首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the changes of brain-derived neurotrophic factor (BDNF)-immunoreactive structures in the hippocampal formation of aged macaques (Macaca fuscata fuscata). At adult stages (10 and 12 years), BDNF immunoreactivity occurred in the neurons of the dentate gyrus, the pyramidal neurons in the CA1, CA2, CA3 subfields and the subiculum, and the neurons in the CA4 subfield and the entorhinal cortex. The apical dendrites were also BDNF immunopositive. In aged monkeys (26, 30 and 32 years), the intensity of the BDNF-immunoreactivity declined significantly in cell bodies and dendrites of the neurons in the hippocampal formation except the CA2 pyramidal neurons. These findings indicate that BDNF is one of the vulnerable signal molecules during the aging process of the primate hippocampal formation.  相似文献   

2.
The hippocampus of spontaneously hypertensive rats (SHR) and deoxycorticosterone (DOCA)‐salt hypertensive rats shows decreased cell proliferation and astrogliosis as well as a reduced number of hilar cells. These defects are corrected after administration of 17β‐oestradiol (E2) for 2 weeks. The present work investigated whether E2 treatment of SHR and of hypertensive DOCA‐salt male rats modulated the expression of brain‐derived neurotrophic factor (BDNF), a neurotrophin involved in hippocampal neurogenesis. The neurogenic response to E2 was simultaneously determined by counting the number of doublecortin‐immunopositive immature neurones in the subgranular zone of the dentate gyrus. Both hypertensive models showed decreased expression of BDNF mRNA in the granular zone of the dentate gyrus, without changes in CA1 or CA3 pyramidal cell layers, decreased BDNF protein levels in whole hippocampal tissue, low density of doublecortin (DCX)‐positive immature neurones in the subgranule zone and decreased length of DCX+ neurites in the dentate gyrus. After s.c. implantation of a single E2 pellet for 2 weeks, BDNF mRNA in the dentate gyrus, BDNF protein in whole hippocampus, DCX immunopositive cells and the length of DCX+ neurites were significantly raised in both SHR and DOCA‐salt‐treated rats. These results indicate that: (i) low BDNF expression and deficient neurogenesis distinguished the hippocampus of SHR and DOCA‐salt hypertensive rats and (ii) E2 was able to normalise these biologically important functions in the hippocampus of hypertensive animals.  相似文献   

3.
Repeated maternal separation of rat pups during the early postnatal period may affect brain-derived neurotrophic factor (BDNF) or neurons in brain areas that are compromised by chronic stress. In the present study, a highly significant increase in hippocampal BDNF protein concentration was found in adult rats that as neonates had been subjected to 180 min of daily separation compared with handled rats separated for 15 min daily. BDNF protein was unchanged in the frontal cortex and hypothalamus/paraventricular nucleus. Expression of BDNF mRNA in the CA1, CA3, or dentate gyrus of the hippocampus or in the paraventricular hypothalamic nucleus was not affected by maternal separation. All animals displayed similar behavioral patterns in a forced-swim paradigm, which did not affect BDNF protein concentration in the hippocampus or hypothalamus. Repeated administration of bromodeoxyuridine revealed equal numbers of surviving, newly generated granule cells in the dentate gyrus of adult rats from the 15 min or 180 min groups. The age-dependent decline in neurogenesis from 3 months to 7 months of age did not differ between the groups. Insofar as BDNF can stimulate neurogenesis and repair, we propose that the elevated hippocampal protein concentration found in maternally deprived rats might be a compensatory reaction to separation during the neonatal period, maintaining adult neurogenesis at levels equal to those of the handled rats.  相似文献   

4.
Excess neuronal activity upregulates the expression of two neurotrophins, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in adult hippocampus. Nerve growth factor has been shown to contribute the induction of aberrant hippocampal mossy fiber sprouting in the inner molecular layer of the dentate gyrus, however the role of prolonged brain-derived neurotrophic factor exposure is uncertain. We examined the distribution and plasticity of mossy fibers in transgenic mice with developmental overexpression of brain-derived neurotrophic factor. Despite 2--3-fold elevated BDNF levels in the hippocampus sufficient to increase the intensity of neuropeptide Y immunoreactivity in interneurons, no visible changes in mossy fiber Timm staining patterns were observed in the inner molecular layer of adult mutant hippocampus compared to wild-type mice. In addition, no changes of the mRNA expression of two growth-associated proteins, GAP-43 and SCG-10 were found. These data suggest that early and persistent elevations of brain-derived neurotrophic factor in granule cells are not sufficient to elicit this pattern of axonal plasticity in the hippocampus.  相似文献   

5.
Noradrenaline (NA) acting via beta-adrenergic receptors (betaARs) plays an important role in the modulation of memory in the hippocampus. betaARs have been shown to be expressed in principal cells, but their distribution across different interneuron classes is unknown. We have used specific interneuron markers including calcium binding proteins (parvalbumin, calbindin, and calretinin) and neuropeptides (somatostatin, neuropeptide Y, and cholecystokinin) together with either beta1AR or beta2AR to determine the distribution of these receptors in all major subfields of the hippocampus. We found that beta1AR-expressing interneurons were more prevalent in the CA3 and CA1 regions of the hippocampus than in the dentate gyrus, where they were relatively sparse. beta2AR-expressing interneurons were more uniformly distributed between all three regions of the hippocampus. A high proportion of neuropeptide Y-containing interneurons in the dentate gyrus co-expressed beta2AR. beta1AR labeling was common in interneurons expressing somatostatin and parvalbumin in the CA3 and CA1 regions, particularly in the stratum oriens of these regions. beta2AR labeling was more likely to be found than beta1AR labeling in cholecystokinin-expressing interneurons. In contrast, calretinin-containing interneurons were virtually devoid of beta1AR or beta2AR labeling. These regional and interneuron type-specific differences suggest functionally distinct roles for NA in modulating hippocampal activity via activation of betaARs.  相似文献   

6.
Rácz B  Halasy K 《Brain research》2002,931(1):50-55
In our previous studies (J. Chem. Neuroanat. 2000;19:233-241), kappa opioid receptors were immunocytochemically identified in inhibitory interneurons of the dentate hilus and CA1 area of the rat hippocampus. From among the known interneuron subtypes, somatostatin- (SOM) and neuropeptide Y- (NPY) immunoreactive (IR) hippocampal interneurons show morphology and distribution similar to the kappa opioid receptor (KOR) immunopositive cells. In the present study, with the help of double immunocytochemical labelling, we provide direct evidence that the majority of the interneurons immunoreactive for SOM and/or NPY also express the kappa opioid receptor. The receptor was localized on the perikaryal and proximal dendritic region of the SOM- and NPY-immunopositive neurons in the dentate hilus and the CA1 region. From among the SOM-immunoreactive cells, 77% in the dentate hilus and 51% in the CA1 stratum oriens was double labelled. In the case of NPY-immunoreactive neurons this proportion was 56 and 65%, respectively. The co-expression of KOR and SOM/NPY suggests that hippocampal interneurons can selectively be activated by the different opioids under different physiological circumstances.  相似文献   

7.
It is known that the hippocampus has vital functions in learning and memory, behavioral regulation, and activity-dependent synaptic plasticity, and that the hippocampus contains high levels of brain-derived neurotrophic factor (BDNF). In the present study, we followed age-dependent changes of BDNF immunoreactivity and protein level in the gerbil hippocampus to identify the correlation between BDNF and aging. BDNF immunoreactivity and its protein level significantly increased at postnatal month (PM) 12 in the hippocampus and thereafter reduced. At PM 24, BDNF immunoreactivity in the hippocampal CA1 region and dentate gyrus was similar to that in the PM 1 group, whereas BDNF immunoreactivity in the CA2/3 region at PM 24 was higher than that at PM 1. In the PM 24 group, an age-related neuronal loss and the decrease of reference and working memory were observed. In conclusion, our results suggest that observed reduction in BDNF and reference memory may be associated with age-dependent neuronal loss in the hippocampal CA1 region.  相似文献   

8.
Childhood stress and genetic factors like the Val66MET polymorphism of the brain derived neurotrophic factor (BDNF) gene are associated with a higher risk for developing major depressive disorder (MDD) and might also influence hippocampal changes. The aim of this study was to determine which hippocampal dentate gyrus and cornu ammonis subfields are altered in MDD compared to healthy controls and which subfields are affected by the BDNF Val66Met polymorphism and child adversity. Adult patients with MDD and healthy matched controls underwent high‐resolution magnetic resonance imaging. Automatic segmentation using the programme FreeSurfer was used to segment the hippocampal subfields dentate gyrus (DG/CA4), CA1 and CA2/3. The history of possible childhood adversity was assessed using the Childhood Trauma Questionnaire and the Val66Met BDNF SNP (rs6265) genotypes were obtained. Patients with MDD had significantly smaller CA4/DG and CA2/3 volumes compared to healthy controls. Furthermore, there was a significant interactive effect of BDNF allele and childhood adversity on CA2/3 and CA4/DG volumes. Met allele carriers without childhood adversity had larger and with childhood adversity smaller CA4/DG and CA2/3 volumes than Val‐allele homozygotes. Our results highlight stress by gene interactions as relevant for hippocampal volume reductions, in particular for the subfield CA2/3 and dentate gyrus. Hum Brain Mapp 35:5776–5783, 2014. © 2014 Wiley Periodicals, Inc .  相似文献   

9.
The neuropeptide galanin has been implicated in inhibiting seizures and protecting hippocampal neurons from excitotoxic injury. In the hippocampus galanin acts through two receptor subtypes, GalR1, expressed in CA1, and GalR2, abundant in dentate gyrus. We developed an approach to induce and to study selective semichronic knockdown of GalR2 in the rat hippocampus. A 50% reduction of GalR2 binding was achieved by continuous infusion of complementary peptide nucleic acid antisense oligonucleotide into the dentate gyrus. This resulted in an increase in the severity of self-sustaining status epilepticus induced by electrical stimulation of the perforant path, induced mild neuronal injury in the dentate hilus, augmented seizure-induced hilar injury and inhibited seizure-induced neurogenesis in the subgranular zone of the dentate gyrus. Our data suggest that in the dentate gyrus, galanin, acting through GalR2, inhibits seizures, promotes viability of hilar interneurons and stimulates seizure-induced neurogenesis. These results are important for understanding the role of galanin and galanin receptor subtypes in the hippocampus both under normal conditions and in excitotoxic injury.  相似文献   

10.
Kainic acid (KA)-induced degeneration of CA3 pyramidal neurons leads to synaptic reorganization and hyperexcitability in both dentate gyrus and CA1 region of the hippocampus. We hypothesize that the substrate for hippocampal inhibitory circuitry incurs significant and permanent alterations following degeneration of CA3 pyramidal neurons. We quantified changes in interneuron density (N(v)) in all strata of the dentate gyrus and the CA1 and CA3 subfields of adult rats at 1, 4, and 6 months following intracerebroventricular (icv) KA administration, using glutamic acid decarboxylase-67 (GAD-67) immunocytochemistry. At 1 month postlesion, GAD-67-positive interneuron density was significantly reduced in all strata of every hippocampal region except stratum pyramidale of CA1. The reduction in GAD-67-positive interneuron density either persisted or exacerbated at 4 and 6 months postlesion in every stratum of all hippocampal regions. Further, the soma of remaining GAD-67-positive interneurons in dentate gyrus and CA3 subfield showed significant hypertrophy. Thus, both permanent reductions in the density of GAD-67-positive interneurons in all hippocampal regions and somatic hypertrophy of remaining GAD-67-positive interneurons in dentate gyrus and CA3 subfield occur following icv KA. In contrast, the density of interneurons visualized with Nissl in CA1 and CA3 regions was nearly equivalent to that in the intact hippocampus at all postlesion time points. Collectively, these results suggest that persistent reductions in GAD-67-positive interneuron density observed throughout the hippocampus following CA3 lesion are largely due to a permanent loss of GAD-67 expression in a significant fraction of interneurons, rather than widespread degeneration of interneurons. Nevertheless, a persistent decrease in interneuron activity, as evidenced by permanent down-regulation of GAD-67 in a major fraction of interneurons, would likely enhance the degree of hyperexcitability in the CA3-lesioned hippocampus.  相似文献   

11.
A monoclonal antibody specific for GluR5-7 (mAb-4F5) has been used to characterize the distribution of kainate class glutamate receptor subunits in monkey hippocampus. Immunolabeled neurons were present in all subfields of the hippocampus as well as the dentate gyrus and subiculum. Quantitative immunofluorescence analysis by confocal microscopy demonstrated differential levels of immunoreactivity such that the highest intensities were in neurons within CA1 and subiculum as compared with those within CA3 or dentate gyrus. The regional differences in levels of subunit immunoreactivity correlate with the relative vulnerability of hippocampal neurons in several neurodegenerative disorders.  相似文献   

12.
Acute nicotine administration (0.5 mg/kg i.p.) significantly decreased BDNF mRNA levels in dentate gyrus, CA3 and CA1 subfields of the rat hippocampus 2 h and 24 h after administration. However, with 7 days nicotine treatment, tolerance developed to the inhibitory effect of nicotine on BDNF mRNA expression and there was a significant increase in BDNF expression 2 h after the final injection in the CA1 region. These data suggests that changes in expression of hippocampal BDNF may be involved in the behavioural effects of nicotine observed after acute and chronic treatment.  相似文献   

13.
14.
Chemotherapy-associated memory deficits in adults are prevalent with systemic treatment utilizing 5-fluorouracil (5-Fu). 5-Fu disrupts cell proliferation and readily crosses the blood–brain barrier. Proliferating cells within the adult dentate gyrus of the hippocampus give rise to new neurons involved in memory and learning and require neurotrophic factors such as brain-derived neurotrophic factor (BDNF) to nurture this process of adult neurogenesis. Some of these proliferating cells are anatomically and functionally supported by vascular endothelial cells. We propose that systemically administered 5-Fu chemotherapy will cause deficits in hippocampal memory that are associated with altered BDNF levels and proliferating cells (particularly vascular-associated cells) in the dentate gyrus. This was tested by determining the effect of 5-Fu on spatial working memory as modelled by the object location recognition test. Numbers of vascular-associated (VA) and non-vascular-associated (NVA) proliferating cells in the dentate gyrus were measured using double-labelling immunohistochemistry with markers of proliferation (Ki67) and endothelial cells (RECA-1). 5-Fu-induced changes in hippocampal BDNF and doublecortin (DCX) protein levels were quantified using Western immunoblotting. 5-Fu chemotherapy caused a marginal disruption in spatial working memory and did not alter the total proliferating cell counts or the percentage of VA and NVA proliferating cells in the dentate gyrus. In contrast, 5-Fu significantly reduced BDNF and DCX levels in the hippocampus, indicating alterations in neurotrophin levels and neurogenesis. These findings highlight the usefulness of animal models of 'chemobrain' for understanding the mechanisms that underlie chemotherapy-associated declines in cognitive performance and memory.  相似文献   

15.
Shetty AK  Hattiangady B  Shetty GA 《Glia》2005,51(3):173-186
Dentate neurogenesis, important for learning and memory, declines dramatically by middle age. Although studies have shown that this age-related decrease can be reversed to some extent by exogenous applications of mitogenic factors, it is unclear whether one or more of these factors exhibits decline by middle age. We hypothesize that multiple stem/progenitor cell proliferation factors exhibit early decline during the course of aging in the hippocampus, and some of these declines are linked to age-related alterations in hippocampal astrocytes. We measured the concentrations of fibroblast growth factor-2 (FGF-2), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF) in the hippocampus of young, middle-aged, and aged F344 rats, using enzyme-linked immunosorbent assay (ELISA). In addition, we quantified the total number of FGF-2 immunopositive (FGF-2+) and glial fibrillary acidic protein immunopositive (GFAP+) cells in the dentate gyrus and the entire hippocampus. Our results provide new evidence that the concentrations of FGF-2, IGF-1, and VEGF decline considerably by middle age but remain steady between middle age and old age. Further, decreased concentrations of FGF-2 during aging are associated with decreased numbers of FGF-2+ astrocytes. Quantification of GFAP+ cells, and GFAP and FGF-2 dual immunostaining analyses, reveal that aging does not decrease the total number of astrocytes but fractions of astrocytes that express FGF-2 decline considerably by middle age. Thus, dramatically decreased dentate neurogenesis by middle age is likely linked to reduced concentrations of FGF-2, IGF-1, and VEGF in the hippocampus, as each of these factors can individually influence the proliferation of stem/progenitor cells in the dentate gyrus. Additionally, the results demonstrate that decreased FGF-2 concentration during aging is a consequence of age-related impairment in FGF-2 synthesis by astrocytes.  相似文献   

16.
The vulnerability and plasticity of hippocampal GABAergic interneurons is a topic of broad interest and debate in the field of epilepsy. In this experiment, we used the electrical kindling model of epilepsy to determine whether seizures that originate in different brain regions have differential effects on hippocampal interneuron subpopulations. Long‐Evans rats received 99 electrical stimulations of the hippocampus, amygdala, or caudate nucleus, followed by sacrifice and immunohistochemical or western blot analyses. We analyzed markers of dendritic (somatostatin), perisomatic (parvalbumin), and interneuron‐selective (calretinin) inhibition, as well as an overall indicator (GAD67) of interneuron distribution across all major hippocampal subfields. Our results indicate that kindling produces selective effects on the number and morphology of different functional classes of GABAergic interneurons. In particular, limbic kindling appears to enhance dendritic inhibition, indicated by a greater number of somatostatin‐immunoreactive (‐ir) cells in the CA1 pyramidal layer and robust morphological sprouting in the dentate gyrus. We also found a reduction in the number of interneuron‐selective calretinin‐ir cells in the dentate gyrus of hippocampal‐kindled rats, which suggests a possible reduction of synchronized dendritic inhibition. In contrast, perisomatic inhibition indicated by parvalbumin immunoreactivity appears to be largely resilient to the effects of kindling. Finally, we found a significant induction in the number of GAD67‐cells in caudate‐kindled rats in the dentate gyrus and CA3 hippocampal subfields. Taken together, our results demonstrate that kindling has subfield‐selective effects on the different functional classes of hippocampal GABAergic interneurons. J. Comp. Neurol. 525:389–406, 2017. © 2016 Wiley Periodicals, Inc.  相似文献   

17.
Studies have shown that the natural flavonoid luteolin has neurotrophic activity. In this study, we investigated the effect of luteolin in a mouse model of Down syndrome. Ts65 Dn mice, which are frequently used as a model of Down syndrome, were intraperitoneally injected with 10 mg/kg luteolin for 4 consecutive weeks starting at 12 weeks of age. The Morris water maze test was used to evaluate learning and memory abilities, and the novel object recognition test was used to assess recognition memory. Immunohistochemistry was performed for the neural stem cell marker nestin, the astrocyte marker glial fibrillary acidic protein, the immature neuron marker DCX, the mature neuron marker NeuN, and the cell proliferation marker Ki67 in the hippocampal dentate gyrus. Nissl staining was used to observe changes in morphology and to quantify cells in the dentate gyrus. Western blot assay was used to analyze the protein levels of brain-derived neurotrophic factor(BDNF) and phospho-extracellular signal-regulated kinase 1/2(p-ERK1/2) in the hippocampus. Luteolin improved learning and memory abilities as well as novel object recognition ability, and enhanced the proliferation of neurons in the hippocampal dentate gyrus. Furthermore, luteolin increased expression of nestin and glial fibrillary acidic protein, increased the number of DCX~+ neurons in the granular layer and NeuN~+ neurons in the subgranular region of the dentate gyrus, and increased the protein levels of BDNF and p-ERK1/2 in the hippocampus. Our findings show that luteolin improves behavioral performance and promotes hippocampal neurogenesis in Ts65 Dn mice. Moreover, these effects might be associated with the activation of the BDNF/ERK1/2 pathway.  相似文献   

18.
The rat dentate gyrus is usually described as relatively homogeneous. Here, we present anatomic and physiological data which demonstrate that there are striking differences between the supra- and infrapyramidal blades after status epilepticus and recurrent seizures. These differences appear to be an accentuation of a subtle asymmetry present in normal rats. In both pilocarpine and kainic acid models, there was greater mossy fiber sprouting in the infrapyramidal blade. This occurred primarily in the middle third of the hippocampus. Asymmetric sprouting was evident both with Timm stain as well as antisera to brain-derived neurotrophic factor (BDNF) or neuropeptide Y (NPY). In addition, surviving NPY-immunoreactive hilar neurons were distributed preferentially in the suprapyramidal region of the hilus. Extracellular recordings from infrapyramidal sites in hippocampal slices of pilocarpine-treated rats showed larger population spikes and weaker paired-pulse inhibition in response to perforant path stimulation relative to suprapyramidal recordings. A single stimulus could evoke burst discharges in infrapyramidal granule cells but not suprapyramidal blade neurons. BDNF exposure led to spontaneous epileptiform discharges that were larger in amplitude and longer lasting in the infrapyramidal blade. Stimulation of the infrapyramidal molecular layer evoked larger responses in area CA3 than suprapyramidal stimulation. In slices from the temporal pole, in which anatomic evidence of asymmetry waned, there was little evidence of physiological asymmetry either. Of interest, some normal rats also showed signs of greater evoked responses in the infrapyramidal blade, and this could be detected with both microelectrode recording and optical imaging techniques. Although there were no signs of hyperexcitability in normal rats, the data suggest that there is some asymmetry in the normal dentate gyrus and this asymmetry is enhanced by seizures. Taken together, the results suggest that supra- and infrapyramidal blades of the dentate gyrus could have different circuit functions and that the infrapyramidal blade may play a greater role in activating the hippocampus.  相似文献   

19.
Brain-derived neurotrophic factor (BDNF) is a member of a family of related neurotrophic proteins which includes nerve growth factor (NGF) and hippocampus-derived neurotrophic factor/neurotrophin-3 (NT-3). To obtain information regarding possible roles for BDNF during postnatal brain development, we have examined the temporal and spatial expression of this trophic factor using in situ hybridization. In specific neocortical regions BDNF mRNA-expressing cells were seen at 2 weeks of age and thereafter. One particular neuronal cell type strikingly labelled was the inverted pyramidal cell population in the deep layers of parietotemporal cortex. In pyriform and cingulate cortices, BDNF mRNA was detected at postnatal day 1 and 1 week of age, respectively, with increasing levels during ontogeny. Several forebrain regions, including the thalamic anterior paraventricular nucleus, hypothalamic ventromedial nucleus as well as the preoptic area, contained moderate levels of BDNF mRNA throughout development. BDNF mRNA was detected transiently in several brainstem structures, notably in the substantia nigra and interpeduncular nucleus. Expression of this trophic factor in hippocampus was relatively low in the early neonatal brain, but attained high levels in the CA3 and CA4 regions as well as in the dentate gyrus by 2 weeks of age. At this early age, which is still during the period of neurogenesis in the dentate gyrus, labelling was restricted to the outer layer, which contained cells with a more mature appearance. However, by 3 weeks of age labelling was distributed throughout the granule cell layer. Our results show both transient and persistent expression of BDNF mRNA in various regions of the developing rat brain and suggest that there is a caudal to rostral gradient of BDNF expression during postnatal brain development, which may be correlated to neuronal maturation.  相似文献   

20.
While neural stem/progenitor cells (NSCs) in the dentate gyrus of the hippocampus have been extensively characterized, the behavior of NSCs in the CA1 and CA3 subfields of the hippocampus is mostly unclear. Therefore, we compared the in vitro behavior of NSCs expanded from the micro-dissected CA1 and CA3 subfields of postnatal day (PND) 4 and 12 Fischer 344 rats. A small fraction (∼1%) of dissociated cells from CA1 and CA3 subfields of both PND 4 and 12 hippocampi formed neurospheres in the presence of EGF and FGF-2. A vast majority of neurosphere cells expressed NSC markers such as nestin, Sox-2 and Musashi-1. Differentiation assays revealed the ability of these NSCs to give rise to neurons, astrocytes, and oligodendrocytes. Interestingly, the overall neuronal differentiation of NSCs from both subfields decreased with age (23–28% at PND4 to 5–10% at PND12) but the extent of oligodendrocyte differentiation from NSCs increased with age (24–32% at PND 4 to 45–55% at PND 12). Differentiation of NSCs into astrocytes was however unchanged (40–48%). Furthermore, NSCs from both subfields gave rise to GABA-ergic neurons including subclasses expressing markers such as calbindin, calretinin, neuropeptide Y and parvalbumin. However, the fraction of neurons that expressed GABA decreased between PND4 (59–67%) and PND 12 (25–38%). Additional analyses revealed the presence of proliferating NSC-like cells (i.e. cells expressing Ki-67 and Sox-2) in different strata of hippocampal CA1 and CA3 subfields of both PND4 and PND 12 animals. Thus, multipotent NSCs persist in both CA1 and CA3 subfields of the hippocampus in the postnatal period. Such NSCs also retain their ability to give rise to both GABA-ergic and non-GABA-ergic neurons. However, their overall neurogenic potential declines considerably in the early postnatal period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号