingly, a strong antagonistic activity was found for castasterone in S2 cells with an IC50 of 0.039 μM; in Bm5 cells this effect only became visible at much higher concentrations (IC50 = 18 μM). To gain more insight in the EcR interaction, three-dimensional modeling of dipteran and lepidopteran EcR-LBD was performed. In conclusion, we showed that the EcR cell-based reporter bioassay tested here is a useful and practical tool for the screening of candidate EcR agonists and antagonists. The docking experiments as well as the normal mode analysis provided evidence that the antagonist activity of castasterone may be through direct binding with the receptor with specific changes in protein flexibility. The search for new ecdysteroid-like compounds may be particularly relevant for dipterans because the activity of dibenzoylhydrazines appears to be correlated with an extension of the EcR-LBD binding pocket that is prominent in lepidopteran receptors but less so in the modeled dipteran structure.  相似文献   

14.
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and MPP+ (1-methyl-4-phenylpyridinium ion) are potent dopaminergic neurotoxins in mammals. The mammalian toxicity of MPTP depends on its conversion, by monoamine oxidase, to MPP+. MPTP is toxic to cockroaches (LD50 720 μg gm?1) and the results suggest that MPTP toxicity depends on monoamine oxidase activity at a site outside the nervous system. MPTP depletes dopamine from cockroach cerebral ganglia and MPP+ inhibits cockroach mitochondrial respiration. While the biochemistry of MPTP toxicity appears to be the same as in mammals it seems that insects are unable to detoxify MPTP before its action has fatal consequences outside the nervous system.  相似文献   

15.
阿维菌素和氟虫腈对粘虫的毒杀作用比较   总被引:4,自引:0,他引:4  
测试比较了γ-氨基丁酸(GABA)受体毒剂阿维菌素、氟虫腈对粘虫的生物活性及体内GABA和谷氨酸(Glu)含量的影响。结果表明,阿维菌素对粘虫5龄幼虫的LD50为0.072 μg/头,而氟虫腈则为8.920 μg/头;阿维菌素的中毒症状分为麻痹期和死亡期,而氟虫腈的中毒症状可以明显地分为兴奋、痉挛、昏迷和死亡4个阶段。两种药剂均会造成试虫体内GABA和Glu代谢异常,其中阿维菌素可致Glu含量增加约1.8倍,使GABA的含量降低,在深度麻痹期仅为对照的71.3%;而氟虫腈可使Glu的含量先增加,在痉挛期达到对照的1.2倍,后降低至与对照同一水平,GABA则先保持不变,但粘虫昏迷后GABA含量降至对照的76.7%。  相似文献   

16.
Seventeen substituted imidazoles were tested as inhibitors of juvenile hormone (JH) III synthesis by cockroach corpora allata in an in-vitro radio-chemical assay. Most of these 1,5-disubstituted imidazoles were highly potent, with IC50 values of less than 100nM. The compounds differed in their ability to cause an accumulation of the precursor methyl farnesoate in the glands. Four of the imidazoles were tested by topical application to previtellogenic adult females, and all caused a significant inhibition of JH synthesis and an accumulation of intraglandular methyl farnesoate for at least three days after treatment. Methyl farnesoate epoxidase activity of homogenates of corpora allata was inhibited by the compounds TH -14 and TH -27. This P450-dependent epoxidase activity was inhibited at less than 10 nM. The results show that the 1,5-disubstituted imidazoles are powerful inhibitors of the last step of juvenile synthesis in this cockroach.  相似文献   

17.
Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.5 μL/insect). However, the 24 h LC50 and LD50 values of fipronil against Ae. aegypti larvae and adults were significantly lower: 13.55 nM and 0.787 × 10−4 nM, respectively. Compound 1c was also active against Drosophila melanogaster adults with 24 h LC50 values of 5.6 and 4.9 μg/cm2 for the Oregon-R and 1675 strains, respectively. Fipronil had LC50 values of 0.004 and 0.017 μg/cm2 against the two strains of D. melanogaster, respectively. In repellency bioassays against female Ae. aegypti, 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c) had the highest repellent potency with a minimum effective dosage (MED) of 0.039 μmol/cm2 compared to DEET (MED of 0.091 μmol/cm2). Compound N-(2-(trifluoromethyl)phenyl)hexanamide (4a) had an MED of 0.091 μmol/cm2 which was comparable to DEET. Compound 4c was the most potent fungicide against Phomopsis obscurans. Several trends were discerned between the structural configuration of these molecules and the effect of structural changes on toxicity and repellency. Para- or meta- trifluoromethylphenyl amides with an aromatic ring attached to the carbonyl carbon showed higher toxicity against Ae. aegypti larvae, than ortho- trifluoromethylphenyl amides. Ortho- trifluoromethylphenyl amides with trifluoromethyl or alkyl group attached to the carbonyl carbon produced higher repellent activity against female Ae. aegypti and Anopheles albimanus than meta- or para- trifluoromethylphenyl amides. The presence of 2,6-dichloro- substitution on the phenyl ring of the amide had an influence on larvicidal and repellent activity of para- trifluoromethylphenyl amides.  相似文献   

18.
利用荧光标记法及分子模拟法,研究了氟虫腈与昆虫γ-氨基丁酸(aminobutyric acid,GABA)受体的相互作用。荧光标记试验结果显示,氟虫腈与家蝇脑内GABA受体有较强的相互作用,其最大结合量[RT]值和亲和常数Kd值分别为(21.3±2.5) pmol/mg protein和(109±9) nmol/L。分子模拟结果显示:氟虫腈与果蝇RDL受体间形成3条氢键;两者之间的CDOCKER的相互作用能为-137.93 kJ/mol。试验和理论两方面均证实,氟虫腈对昆虫GABA受体的强亲和性是导致氟虫腈对昆虫产生高毒性的重要原因。  相似文献   

19.
A muscarinic acetylcholine receptor (mAChR) has been demonstrated and partially characterized in larvae of the cattle tick Boophilus microplus. Its properties are compared with mAChR from an epithelial cell line from the dipteran insect Chironomus tentans. Competition studies with cholinergic ligands of different specificity revealed the muscarinic nature of the cholinergic receptors investigated in both species. In homogenates from tick larvae, specific binding sites for [3H]quinuclidinyl benzilate (QNB) with high affinity (1·2±(0·13) nM ; Bmax 22·5 pmol mg protein−1) were detected that do not bind nicotinic compounds specifically. The estimated IC50 values for nicotine, imidacloprid and α-bungarotoxin were all in the mM range. Additionally, with tick larvae, high-affinity nicotinic binding sites were detected with [3H]nicotine which could be displaced by high concentrations of imidacloprid or QNB. The estimated IC50 values for nicotine, α-bungarotoxin, imidacloprid and QNB were 43(±8) nM , 0·8(±0·2) μM , 2·8(±0·6) μM and 78(±1·9) μM , respectively. With homogenates of the non-neuronal insect cell line from C. tentans, only high-affinity binding sites for [3H]QNB were found. Muscarinic antagonists selectively displaced [3H]quinuclidinyl benzilate (QNB) binding to tick larvae homogenates. The mAChR of B. microplus preferred pirenzepine (IC50 2·13(±1·02) μM ) among different subtype-specific mAChR antagonists (4-DAMP had IC50 49·9(±9·13) μM and methoctramine had IC50 121(±14·2) μM ) indicating a type of binding site similar to the vertebrate M1 mAChR subtype. The tick muscarinic receptor seems to be a G-protein-coupled receptor, as concluded from the 4·8-fold reduction in receptor affinity for binding of the muscarinic agonist oxotremorine M upon treatment with the non-hydrolysable GTP-analogue γ-S-GTP. Binding data for the agonists oxotremorine M (IC50 71·3(±19·6) μM ) and carbachol (IC50 253(±87·1) μM ) parallel the biological efficacy of these compounds, in that, while oxotremorine M showed some activity against ticks, carbachol was ineffective.  相似文献   

20.
Exposure of mitochondria isolated from bovine heart to the insecticidal coumarin surangin B results in inhibition of complex II (IC50 = 0.2 μM), III (IC50 = 14.8 μM), and IV (IC50 = 3.1 μM), but in contrast, the NADH:ubiquinone reductase (complex I) was completely insensitive to this compound at 100 μM. Kinetic analysis of surangin B’s interaction with complex II was then investigated using sub-mitochondrial particles. With succinate as the substrate, surangin B, like carboxin, acted with non-competitive kinetics and clearly contrasted in its action with malonate, a competitive inhibitor of complex II. Likewise, surangin B acted as a non-competitive inhibitor of decylubiquinone-dependent interception of electrons at complex II. Difference spectra of reduced complex III equilibrated with surangin B were found to closely parallel those of antimycin A, but were different in nature to those of the Qo site inhibitors myxothiazol and famoxadone. Investigation of surangin B-dependent functional perturbation of complex III used the synthetic electron acceptor 2-nitrosofluorene, which intercepts electrons specifically from the Qi site. These experiments demonstrated that like antimycin A, surangin B acts as a selective blocker of electron diversion to 2-nitrosofluorene through Qi within complex III. We conclude that surangin B blocks electron transport at several points in bovine heart mitochondria, however, complex I is spared. The potent inhibitory action of surangin B on complex II involves binding to a site which is distinct from both the succinate binding site and the domain responsible for interacting with ubiquinone. Surangin B apparently blocks complex III by interacting with the Qi (antimycin A-binding) pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号