首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A molecular orbital study was performed to elucidate the π–π charge transfer interaction between perfluoropolyether (PFPE) lubricants possessing phenylic end-groups and the carbon overcoat of magnetic hard disks. It is revealed that the phenylic unit and the graphitic segment of the carbon attract each other leading to spontaneous adsorption. The strength of this interaction increases in the order of: an unsubstituted phenyl group < a phenoxy unit < a p-methoxy-phenoxy unit. A molecular dynamics calculation revealed that alkyl-phenyl ether, on capture of an electron, would dissociate to yield the phenoxide anion and the alkyl radical. It is thus predicted that PFPE lubricants with an end-group possessing a phenoxy unit would spontaneously adsorb on the carbon overcoat, and that irradiation of disks coated with such lubricant with short UV (185 nm), thus generating photo-electrons, would result in facile detachment of phenoxy groups and grafting of PFPE molecular chains to the carbon surface at the chain terminus. Four new PFPE lubricants, Z-SA1 and Z-SA2 based on the Fomblin Z type backbone, and D-SA1 and D-SA2 based on the Demnum backbone were synthesized, where SA1 and SA2 indicate end-groups possessing a phenoxy unit and a p-methoxy-pheoxy unit at the ω-position, respectively. Disks coated with these lubricants were tested for (1) spin-off rate, (2) diffusion over the disk surface, (3) facility for photo-grafting by UV, (4) water contact angle (before and after UV exposure), (5) the catalytic degradation, and (6) the on-track time-to-failure test. A TOF-SIMS study of disks coated with D-SA1 and D-SA2 was performed to elucidate the disposition of lubricant molecular chains due to spontaneous adsorption and the effect of UV irradiation. All the experimental results were found to be in good accord with predictions given by the molecular orbital study. In the time-to-failure test, disks coated with Z-tetraol, Z-SA1, and Z-SA2 were compared. The durability was found to increase in the order of Z-tetraol < Z-SA1 < Z-SA2.  相似文献   

2.
We studied the bonding mechanism of ultrathin perfluoropolyether (PFPE) lubricant (Fombline Z-tetraol and Moresco D-4OH) films with hydroxyl end groups by measuring the bonding film thickness after ultraviolet (UV) irradiation. Nonfunctional PFPE lubricants (Z-03 and D2 N) were compared to two types of functional PFPE lubricants. The bonded thickness of both functional lubricants increased after a short period of UV irradiation, whereas that of the nonfunctional lubricants did not increase after the same treatment. This result suggests the occurrence of three kinds of mechanisms. First, Z-tetraol and D-4OH bond because of the photodissociation of the end groups by the UV light. Second, they bond because of the interaction between the end groups and the photoelectron from the carbon surface generated by UV irradiation. Third, they bond because of the photodissociation of the main chain by the UV light. In contrast, the dynamic reaction coordinate calculations suggest that the end groups in the PFPE lubricant dissociate because of the electron capture by the lubricant. As a result, we infer that the bonding of PFPE lubricant films with hydroxyl end groups on magnetic disks occurs by selective dissociation of the end groups because of UV irradiation.  相似文献   

3.
Disk lubricant additives A20H and C2 are Fomblin Z type perfluoropolyether with the hydroxyl end-group, –O–CF2–CH2–OH, at one end, and the cyclo-triphosphazene end-group, R5(PN)3–O–, at the other end. Here, R is an m-trifluoromethyl-phenoxy group for A20H and a trifluoroethoxy group for C2. These additives were examined for miscibility with benzene, spin-off rate, water contact angle, and the diffusion rate over the carbon overcoat. It is revealed that A20H adheres to the carbon overcoat spontaneously. The attractive interaction arises from the charge–transfer type interaction between the aromatic rings of the phosphazene end and the graphitic regime of the carbon overcoat. No spontaneous adherence occurs between the lubricant C2 and the carbon overcoat. A TOF-SIMS study of disks coated with A20H and C2, respectively, with and without subsequent curing by short-UV (185 nm) was performed. It is revealed: (1) if presented with a low energy electron, the phenoxy groups of A20H readily undergo the dissociative electron capture, while the trifluoroethoxy group does not, and (2) photoelectrons generated by short-UV have little kinetic energy and the electron capture occurs only if an electrophilic molecular sector is in intimate contact with the carbon. Thus, in the case of disks coated with A20H, UV-curing results in detachment of a phenoxy group in contact with the carbon, generation of a radical center at the phosphorus atom and subsequent formation of a bona fide chemical bond between the phosphor and the carbon overcoat. No reaction of consequence occurs when disks coated with C2 are irradiated with short-UV.  相似文献   

4.
Typical lubricants for magnetic hard disks comprise the central perfluoropolyether section and the short hydrocarbon end groups bearing hydroxyl unit(s). It had been shown earlier that chemical bonding of these lubricants to the carbon overcoat of disks involves (1) dangling bonds shielded inside the carbon, (2) transfer of the hydrogen atom of the hydroxyl unit to a dangling bond site, and (3) attachment of the remaining alkoxy system, R–CF2–CH2–O·, to the carbon surface as a pendant ether unit. Dangling bonds at or near the surface react immediately with H2O or O2 in the atmosphere. It follows that, in order to bond, the hydrocarbon end group must move into crevices of the carbon film. It was postulated that the bonding rate would depend on the length of the hydrocarbon end-group, –(CH2) n –OH. The longer the hydrocarbon sector is, the faster and the more extensively the bonding would proceed. Bonding rates were examined for a set of samples differing only in the dimension of the hydrocarbon end-group. Results clearly in accordance with the postulate were obtained. The sample set included two novel lubricants, D-2TX2 and D-2TX4, with the following end-groups, –O–CF2–CH2–O–(CH2) n=2,4–OH. Excellent bonding rate, coverage, and potential anticorrosion property were revealed for these lubricants.  相似文献   

5.
Choi  Junho  Kawaguchi  Masahiro  Kato  Takahisa 《Tribology Letters》2003,15(4):353-358
The best tribological properties can be obtained in a film that contains both bonded and mobile phases, and thus the ratio of the bonded phase to the mobile phase, the bonded ratio, is a critical factor for the lifetime of the mechanical components. In the present study, we deposited a mixed lubricant, which consists of a strongly bonded lubricant phase and a mobile lubricant phase, on a carbon overcoat. Islands of FDTS (perfluorodecyltrichlorosilane) SAM (self-assembled monolayer) were introduced as a strongly bonded lubricant phase and Fomblin Z03 lubricant as a mobile phase. The friction and durability properties of 2.5-in magnetic disks coated with 15 Å thick mixed lubricants were investigated using a ball-on-disk tribotester and compared with disks coated with 15 Å Zdol lubricants. Because the contact area of the ball increases with the bonded ratio, the friction coefficient of the disk coated with the mixed lubricant increases linearly with the bonded ratio over a range of about 25–100%. On the other hand, the friction coefficient of the disk coated with Zdol decreases with increasing bonded ratio. The mixed lubricant exhibits superior wear properties compared to Zdol. This may occur because the FDTS networks act as a barrier against the displacement of the mobile Z03 molecules, and the mobility of Z03 molecules is higher than that of Zdol molecules, which allows Z03 to replenish into the lubricant-depleted area at a higher rate.  相似文献   

6.
The magnetic recording industry predominantly uses Zdol to lubricate the carbon overcoat of magnetic recording disks. Zdol comprises a perfluoropolyether chain terminated with hydroxyl end groups that are capable of reversibly bonding to the carbon overcoat. Contact start/stop (CSS) tests were done to investigate the effects of Zdol lubricant bonding, thickness, and relative humidity on durability. The durability improved with increasing thickness of fully bonded or mobile Zdol. The durability decreased with increasing initial bonded fraction and with decreasing relative humidity. The bonded fraction increased with time during the tests at elevated temperature and low relative humidity.  相似文献   

7.
Surface lubrication is one of the essential technologies in modern magnetic disk systems and improvement of the surface lubrication is very important in the development of next generation systems. In this study, we used AFM for the direct observation of perfluoropolyether (PFPE) lubricant molecules on atomically flat surfaces. We used a cryogenic non-contact AFM to observe the molecules in a frozen state of micro-Brownian motion of PFPE segments, because the glass transition temperature of PFPE is very low. To avoid freezing a trace amount of water vapor on the sample surface at liquid nitrogen temperatures, the AFM observation was performed under ultra-high vacuum. We observed that on a gold surface the size of the molecules increases with repeated AFM scans. This is because the mechanical stimulus causes the fusion of PFPE lubricant molecules to form reversed micelles at the non-polar surface. At a hydrophilic silicon wafer surface, however, we succeeded in observing single lubricant molecules. This is because almost all PFPE lubricant molecules are fixed to the hydrophilic solid surface by polar–polar bond formation and they cannot move around on the surface and thus they cannot fuse to each other. As formation of the reversed micelle structure is a rather general phenomenon in the PFPE lubricant thin layer at non-polar surfaces, we also will discuss briefly the expected molecular structures of PFPE lubricants at the surface of the carbon overcoat of magnetic disks.  相似文献   

8.
In this study, the wear properties of a magnetic head slider on disks lubricated by ultra-thin perfluoropolyether (PFPE) lubricants with different molecular weights were evaluated by the continuous sliding of magnetic head sliders using the slider contact by the dynamic flying height control. Two types of PFPE lubricants (Z-tetraol and D-4OH) with different molecular weights were evaluated. Results show that the slider wear depended on the coverage of the lubricant film; i.e., the lubricant film with sufficient coverage reduced slider wear. The lubricant film with a low molecular weight (low-Mw), including a lubricant material with a Fomblin and Demnum main chain, exhibited better coverage on a diamond-like carbon surface. Sliders with a low-Mw lubricant film showed less wear than those of a high molecular weight (high-Mw), and the depletion of the low-Mw lubricant film was less than that of the high-Mw lubricant film.  相似文献   

9.
Tyndall  G.W.  Leezenberg  P.B.  Waltman  R.J.  Castenada  J. 《Tribology Letters》1998,4(2):103-108
Perfluoropolyethers (PFPE) are low surface tension liquids that are commonly employed in magnetic recording devices (hard-disk drives)as disk lubricants. In current drives, a single monolayer (or less) of a PFPE is applied to the amorphous carbon overcoat of the hard disk to provide the necessary lubrication of the head-disk-interface. The focus of the current paper is to demonstrate the utility of surface energy measurements in extracting information on the PFPE lubricant-carbon interfacial interactions. In particular, surface energies are reported as a function of applied lubricant thickness in the range of 2--30 Å for three Fomblin Zlubricants, i.e., ZDOL, ZDIAC, Z-15; and two Demnum lubricants,i.e. Demnum SA and SP. We show that from the surface energy measurements one can: (a) determine the extent of lubricant coverage of the carbon surface, (b) determine the orientation of the lubricant with respect to the carbon surface, (c) determine the nature of the lubricant-carbon interaction, e.g. attractivevs. repulsive, and (d) obtain an estimate of the interaction strength between the lubricant and the carbon.  相似文献   

10.
The intermolecular interactions at the interface between monomolecular hydroxyl-terminated perfluoropolyether (PFPE) liquids (Zdol, Zdol-TX, Z-Tetraol, Zdiac) and a sputtered amorphous silicon nitride film (SiNx) are investigated using contact angle goniometry, Fourier transform infrared spectroscopy, and ab initio computational chemistry. The results demonstrate that the adhesion between the PFPE liquids and the SiNx surface occur via the polar interactions between the PFPE end groups (-OH, -COOH) and the polar sites on the SiNx surface (e.g., SiOH). The attractive interactions lead to a lowering of the polar surface energy with increasing PFPE coverage up to a monolayer. The binding energy is computed to be approximately −4 to −9 kcal/mol, depending upon the polarity of the PFPE end group. Adsorbed water is shown to compete with PFPE for surface bonding sites on SiNx (−4.4 kcal/mol) that can lead to a significantly reduced level of adhesion for some of the hydroxyl-terminated PFPEs. A higher level of adhesion between the PFPEs and SiNx can be attained by increasing the strength of the hydrogen bond and/or increasing the configurational entropy of the PFPE end group to facilitate the hydrogen bonding reaction.  相似文献   

11.
To increase the recording density of hard disk drives (HDD), head and disk surfaces must be very flat. This will make the friction between them large when liquid bridges are formed. This is a result of Laplace pressure in the liquid bridge. Therefore, the study of Laplace pressure in real HDD interface is of an interest for head-disk interface engineers. However, Laplace pressure of perfluoropolyether (PFPE) lubricant on carbon coated thin-film disk surface was not clear until now.We measured Laplace pressure between transparent flat pins and carbon coated thin-film disks with laser texturing. Using laser textured disks, we could control the distance between two surfaces precisely by the bump height. The friction coefficient between the pin and the disk surfaces was determined when the interface was fully wet by liquids. It was 0.16 and 0.1 for water and a PFPE lubricant. The Laplace pressure was then calculated using the friction force and liquid wet area when the interface was partially wet by a liquid. The liquid wet area was measured by the observation of the contact point through the transparent pins.The results showed that the Laplace pressure at the lowest bump height (11 nm) was about 2.8 MPa for the PFPE lubricant. Results agreed well with calculated curves. We consider that PFPE acts as liquid down to 11 nm.  相似文献   

12.
Molecular dispositions of Z-dol (linear perfluoropolyether with hydroxyl termini, –O–CF2–CH2–OH) applied over the carbon overcoat of magnetic hard disks are often depicted by an arrangement based on the hydrogen bonding interaction between the hydroxyl ends and some polar units of the carbon surface. The hydrogen bonding interaction is weak. The arrangement based on this mechanism is attained rapidly, but is slowly replaced (if partially) by a bona fide chemical bond. The issue of the exact nature of this chemical bond has been left unanswered in most of the reports. Past works deemed to have explored and elucidated the identity of the bond in question are gathered, reviewed and deductively presented. The review, we believe, clearly shows that the bonding in question involves (1) dangling bonds shielded within the sputter-deposited carbon, (2) transfer of the hydrogen atom of the hydroxyl unit of Z-dol to the dangling bond site, and (3) attachment of the remaining alkoxy system, Z–O–CF2–CH2–O•, to the carbon surface as a pendant ether unit. The Z-dol moiety thus attached is held by a bona fide chemical bond, and cannot be replaced by water molecules nor removed by solvent extraction.  相似文献   

13.
We utilize thermal fly-height control (TFC) technology to perform in situ measurements of carbon overcoat wear at the angstrom level at the read–write area of magnetic recording heads. We also study the durability of the molecularly thin lubricated disk surface. Experimental findings reveal a linear relationship between the quantified carbon wear depth on the flying head versus the head–disk contact level produced by the TFC power. It is demonstrated that this method can serve as a measurement and probing technique of wear resistance for different types of lubricants. Lubricants possessing more polar hydroxyl end-groups and less mobility tend to show a superior surface stability under head–disk contacts, but raise concerns on head carbon overcoat wear.  相似文献   

14.
Zhao  Zheming  Bhushan  Bharat  Kajdas  Czeslaw 《Tribology Letters》1999,6(2):141-148
This paper, with the concepts of hydrogen bonding interaction and tribo-emission, develops a new approach of the mechanism of perfluoropolyether (PFPE) lubricant degradation at the head–disk interface. The role of lubricant X-1P in tribological performance is also described. The mechanism is as follows: (1) at the interface, there exist hydrogen atoms with partial positive charge and oxygen atoms with partial negative charge; (2) hydrogen bonding interactions at the sliding interface result in high friction which depletes the lubricant film at some sites; (3) low energy electrons are emitted from the sites with solid–solid asperity contact, inducing C–O bond scission through the interaction of low-energy electrons with PFPE lubricant molecules. Carbon overcoat on Al2O3–TiC surface passivates the interaction between water and PFPE lubricant molecules. Hydrogen bonding interactions are minimized during the presence of lubricant X-1P. The new approach well explains experimental results in part I of the paper. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
In order to minimize the stiction force caused by contact of the extremely smooth surfaces of head sliders and disks in hard disk drives, texture is usually applied on the disk surface. For future contact/near-contact recording, the stiction-induced high friction between slider and disk will become a problem. Texture on the slider/disk interface will still be an expected method to reduce friction. Recently, it was suggested to texture the slider surface. A protective coating is usually required on the textured slider surface to reduce wear of the texture. The results showed that texture on the slider surface was effective in reducing the friction between head sliders and disks. On the other hand, the texture and coating on the slider surface increase the spacing between the read/write element and the magnetic layer of the disk. The necessary and effective texture height and coating thickness are still not clear. In the present research, island-type textures with different heights (3–18 mn) were formed on slider surfaces by ion-beam etching. Amorphous carbon nitride (a-CNx) coatings of different thicknesses (0–50 nm) were coated on the textured slider surfaces as a protective overcoat. The friction and wear properties of these sliders were evaluated by constant-speed drag tests against hard disks coated with diamond-like carbon (DLC). The results show that 2 nm texture on a slider surface is sufficient for low (0.3–0.5) and stable friction of the slider against the disk in a drag test, and coatings thicker than 5 nm show similar wear resistances of the texture on slider surfaces.  相似文献   

16.
Mobility of molecularly thin lubricant film is an important issue in understanding boundary lubrication mechanisms and to develop reliable magnetic disk media. Intra-molecular mobility for a perfluorinated poly ether (PFPE), which is used as a disk lubricant, with two hydroxyl groups on a sol-gel SiO2 surface, which is used for a protective overcoat for plated magnetic disks, was studied using nuclear magnetic resonance (NMR). Thin film viscosities for molecular segments were derived from a relaxation time. The viscosity for the hydroxyl segment is 1.8 to 11 times as much as that for a bulk lubricant at room temperature, and the viscosity rate increased with increasing temperature. For example, it increased 15 times at 100°C. The viscosities for the segments in a main chain were not different from that of bulk PFPE.

A spin-off calculation for the molecularly thin lubricant film with thin film viscosity, derived from the NMR method, shows that there is no thickness decrease after seven years.  相似文献   

17.
A thin layer of Ultra High Molecular Weight Polyethylene (UHMWPE) or UHMWPE + PFPE is coated onto cylindrical aluminium (Al) pin (4.6 mm diametre) surface with the aim of providing wear resistant coating on this soft and tribologically poor metal. The coefficient of friction and wear life of the coated samples are investigated on a pin-on-disk tribometre under different normal loads (394–622 g) and two sliding speeds (0.1 and 0.31 m/s) against uncoated Al disk as the counterface. Both coatings provide coefficient of friction values in the range of 0.02–0.2 as compared to 0.4–1.0 for uncoated Al. There is tremendous improvement in the wear life of the pin, with UHMWPE + PFPE film giving wear life approximately twice to thrice higher than that with only UHMWPE film. A thin polymer film is transferred to the disk surface during sliding providing very long-term wear life (continuous low coefficient of friction) despite visual removal of the film from the pin surface. The present films will have applications in gears and bearings as solid or boundary lubricants for automotive and aerospace component.  相似文献   

18.
Jiaa  Chi L.  Liu  Youmin 《Tribology Letters》1999,7(1):11-16
The retention characteristics of magnetic thin film media coated with perfluoropolyether (PFPE) lubricants and a phosphazene additive, X-1P, were investigated in this study. The retention performance was evaluated by a drag test with a waffle head sliding against the disk that was designed to mechanically wear out the lubricant layer. An IR beam was aligned on the test track to directly measure the amount of PFPE lubricants and X-1P left on the media surfaces for determining the retention characteristics of the lubricants. The drag test results show that under ambient and hot/wet conditions the media coated with AM3001 PFPE lubricant have higher retention ratio on the test track than those coated with ZDOL 2000 PFPE lubricant. The phosphazene additive X-1P was observed to strongly anchor on the surface and not easily removed as PFPE lubricants (ZDOL and AM3001). The retention characteristics of X-1P are independent of lube combination, either AM or ZDOL lubricants. It is demonstrated that X1-P exhibits a good antiwear property and excellent retention performance. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
Kasai  P.H.  Raman  V. 《Tribology Letters》2004,16(1-2):29-36
A component-level study has revealed that the durability of magnetic hard disks coated with Z-dol improved with increasing level of relative humidity, while the durability of disks coated with Z-tetraol was generally superior and not affected by the humidity within the range investigated (8–80%). It has been shown earlier that water molecules effectively passivate the catalytic centers responsible for the lubricant degradation. The Z-dol molecular chain has a hydroxyl group at each end, while the Z-tetraol molecular chain has two hydroxyl groups at each end. Having surmised that the superior performance of Z-tetraol can be ascribed to its ability to retain water molecules at its multiply hydroxylated ends, the solubility of water in Z-dol, Z-tetraol, and Z-TX were investigated using proton NMR spectroscopy. The study revealed that Z-tetraol is not only able to retain a much larger number of water molecules at its ends, but also is able to form stronger hydrogen bonds. Z-tetraol would then bond more tightly to the carbon overcoat (via hydrogen bonding with the surface hydroxyl groups), and be more resistant against catalytic degradation owing to its affinity to, and retention of water molecules.  相似文献   

20.
Waltman  R.J.  Zhang  H.  Khurshudov  A.  Pocker  D.  Karplus  M.A.  York  B.  Xiao  Q.-F.  Zadoori  H.  Thiele  J.-U.  Tyndall  G.W. 《Tribology Letters》2002,12(1):51-60
Formation of a tribologically reliable interface between the read-write head and the computer disk in hard-disk drives is accomplished by the use of a thin, wear-resistant carbon overcoat in conjunction with a molecularly-thin perfluoropolyether (PFPE) lubricant film. The intermolecular interactions that develop between the PFPE lubricant and the carbon overcoat govern the adhesion, coverage, and physical properties of the lubricant, e.g. the lubricant structure and mobility. Consequently, the molecular interactions at the lubricant-carbon interface will contribute to the overall tribological performance of the disk-drive. Due to the ever-increasing demands for storage capacity, pressure exists to reduce the separation distance between the read-write head and disk surface. One means of reducing this separation distance is to use thinner protective overcoats on both the head and disk surfaces. In this study the interactions between Fomblin Zdol and both amorphous hydrogenated (CHx) and nitrogenated (CNx) carbon overcoats were investigated as a function of overcoat thickness from 0 to 100Å. The Zdol film structure was probed by titrating the magnetic alloy, the CHx and CNx surfaces with Zdol. The molecular weight dependence of the maximum bonded Zdol thickness on these surfaces is used to deduce structural information on the adsorbed Zdol film. In progressing from CHx to CNx to the magnetic alloy, we find the Zdol boundary layer film to be characterized by an increase in average distance between the PFPE backbone and the surface, or equivalently an increase in the average Zdol monolayer thickness. On the CHx overcoat, Zdol preferentially lies more parallel to the surface, whereas on the magnetic layer, Zdol is oriented more perpendicular to the surface. When these experiments were conducted as a function of carbon overcoat thickness, we found that interaction of Zdol with the field of the underlying magnetic film becomes important at carbon film thicknesses 30Å. The dependence of the Zdol adhesion on carbon overcoat thickness was quantified by determining the Zdol film thickness dependence of both the dispersive and polar components of the Helmholtz free energy. The Zdol bonding kinetics were also studied as a function of carbon thickness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号