首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The dc conductivities (α) of PbO-P2O5-V2O5 glasses containing up to 80 mol% V2O5 were measured at T = 100°C to T = 10°C below the glass transition temperature. Dielectric constants at 1 MHz, densities, and the fraction of reduced V ion were measured at room temperature. The conduction mechanism of glasses containing >10 mol% V2O5 was considered to be small-polaron hopping, as previously reported for other vanadate glasses. The temperature dependence of α was exponential, with α= (αo/ T ) exp(− W/kT ). When the V2O5 content was ≥50 mol%, W decreased and α increased with increasing V2O5 content, and the adiabatic approximation could be applied. In the composition range between 10 and 50 mol% V2O5, α increased with increasing V2O5 content, but W varied little. In this region, the hopping conduction was characterized as nonadiabatic. The effect of dielectric constants and V ion spacing on W is discussed.  相似文献   

2.
The critical cooling rate and fluorescence properties of lithium (Li) disilicate glasses and glass–ceramics, doped with 2.0 wt% CeO2 and with up to 0.7 wt% V2O5 and 0.3 wt% MnO2 added as colorants, were investigated. The critical cooling rates, R c, of glass melts were determined using differential thermal analysis and were found to be dependent on the relative concentrations of V2O5 and MnO2, decreasing from 25±3° to 16±3°C/min. Annealed glasses were heat treated first to 670°C, and then to 850°C to form Li metasilicate and Li disilicate glass–ceramics, respectively. The fluorescence intensities of the Ce-doped glasses and glass–ceramics decrease by a factor of 100 with the addition of the transition metal oxides. This optical quenching effect is explained by the association of the Ce3+ ions with the transition metal ions in the residual glassy phase of the glass–ceramics.  相似文献   

3.
The effect of the addition of V2O5 on the structure, sintering and dielectric properties of M -phase (Li1+ x − y Nb1− x −3 y Ti x +4 y )O3 ceramics has been investigated. Homogeneous substitution of V5+ for Nb5+ was obtained in LiNb0.6(1− x )V0.6 x Ti0.5O3 for x ≤ 0.02. The addition of V2O5 led to a large reduction in the sintering temperature and samples with x = 0.02 could be fully densified at 900°C. The substitution of vanadia had a relatively minor adverse effect on the microwave dielectric properties of the M -phase system and the x = 0.02 ceramics had [alt epsilon]r= 66, Q × f = 3800 at 5.6 GHz, and τf= 11 ppm/°C. Preliminary investigations suggest that silver metallization does not diffuse into the V2O5-doped M -phase ceramics at 900°C, making these materials potential candidates for low-temperature cofired ceramic (LTCC) applications.  相似文献   

4.
The dc conductivities (σ) of V2O5-P2O5 glasses containing up to 30 mol% TiO2 were measured at T=100° to ∼10°C below the glass-transition temperature. Dielectric constants from 30 to 106 Hz, densities, and the fraction of reduced V ion were measured at room temperature. The conduction mechanism was considered to be small polaron hopping between V ions, as previously reported for V2O5-P2O5 glass. The temperature dependence of σ was exponential with σ = σ0 exp(-W/kT ) in the high-temperature range. When part of the P2O5 was replaced by TiO2,σ increased and W decreased. The hopping energy depended on the reciprocal dielectric constant which, in this case, increased with increasing TiO2 content.  相似文献   

5.
The effects of the addition of V2O5 on the sintering behavior, microstructure, and microwave dielectric properties of 5Li2O–1Nb2O5–5TiO2 (LNT) ceramics have been investigated. With low-level doping of V2O5 (≤3 wt%), the microstructure of the LNT ceramic changed from a special two-level intergrowth structure into a two-phase composite structure with separate grains. And the sintering temperature of the LNT ceramics could be lowered to around 900°C by adding a small amount of V2O5 without much degradation in microwave dielectric properties. Typically, better microwave dielectric properties of ɛr=41.7, Q × f =7820 GHz, and τ f =45 ppm/°C could be obtained for the 1 wt% V2O5-doped ceramics sintered at 900°C.  相似文献   

6.
The magnetic properties and microstructures of the vanadium phosphate glass system over the composition range 60 to 90 mol% V2O5 were investigated to study magnetic ordering in the glass and the effect of microstructure on its magnetic properties. Direct antiferromagnetic coupling between V4+ ions in the glassy matrix exists, and a transition temperature near - 70°C was observed. As-cast glasses with high V2O5 concentrations separated into two glassy phases; this separation increased the ESR line width as a result of inhomogeneity broadening. The separation, which concentrated the vanadium ions in a vanadium-rich phase, caused a hysteresis in the plot of ESR line intensity vs temperature at the transition temperature. Reduction of the vanadium ions by dextrose added to the melt enhanced phase separation and resulted in weak antiferromagnetic transitions at +70° and -120°C, the Neel temperatures of VO2 and V2O3, respectively.  相似文献   

7.
The effects of V2O5 addition on the sintering behavior, microstructure, and the microwave dielectric properties of 5Li2O–0.583Nb2O5–3.248TiO2 (LNT) ceramics have been investigated. With addition of low-level doping of V2O5 (≤2 wt%), the sintering temperature of the LNT ceramics could be lowered down to around 920°C due to the liquid phase effect. A secondary phase was observed at the level of 2 wt% V2O5 addition. The addition of V2O5 does not induce much degradation in the microwave dielectric properties but lowers the τf value to near zero. Typically, the excellent microwave dielectric properties of ɛr=21.5, Q × f =32 938 GHz, and τf=6.1 ppm/°C could be obtained for the 1 wt% V2O5-doped sample sintered at 920°C, which is promising for application of the multilayer microwave devices using Ag as an internal electrode.  相似文献   

8.
Crystallization of V2O3 from V2O3P2O3, glasses containing 0 to 9 mol% B2O3, during heat treatment in the range 220° to 410°C, caused progressive micro structural changes which dramatically affected the electronic conductivity (γ), the activation energy for conduction ( W ), and the resistance to chemical attack. All compositions were ≊83% crystalline after heating to 410°C. As a result, the values of γ and W were almost identical to those observed for pure polycrystalline V2O5.  相似文献   

9.
The evaporative decomposition of solutions method was used to form V2O5. Spraying above the congruent melting temperature of V2O5 (690°C) resulted in dense spherical particles with a smooth surface. Spraying below the V2O5 melting temperature yielded porous V2O5 powder with a rough surface. Reduction of the V2O5 to V2O3 was done in a H2 atmosphere. Spherical V2O3 powder was attained when the reduction temperature was low enough to reduce the V2O5 surface before partial sintering (necking) between V2O5 particles occurred. The resulting V2O3 particle size was smaller than the precursor V2O5 powder as expected by the differences in densities between V2O5 ( p = 3.36 g/cm3) and V2O3 ( p = 4.87 g/cm3).  相似文献   

10.
Phase relations within the "V2O3–FeO" and V2O3–TiO2 oxide systems were determined using the quench technique. Experimental conditions were as follows: partial oxygen pressures of 3.02 × 10−10, 2.99 × 10−9, and 2.31 × 10−8 atm at 1400°, 1500°, and 1600°C, respectively. Analysis techniques that were used to determine the phase relations within the reacted samples included X-ray diffractometry, electron probe microanalysis (energy-dispersive spectroscopy and wavelength-dispersive spectroscopy), and optical microscopy. The solid-solution phases M2O3, M3O5, and higher Magneli phases (M n O2 n −1, where M = V, Ti) were identified in the V2O3–TiO2 system. In the "V2O3–FeO" system, the solid-solution phases M2O3 and M3O4 (where M = V, Ti), as well as liquid, were identified.  相似文献   

11.
Superionic conductor α-AgI, which is stable only above 147°C, was successfully frozen at ambient temperature in AgI─Ag2O─MxOy (MxOy= WO3, V2O5) glass matrices by a twin-roller-quenching technique. The system with WO3, provided the larger composition regions where α-AgI was frozen at ambient temperature, compared to the system with V2O5. The matrix glasses with higher glass-transition temperatures had a stronger effect in depressing the α–β transformation of AgI. The α-AgI-frozen samples exhibited extremely large conductivities of 3 × 10−2-5 × 10−2S.cm−1at 25°C.  相似文献   

12.
Compound formation in the system Ta2O5–V2O5 has been studied using amorphous materials prepared by the simultaneous hydrolysis of tantalum and vanadyl alkoxides. Three compounds exist in this system: 9Ta2O5· V2O5, 9Ta2O5·2V2O5, and Ta2O5·V2O5 (TaVO5). Solid solutions of δ-Ta2O5 are formed at low temperatures up to 10 mol% V2O5. They transform to β-Ta2O5 solid solutions at higher temperatures; the transformation temperature falls with increasing V2O5 A new compound, 9Ta2O5·V2O5, 670° to 755°. It has an orthorhombic unit cell with a = 0.7859 nm, b = 1.733 nm, and c = 1.766 nm. Orthorhombic TaVO5 crystallized at 535° to 560° decomposes into 9Ta2O5°V2O5 at 1010°.  相似文献   

13.
Infrared spectra of binary and ternary compositions in the glassy state and in the devitrified crystalline state in the system GeO2-P4O10-V2O5 were studied and compared with infrared spectra of crystalline spinels, which are known to contain V5+ ions in sixfold coordination. Results indicated that the fundamental vibration frequency of the V—O bond occurred at wave number 1015 cm−1. The spectra also provided evidence that the V5+ ion existed in sixfold coordination in the glassy state, as well as in the devitrified crystalline state, and that the VO6 octahedron retained its identity even at low concentrations and melting temperatures of 1450°C. Conductivity measurements indicated that, as the concentration of V2O5 decreased below the critical range of 5 to 10 mole %, there was an abrupt loss in the electronic conductivity of the glasses; the conductivity decreased with increasing concentration of the lower valence states of vanadium. A mechanism of conduction compatible with the structure of glasses in the system is suggested to explain these observations.  相似文献   

14.
Phase equilibria in the system SrO-CdO-V2O5 in air were established from data obtained by DTA, quenching, and high-temperature solid-state reaction experiments. The SrO-V2O5 boundary system contains 4 compounds at SrO to V2O5 molar ratios of 4:1, 3:1, 2:1, and 1:1. A fifth compound with a molar composition of ∼10:3 with the apatite crystal structure was also found; it may, however, be a hydroxyapatite phase. The CdO-V2O5 system contains the compounds 3CdO·V2O5, 2CdO·V2O5, and CdO·V2O5. The latter compound exhibits a rapid reversible polymorphic transition at 180°C. Complete solid solubility exists in the SrO-CdO system. The most probable compatibility relations were determined from the data available for the SrO-CdO-V2O5 ternary system. Limited solid solubility exists between SrO·V2O5 and CdO·V2O5, and the high-temperature CdO·V2O5 polymorph is stabilized to room temperature by solid solution of SrO·V2O5. Evidence for the existence of 2 ternary compounds with limited local solid solubility is also presented.  相似文献   

15.
The effect of glass addition on the properties of BaO–TiO2-WO3 microwave dielectric material N-35, which has Q = 5900 and K = 35 at 7.2 GHz for samples sintered at 1360°C, was investigated. Several glasses including B2O3, SiO2, 5ZnO–2B2O3, and nine other commercial glasses were selected for this study. Among these glasses, one with a 5 wt% addition of B2O3 to N-35, when sintered at 1200°C, had the best dielectric properties: Q = 8300 and K = 34 at 8.5 GHz. Both Q and K increased with firing temperature as well as with density. The Q of N-35, when sintered with a ZnO–B2O3 glass system, showed a sudden drop in the sintering temperature to about 1000°C. The results of XRD, thermal analysis, and scanning electron microscopy indicated that the chemical reaction between the dielectric ceramics and glass had a greater effect on Q than on the density. The effects of the glass content and the mixing process on the densification and microwave dielectric properties are also presented. Ball milling improved the densification and dielectric properties of the N-35 sintered with ZnO–B2O3.  相似文献   

16.
Vanadium tetroxide and vanadium pentoxide were prepared and some of their physical properties were measured. A brief survey was then made of some of their binary oxide compounds. Various mixtures of V2O4 or V2O6 and BeO, MgO, CaO, SrO, BaO, Al2O3, SiO2, TiO2, CeO2, ZrO2, Nb2O6, and U3O8 were heated. When compounds were formed, some of their properties were determined. Refractoriness, thermal expansion, and optical properties were considered of special interest. Vanadium pentoxide was found to have a linear thermal expansion of only 0.63 × 10−6 per °C. from 30° to 450°C.  相似文献   

17.
EPR spectra of lead silicate glasses doped with small amounts of V2O5 were studied at −150°C to room temperature. Only the glasses with the higher SiO2 contents produced EPR signals. The spin Hamiltonian parameters are characteristic of the V(IV) species in axial symmetry. The values of g, g ⊥, A, and B indicate that V(IV) is present as VO2plus; in a tetragonally distorted octahedral site. This ion probably does not enter the SiO2 network but rather behaves as a modifier cation.  相似文献   

18.
The humidity-sensitive characteristics of La2O3–TiO2–V2O5 glass-ceramics were investigated as a function of additive amount of V2O5 to the precursor glass and the heating temperature of the glass to iduce phase separation. The microstructure of each glass-ceramic was strongly dependent upon the heating temperature. The specific impedance was lowered by increasing the amount of V2O5 additive. Among the elements studied, the LTV 2–2 element, which was prepared from as-cast glass, consisted of Na2O:B2O3:La2O3: TiO2: V2O5= 8.3:32.9:7.2:31.6:20.0 (molar ratio) after heating at 450°C for 12 h and subsequent leaching at 85°C for 24 h, and was found to be the most suitable material from the standpoint of humidity sensitivity, measurability, and response time.  相似文献   

19.
Glasses in the system Pb0–Al2O3-B2O3-SiO2 are chemically stable over a wide composition range and have very desirable electrical characteristics such as high electrical resistivities and activation energies for conduction. Variations in these electrical properties were studied as a function of composition changes within the system, the object being to identify the role of the constituent oxides in achieving the highest activation energy and resistivity values consistent with moderate preparation temperatures. Measurements were made in the temperature range 25° to 400°C on carefully prepared glass disks in which the individual oxide components or different oxide ratios such as PbO/SiO2, Al2O3/SiO2, and BsO3/SiO1 were systematically varied. The activation energy and resistivity values obtained ranged from 1.2 to 1.6 ev and 10° to 1014 ohm-cm, with dielectric constants ranging from 9 to 19 and densities from 4.30 to 4.50 g/cmY. Indications were that, for the composition range studied, the behavior manifested was basically that of the binary PbO-SO2 glass with additions of Al2O3 or B2O3, even in small concentrations, sharply increasing the activation energy for conduction while lowering the density.  相似文献   

20.
The compositional range for glass formation below 1600°C in the Sm2O3─Al2O3─SiO2 system is (9–25)Sm2O3─(10–35)Al2O3─(40–75)SiO2 (mol%). Selected properties of the Sm2O3─Al2O3─SiO2 (SmAS) glasses were evaluated as a function of composition. The density, refractive index, microhardness, and thermal expansion coefficient increased as the Sm2O3 content increased from 9 to 25 mol%, the values exceeding those for fused silica. The dissolution rate in 1 N HCl and in deionized water increased with increasing Sm2O3 content and with increasing temperature to 70°C. The transformation temperature ( T g ) and dilatometric softening temperature ( T d ) of the SmAS glasses exceeded 800° and 850°C, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号