首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The temporal variability of nitrate transport was monitored continuously in a large agricultural catchment, the 1110 km2 Save catchment in south-west France, from January 2007 to June 2009. The overall aim was to analyse the temporal transport of nitrate through hydrological response during flood events in the catchment. Nitrate loads and hysteresis were also analysed and the relationships between nitrate and hydro-climatological variables within flood events were determined. During the study period, 19 flood events were analysed using extensive datasets obtained by manual and automatic sampling. The maximum NO3 concentration during flood varied from 8.2 mg l−1 to 41.1 mg l−1 with flood discharge from 6.75 m3 s−1 to 112.60 m3 s−1. The annual NO3 loads in 2007 and 2008 amounted to 2514 t and 3047 t, respectively, with average specific yield of 2.5 t km−12 yr−1. The temporal transport of nitrate loads during different seasonal flood events varied from 12 t to 909 t. Nitrate transport during flood events amounted to 1600 t (64% of annual load; 16% of annual duration) in 2007 and 1872 t (62% of annual load; 20% of annual duration) in 2008. The level of peak discharge during flood events did not control peak nitrate concentrations, since similar nitrate peaks were produced by different peak discharges. Statistically strong correlations were found between nitrate transport and total precipitation, flood duration, peak discharge and total water yield. These four variables may be the main factors controlling nitrate export from the Save catchment. The relationship between nitrate and discharge (hysteresis patterns) investigated through flood events in this study was mainly dominated by anticlockwise behaviour.  相似文献   

2.
Nitrogen inputs into surface waters from diffuse sources are still unduly high and the assessment of mitigation measures is associated with large uncertainties. The objective of this paper is to investigate selected agricultural management scenarios on nitrogen loads and to assess the impact of differing catchment characteristics in central Germany. A new modelling approach, which simulates spatially distributed N-transport and transformation processes in soil and groundwater, was applied to three meso scale catchments with strongly deviating climate, soil and topography conditions. The approach uses the integrated modelling framework JAMS to link an agro-ecosystem, a rainfall-runoff and a groundwater nitrogen transport model. Different agricultural management measures with deviating levels of acceptance were analysed in the three study catchments.N-leaching rates in all three catchments varied with soil type, the lowest leaching rates being obtained for loess soil catchment (18.5 kg nitrate N ha− 1 yr− 1) and the highest for the sandy soils catchment (41.2 kg nitrate N ha− 1 yr− 1). The simulated baseflow nitrogen concentrations varied between the catchments from 1 to 6 mg N l− 1, reflecting the nitrogen reduction capacity of the subsurfaces. The management scenarios showed that the highest N leaching reduction could be achieved by good site-adapted agricultural management options. Nitrogen retention in the subsurface did not alter the ranking of the management scenarios calculated as losses from the soil zone. The reduction effect depended strongly on site specific conditions, especially climate, soil variety and the regional formation of the crop rotations.  相似文献   

3.
The water quality of the River Frome, Dorset, southern England, was monitored at weekly intervals from 1965 until 2009. Determinands included phosphorus, nitrogen, silicon, potassium, calcium, sodium, magnesium, pH, alkalinity and temperature. Nitrate-N concentrations increased from an annual average of 2.4 mg l− 1 in the mid to late 1960s to 6.0 mg l− 1 in 2008-2009, but the rate of increase was beginning to slow. Annual soluble reactive phosphorus (SRP) concentrations increased from 101 μg l− 1 in the mid 1960s to a maximum of 190 μg l− 1 in 1989. In 2002, there was a step reduction in SRP concentration (average = 88 μg l− 1 in 2002-2005), with further improvement in 2007-2009 (average = 49 μg l− 1), due to the introduction of phosphorus stripping at sewage treatment works. Phosphorus and nitrate concentrations showed clear annual cycles, related to the timing of inputs from the catchment, and within-stream bioaccumulation and release. Annual depressions in silicon concentration each spring (due to diatom proliferation) reached a maximum between 1980 and 1991, (the period of maximum SRP concentration) indicating that algal biomass had increased within the river. The timing of these silicon depressions was closely related to temperature. Excess carbon dioxide partial pressures (EpCO2) of 60 times atmospheric CO2 were also observed through the winter periods from 1980 to 1992, when phosphorus concentration was greatest, indicating very high respiration rates due to microbial decomposition of this enhanced biomass. Declining phosphorus concentrations since 2002 reduced productivity and algal biomass in the summer, and EpCO2 through the winter, indicating that sewage treatment improvements had improved riverine ecology. Algal blooms were limited by phosphorus, rather than silicon concentration. The value of long-term water quality data sets is discussed. The data from this monitoring programme are made freely available to the wider science community through the CEH data portal (http://gateway.ceh.ac.uk/).  相似文献   

4.
Cassidy DP  Belia E 《Water research》2005,39(19):4817-4823
The formation and performance of granular sludge was studied in an 8 l sequencing batch reactor (SBR) treating an abattoir (slaughterhouse) wastewater. Influent concentrations averaged 1520 mg l−1 volatile suspended solids (VSS), 7685 mg l−1 Chemical oxygen demand (COD), 1057 mg l−1 total kjeldahl nitrogen (TKN), 217 mg l−1 total P. The COD loading was 2.6 kg m−3 d−1. The SBR was seeded with flocculating sludge from a SBR with an 1 h settle time, but granules developed within 4 days by reducing the settle time to 2 min. The SBR cycle also had 120 min mixed (anaerobic) fill, 220 min aerated react, and 18 min draw/idle. The granules had a mean diameter of 1.7 mm, a specific gravity of 1.035, a density of 62 g VSS l−1, a zone settling velocity (ZSV) of 51 m h−1, and a sludge volume index (SVI) of 22 ml g−1. Without optimizing process conditions, removal of COD and P were over 98%, and removal of N and VSS were over 97%. Nitrification and denitrification occurred simultaneously during react. The results indicate that conventional SBRs treating wastewaters with flocculating sludge can be converted to granular SBRs by reducing the settle time.  相似文献   

5.
Manganese concentrations in Scottish groundwater   总被引:1,自引:0,他引:1  
Groundwater is increasingly being used for public and private water supplies in Scotland, but there is growing evidence that manganese (Mn) concentrations in many groundwater supplies exceed the national drinking water limit of 0.05 mg l− 1. This study examines the extent and magnitude of high Mn concentrations in groundwater in Scotland and investigates the factors controlling Mn concentrations. A dataset containing 475 high quality groundwater samples was compiled using new data from Baseline Scotland supplemented with additional high quality data where available. Concentrations ranged up to 1.9 mg l− 1; median Mn concentration was 0.013 mg l− 1 with 25th and 75th percentiles 0.0014 and 0.072 mg l− 1 respectively. The Scottish drinking water limit (0.05 mg l− 1) was exceeded for 30% of samples and the WHO health guideline (0.4 mg l− 1) by 9%; concentrations were highest in the Carboniferous sedimentary aquifer in central Scotland, the Devonian sedimentary aquifer of Morayshire, and superficial aquifers. Further analysis using 137 samples from the Devonian aquifers indicated strong redox and pH controls (pH, Eh and dissolved oxygen accounted for 58% of variance in Mn concentrations). In addition, an independent relationship between Fe and Mn was observed, suggesting that Fe behaviour in groundwater may affect Mn solubility. Given the redox status and pH of Scottish groundwaters the most likely explanation is sorption of Mn to Fe oxides, which are released into solution when Fe is reduced.Since the occurrence of elevated Mn concentrations is widespread in groundwaters from all aquifer types, consideration should be given to monitoring Mn more widely in both public and private groundwater supplies in Scotland and by implication elsewhere.  相似文献   

6.
Soluble metals such as iron (Fe) and manganese (Mn) often reach problematic levels in water-supply reservoirs during summer stratification following the onset of hypolimnetic hypoxia. The behavior of soluble and particulate Fe and Mn was studied following the installation of a hypolimnetic oxygenation system in Carvins Cove Reservoir, a water-supply impoundment managed by the Western Virginia Water Authority. During oxygenation, manganese concentrations were very low in the bulk hypolimnion (<0.05 mg l−1), but high concentrations (>2.0 mg l−1) were still observed in the benthic region close to the sediment, despite near-sediment dissolved oxygen concentrations in excess of 5.0 mg l−1. Oxygenation appears to affect the location of the oxic/anoxic boundary sufficiently to restrict substantial transport of soluble Mn to the bulk water of the hypolimnion. However, the position of the oxic/anoxic boundary was not uniformly affected along the reservoir bottom, allowing horizontal transport of soluble Mn from higher elevations in contact with hypoxic sediments. During one summer, when the oxygen system was turned off for a month, the soluble Mn in the bulk hypolimnion increased substantially. Oxygen concentrations were quickly restored after the system was turned back on, but elevated levels of soluble Mn persisted until the sedimentation rate of detritus through the hypolimnion increased. When operated without interruption, the oxygenation system was able to reduce the bulk average hypolimnion soluble Mn concentration by up to 97%, indicating that source water control of soluble Mn and Fe can be accomplished with hypolimnetic oxygenation in water-supply reservoirs.  相似文献   

7.
Stutter MI  Lumsdon DG 《Water research》2008,42(16):4249-4260
Within-river cycling of P is a crucial link between catchment pollution sources and the resulting ecological impacts and integrates the biogeochemistry and hydrodynamics of river systems. This study investigates benthic sediment P sorption in relation to river soluble reactive phosphorus (SRP) concentrations during high- to low-flow changes in a major mixed land use river system in NE Scotland. We hypothesised that sediments comprised P sinks during moderate to higher flows but became P saturated with loss of buffering function during prolonged baseflow. Sediment characteristics were evaluated and equilibrium P concentrations (EPC0) calculated using a standardised batch adsorption method (EPC0 values 0.04-1.75 μmol P l−1). Pollution-impacted tributaries (32-69% catchment agricultural land cover) had increased SRP concentrations (0.19-2.62 μmol P l−1) and maintained EPC0 < SRP values during changing flow conditions. Moorland-dominated tributaries and main stem sites had small SRP concentrations (0.03-0.19 μmol P l−1) but showed EPC0 > SRP values during summer baseflow so that sediments were indicated as P sources. This deviation from a geochemical sediment-water P equilibrium was attributed to biological accumulation of P from the water column into the sediments. In particular, large stores of sediment P accumulated in main stem reaches below agricultural tributaries and this may be consequential for sensitive downstream ecosystems. Hence, biogeochemical processes at the river bed may strongly influence river SRP cycling between geochemical and biotic pools. The nature of this internal reservoir of river P and its ecosystem interactions needs better understanding to enable best results to be attained from catchment mitigation actions designed to maintain/improve ecological status under the Water Framework Directive.  相似文献   

8.
The transfer of arsenic to rice grains is a human health issue of growing relevance in regions of southern Asia where shallow groundwater used for irrigation of paddy fields is elevated in As. In the present study, As and Fe concentrations in soil water and in the roots of rice plants, primarily the Fe plaque surrounding the roots, were monitored during the 4-month growing season at two sites irrigated with groundwater containing ∼ 130 μg l− 1 As and two control sites irrigated with water containing < 15 μg l− 1 As. At both sites irrigated with contaminated water, As concentrations in soil water increased from < 10 μg l− 1 to > 1000 μg l− 1 during the first five weeks of the growth season and then gradually declined to < 10 μg l− 1 during the last five weeks. At the two control sites, concentrations of As in soil water never exceeded 40 µg l− 1. At both contaminated sites, the As content of roots and Fe plaque rose to 1000-1500 mg kg− 1 towards the middle of the growth season. It then declined to ∼ 300 mg kg− 1 towards the end, a level still well above As concentration of ∼ 100 mg kg− 1 in roots and plaque measured throughout the growing season at the two control sites. These time series, combined with simple mass balance considerations, demonstrate that the formation of Fe plaque on the roots of rice plants by micro-aeration significantly limits the uptake of As by rice plants grown in paddy fields. Large variations in the As and Fe content of plant stems at two of the sites irrigated with contaminated water and one of the control sites were also recorded. The origin of these variations, particularly during the last month of the growth season, needs to be better understood because they are likely to influence the uptake of As in rice grains.  相似文献   

9.
Phosphorus (P) concentration and flow data gathered during the 1990s for a range of British rivers were used to determine the relative contributions of point and diffuse inputs to the total P load, using the Load Apportionment Model (LAM). Heavily urbanised catchments were dominated by sewage inputs, but the majority of the study catchments received most of their annual phosphorus load from diffuse sources. Despite this, almost 80% of the study sites were dominated by point source inputs for the majority of the year, particularly during summer periods when eutrophication risk is greatest. This highlights the need to reduce sewage P inputs to improve the ecological status of British rivers. These modelled source apportionment estimates were validated against land-use data and boron load (a chemical marker for sewage).The LAM was applied to river flow data in subsequent years, to give predicted P concentrations (assuming no change in P source inputs), and these estimates were compared with observed concentration data. This showed that there had been significant reductions in P concentration in the River Thames, Aire and Ouse in the period 1999 to 2002, which were attributable to the introduction of P stripping at sewage treatment works (STW). The model was then used to forecast P concentrations resulting from the introduction of P removal at STW to a 2 or 1 mg l− 1 consent limit. For the urbanised rivers in this study, the introduction of phosphorus stripping to a 1 mg l− 1 consent level at all STW in the catchment would not reduce P concentrations in the rivers to potentially limiting concentrations. Therefore, further sewage P stripping will be required to comply with the Water Framework Directive. Diffuse P inputs may also need to be reduced before some of the highly nutrient-enriched rivers achieve good ecological status.  相似文献   

10.
Flocculant blocks are commonly used as a component of (passive) water treatment systems to reduce suspended sediment loads in the water column. This study investigated the potential for aquatic biological impacts of a flocculant block formulation that contained an anionic polyacrylamide (PAM) active ingredient and a polyethylene glycol (PEG) based carrier. The toxicity of the whole flocculant block was assessed and the individual components of the block were also tested separately. Five Northern Australian tropical freshwater species (i.e. Chlorella sp. Lemna aequinoctialis, Hydra viridissima, Moinodaphnia macleayi and Mogurnda mogurnda) were exposed to a range of concentrations of the whole flocculant block, and of the individual PAM and PEG components. The concentration of Total Organic Carbon (TOC) in solution was used to provide a measure of the total amount of PAM and PEG present. An extremely wide range of toxic responses were found, with the flocculant blocks being essentially non-toxic to the duckweed, fish and algae (IC50 > 1880 mg l−1 C TOC, IC10 > 460 mg l−1 C TOC), slightly toxic to the hydra (IC50 = 610-2180 mg l−1 C TOC, IC10 = 80-60 mg l−1 C TOC) and significantly more toxic to the cladoceran (IC50 = 10 mg l−1 C TOC, IC10 = 4 mg l−1 C TOC). More detailed investigation of the two components indicated that the PAM was the primary “toxicant” in the flocculant blocks. Derived Protective Concentrations (PCs) for the flocculant blocks, expressed as equivalent TOC concentrations, were found to be lower than typically measured natural environmental concentrations of TOC. It will thus be possible to use TOC as measure of the concentration of PAM only in those situations where lower levels of ecosystem protection (i.e. higher PCs) are applicable.  相似文献   

11.
The objective of this work was to evaluate the importance of heterotrophic denitrification in the fate of nitrogen surpluses at the catchment scale. For that purpose we modified the denitrification module of TNT2 model and calibrated the model on a small catchment where denitrification measurements had been performed in different locations. The main interest of the TNT2 model is its ability to simulate the dynamics of the zones where soil and shallow water table interact, making it possible to spatialize the denitrification process. Daily water and nitrogen flux at the outlet were relatively well simulated (Nash of 0.85 and 0.77). In average, the model correctly simulates the denitrification measurements (R = 0.68). Nitrogen flux towards the atmosphere, at the catchment scale (4.70 g N m− 2 year− 1), is of the same order of magnitude as the soluble N flux in the stream. The model was able to reproduce the distribution of denitrification in the riparian (mean of 9.26 g N m− 2 year− 1) and hillslope (mean of 3.45 g N m− 2 year− 1) domains of the catchment. The results confirm the importance of riparian denitrification, but show also that hillslope soils contribute significantly (60%) to the whole catchment denitrification. The variations of denitrification rates, and also of nitrate concentrations in stream were not very well simulated by the model, highlighting the complexity of the spatial and temporal controls of nitrogen dynamics in areas with high inputs of nitrogen fertilizers, especially under organic forms.  相似文献   

12.
Lopes SI  Wang X  Capela MI  Lens PN 《Water research》2007,41(11):2379-2392
This study investigated the effect of the COD/SO42− ratio (4 and 1) and the sulfide concentration on the performance of thermophilic (55 °C) acidifying (pH 6) upflow anaerobic sludge bed reactors fed with sucrose at an organic loading rate of 4.5 g COD lreactor−1 day−1. Sulfate reduction efficiencies amounted to 65% and 25-35% for the COD/SO42− ratios of 4 and 1, respectively. Acidification was complete at all the tested conditions and the electron flow was similar at the two COD/SO42− ratios applied. The stepwise decrease of the sulfide concentrations in the reactors with a COD/SO42− ratio of 1 by N2 stripping caused an immediate stepwise increase in the sulfate reduction efficiencies, indicating a reversible inhibition by sulfide. The degree of reversibility was, however, affected by the growth conditions of the sludge. Acidifying sludge pre-grown at pH 6, at a COD/SO42− ratio of 9 and exposed for 150 days to 115 mg l−1 sulfide, showed a slower recovery from the sulfide inhibition than a freshly harvested sludge from a full scale treatment plant (pH 7 and COD/SO42−=9.5) exposed for a 70 days to 200 mg l−1 sulfide. In the latter case, the decrease of the sulfide concentration from 200 to 45 mg l−1 (35 mg l−1 undissociated sulfide) by N2 stripping caused an immediate increase of the sulfate reduction efficiency from 35% to 96%.  相似文献   

13.
Sheep grazing metal-contaminated floodplain pastures across mid-Wales ingest high concentrations of lead (Pb) in vegetation and directly in the form of soil. Sheep whole blood analysis indicated that Pb concentrations can be significantly elevated for animals grazing contaminated sites: in winter/spring, a median blood concentration of 147 µg Pb l− 1 was found at the location with the highest soil enrichment of this metal compared to only 26 µg Pb l− 1 for the control flock. There was within-flock variability in blood-Pb concentration, and overlap between blood-Pb ranges in animals grazing control and contaminated sites, although use of the Kruskal-Wallis H test established a number of significant (P < 0.05) differences between the blood-Pb content of flocks grazing the various study locations. Despite total daily intakes of up to 723 mg Pb d− 1, only one individual sheep showed a blood-Pb content above the ‘normal safe’ concentration of 250 µg l− 1. Blood and wool analyses were found to have limited value for the diagnosis of environmental exposure to Pb, and further consideration of metal accumulation in offal, bone and muscle tissue is recommended.  相似文献   

14.
Acidification of freshwaters is a global phenomenon, occurring both through natural leaching of organic acids and through human activities from industrial emissions and mining. The West Coast of the South Island, New Zealand, has both naturally acidic and acid mine drainage (AMD) streams enabling us to investigate the response of fish communities to a gradient of acidity in the presence and absence of additional stressors such as elevated concentrations of heavy metals. We surveyed a total of 42 streams ranging from highly acidic (pH 3.1) and high in heavy metals (10 mg L1 Fe; 38 mg L1 Al) to circum-neutral (pH 8.1) and low in metals (0.02 mg L1 Fe; 0.05 mg L1 Al). Marked differences in pH and metal tolerances were observed among the 15 species that we recorded. Five Galaxias species, Anguilla dieffenbachii and Anguillaaustralis were found in more acidic waters (pH< 5), while bluegill bullies (Gobiomorphus hubbsi) and torrentfish (Cheimarrichthys fosteri) were least tolerant of low pH (minimum pH 6.2 and 5.5, respectively). Surprisingly, the strongest physicochemical predictor of fish diversity, density and biomass was dissolved metal concentrations (Fe, Al, Zn, Mn and Ni) rather than pH. No fish were detected in streams with dissolved metal concentrations > 2.7 mg L1 and nine taxa were only found in streams with metal concentrations < 1 mg L1. The importance of heavy metals as critical drivers of fish communities has not been previously reported in New Zealand, although the mechanism of the metal effects warrants further study. Our findings indicate that any remediation of AMD streams which seeks to enable fish recolonisation should aim to improve water quality by raising pH above ≈ 4.5 and reducing concentrations of dissolved Al and Fe to < 1.0 mg L1.  相似文献   

15.
15N and 18O isotope abundance analyses in nitrate (NO3) (expressed as δ15N-NO3 and δ18O-NO3 values respectively) have often been used in research to help identify NO3 sources in rural groundwater. However, questions have been raised over the limitations as overlaps in δ values may occur between N source types early in the leaching process. The aim of this study was to evaluate the utility of using stable isotopes for nitrate source tracking through the determination of δ15N-NO3 and δ18O-NO3 in the unsaturated zone from varying N source types (artificial fertiliser, dairy wastewater and cow slurry) and rates with contrasting isotopic compositions. Despite NO3 concentrations being often elevated, soil-water nitrate poorly mirrored the 15N content of applied N and therefore, δ15N-NO3 values were of limited assistance in clearly associating nitrate leaching with N inputs. Results suggest that the mineralisation and the nitrification of soil organic N, stimulated by previous and current intensive management, masked the cause of leaching from the isotopic prospective. δ18O-NO3 was of little use, as most values were close to or within the range expected for nitrification regardless of the treatment, which was attributed to the remineralisation of nitrate assimilated by bacteria (mineralisation-immobilisation turnover or MIT) or plants. Only in limited circumstances (low fertiliser application rate in tillage) could direct leaching of synthetic nitrate fertiliser be identified (δ15N-NO3 < 0‰ and δ18O-NO3 > 15‰). Nevertheless, some useful differences emerged between treatments. δ15N-NO3 values were lower where artificial fertiliser was applied compared with the unfertilised controls and organic waste treatments. Importantly, δ15N-NO3 and δ18O-NO3 variables were negatively correlated in the artificial fertiliser treatment (0.001 ≤ p ≤ 0.05, attributed to the varying proportion of fertiliser-derived and synthetic nitrate being leached) while positively correlated in the dairy wastewater plots (p ≤ 0.01, attributed to limited denitrification). These results suggest that it may be possible to distinguish some nitrate sources if analysing correlations between δ variables from the unsaturated zone. In grassland, the above correlations were related to N input rates, which partly controlled nitrate concentrations in the artificial fertiliser plots (high inputs translated into higher NO3 concentrations with an increasing proportion of fertiliser-derived and synthetic nitrate) and denitrification in the dairy wastewater plots (high inputs corresponded to more denitrification). As a consequence, nitrate source identification in grassland was more efficient at higher input rates due to differences in δ values widening between treatments.  相似文献   

16.
Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor, allowing for simultaneous removal of carbon (at the anode) and nitrogen (at the cathode). In this study, we supplemented the cathodic process with in situ nitrification through specific aeration, and thus obtained simultaneous nitrification and denitrification (SND) in the one half-cell. Synthetic wastewater containing acetate and ammonium was supplied to the anode; the effluent was subsequently directed to the cathode. The influence of oxygen levels and carbon/nitrogen concentrations and ratios on the system performances was investigated. Denitrification occurred simultaneously with nitrification at the cathode, producing an effluent with levels of nitrate and ammonium as low as 1.0 ± 0.5 mg N L−1 and 2.13 ± 0.05 mg N L−1, respectively, resulting in a nitrogen removal efficiency of 94.1 ± 0.9%. The integration of the nitrification process into the cathode solves the drawback of ammonium losses due to diffusion between compartments in the MFC, as previously reported in a system operating with external nitrification stage. This work represents the first successful attempt to combine SND and organics oxidation while producing electricity in an MFC.  相似文献   

17.
Regional-scale databases can be particularly useful for identifying relationships between dissolved inorganic nitrogen (N) leaching in forests and environmental drivers, which in turn allow an assessment of the risk of ecosystem damage, such as forest acidification and eutrophication of downstream water bodies. However, detecting the ‘signal’ of a significant correlate to N leaching against a background of wide variability in other factors requires a large number of sites, and the validation of models developed requires a similarly large number of independent sites. Here we use two large and fully independent databases of forest ecosystems across Europe to develop and validate indicators of N saturation and leaching. One database was used for model development and the other for validating these models.Among 35 variables considered, the most significant indicators of N leaching in the model development database were: the flux of dissolved inorganic N in deposition, mean annual temperature, mean altitude, the site drainage (plot vs catchment), needle- and litter-N concentration, organic horizon C:N ratio, and subsoil pH. Altitude was not a consistent predictor (it was significant in the development database but not in the validation database), and needle and litter N concentration, plot vs catchment, and subsoil pH all showed high intercorrelation with N deposition and so were not significant in models already including N deposition. The most consistent and useful indicators of N leaching were throughfall N deposition, organic horizon C:N ratio and mean annual temperature. Sites receiving low levels of N deposition (< 8 kg N ha− 1 y− 1) showed very low output fluxes of N and were simulated separately from more polluted forests. In general, the models successfully predicted N leaching (mean of ± 5 kg N ha− 1 y− 1 between observed and predicted) from forests at early to intermediate stages of nitrogen saturation but not from nitrogen-saturated sites. Thus, simple relationships developed from combining (1) external drivers (deposition, temperature) and (2) site conditions (nitrogen status of soils) can successfully estimate nitrogen leaching from forests that have not yet been highly damaged by N deposition.  相似文献   

18.
The novel lanthanum-modified clay water treatment technology (Phoslock®) seems very promising in remediation of eutrophied waters. Phoslock® is highly efficient in stripping dissolved phosphorous from the water column and in intercepting phosphorous released from the sediments. The active phosphorous-sorbent in Phoslock® is the Rare Earth Element lanthanum. A leachate experiment revealed that lanthanum could be released from the clay, but only in minute quantities of 0.13-2.13 μg l−1 for a worst-case Phoslock® dosage of 250 mg l−1. A life-history experiment with the zooplankton grazer Daphnia magna revealed that lanthanum, up to the 1000 μg l−1 tested, had no toxic effect on the animals, but only in medium without phosphorous. In the presence of phosphorous, rhabdophane (LaPO4 · nH2O) formation resulted in significant precipitation of the food algae and consequently affected life-history traits. With increasing amounts of lanthanum, in the presence of phosphate, animals remained smaller, matured later, and reproduced less, resulting in lower population growth rates. Growth rates were not affected at 33 μg La l−1, but were 6% and 7% lower at 100 and 330 μg l−1, respectively, and 20% lower at 1000 μg l−1. A juvenile growth assay with Phoslock® tested in the range 0-5000 mg l−1, yielded EC50 (NOEC) values of 871 (100) and 1557 (500) mg Phoslock® l−1 for weight and length based growth rates, respectively. The results of this study show that no major detrimental effects on Daphnia are to be expected from Phoslock® or its active ingredient lanthanum when applied in eutrophication control.  相似文献   

19.
Riparian wetlands bordering intensively managed agricultural fields can act as biological filters that retain and transform agrochemicals such as nitrate and pesticides. Nitrate removal in wetlands has usually been attributed to denitrification processes which in turn imply the production of greenhouse gases (CO2 and N2O). Denitrification processes were studied in the Salburua wetland (northern Spain) by using undisturbed soil columns which were subsequently divided into three sections corresponding to A-, Bg- and B2g-soil horizons. Soil horizons were subjected to leaching with a 200 mg NO3 L− 1 solution (rate: 90 mL day− 1) for 125 days at two different temperatures (10 and 20 °C), using a new experimental design for leaching assays which enabled not only to evaluate leachate composition but also to measure gas emissions during the leaching process. Column leachate samples were analyzed for NO3 concentration, NH4+ concentration, and dissolved organic carbon. Emissions of greenhouse gases (CO2 and N2O) were determined in the undisturbed soil columns. The A horizon at 20 °C showed the highest rates of NO3 removal (1.56 mg N-NO3 kg−1 DW soil day− 1) and CO2 and N2O production (5.89 mg CO2 kg−1 DW soil day− 1 and 55.71 μg N-N2O kg−1 DW soil day− 1). For the Salburua wetland riparian soil, we estimated a potential nitrate removal capacity of 1012 kg N-NO3 ha− 1 year− 1, and potential greenhouse gas emissions of 5620 kg CO2 ha− 1 year− 1 and 240 kg N-N2O ha− 1 year− 1.  相似文献   

20.
Trace metals were analysed in polychaetes collected on Polarstern cruise ANT XXI/2 (2003/04) to the Weddell Sea. Pb concentrations were largely less than 1.3 mg kg−1 DW in all samples analysed. Statistical results indicate that the accumulated Cd, Cu and Zn concentrations are related to the feeding guild to which the animals are belonging. Relatively low Cd and Cu concentrations are found in macrophagous carnivores and relatively high concentrations in microphagous detritus feeders. The relationship between Zn concentrations and the feeding guilds of polychaetes is reverse. Cd concentrations range from (median values and interquantile ranges in brackets) 2.6 (1.5-3.2) mg kg−1 DW in the carnivorous Trypanosyllis gigantea to 133 (37-176) mg kg−1 in the microphagous detritus feeder Lanicides bilobata; Cu concentrations from 16 (11-19) mg kg−1 in the carnivorous Antarctinoe spicoides to 40 (23-68) mg kg−1 in the microphagous detritus feeder Phyllocomus crocea and Zn from 89 (69-97) mg kg−1 in the microphagous detritus feeder Isocirrus yungi to 396 (372-404) mg kg−1 in the carnivorous Aglaophamus trissophyllus. Ni is ranging from 3.7 (1.8-6.0) mg kg−1 in Polyeunoa laevis to 34 (20-41) mg kg−1 in A. spicoides, but no significant differences are obvious regarding the feeding guilds. Since information on metals in Antarctic polychaetes is almost completely lacking, our results suggest further studies to clarify the role of feeding in the bioaccumulation of metals in this ecologically important taxonomic group.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号