首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
A simulated textile effluent (STE) was generated for use in laboratory biotreatment studies; this effluent contained one reactive azo dye, PROCION Red H‐E7B (1.5 g dm−3); sizing agent, Tissalys 150 (1.9 g dm−3); sodium chloride (1.5 g dm−3) and acetic acid (0.53 g dm−3) together with nutrients and trace elements, giving a mean COD of 3480 mg dm−3. An inclined tubular anaerobic digester (ITD) was operated for 9 months on the STE and a UASB reactor for 3 months. For a 57 day period anaerobic effluent from two reactors, a UASB and an ITD, was mixed and treated in an aerobic stage. In days 77–247 68% of the true colour of PROCION Red H‐E7B was removed by anaerobic treatment with no colour removal aerobically and up to 37% COD was removed anaerobically, with a corresponding BOD removal of 71%. For combined anaerobic and aerobic treatment a mean COD removal of 57% and BOD removal of 86% was achieved. Operation of the ITD at a 2.8 day HRT (volumetric loading rate (B v) 1.24 g COD dm−3day−1) and the UASB at a 2 day HRT (B v 1.74 g COD dm−3day−1) gave comparable COD removals but the UASB gave better true colour removal. Effluent from the combined process operating on this simulated waste still contained an average 1500 mg COD dm−3, and further treatment would be required to meet consent standards. © 1999 Society of Chemical Industry  相似文献   

2.
In this study, two full‐scale upflow anaerobic sludge blanket (UASB) reactors, namely TUASB and CUASB, at the wastewater treatment plants of the Tekirdaǧ Alcohol (Raki) and Canakkale Alcohol (Cognac) distilleries were investigated in terms of performance, acetoclastic methanogenic capacity and microbial composition. The results were compared with a previously studied other UASB reactor (IUASB) at the wastewater treatment plant of the Istanbul Alcohol (Raki) Distillery from which the two reactors (TUASB and CUASB) were seeded. The IUASB reactor performed well achieving COD removal efficiencies of no lower than 85% at organic logding rates (OLRs) in the range of 6–11 kg COD m−3 day−1 between 1996 and 2001. During the last one year of operation, between 2000 and 2001, performance of the CUASB reactor in terms of COD removal efficiency was 70–80% at OLRs in a range of 1–4.5 kg COD m−3 day−1 whereas it was 60–80% at OLRs in a range of 2.5–8.5 kg COD m−3 day−1 in the TUASB reactor. At the end of year 2000, specific methanogenic activity (SMA) tests were carried out to determine potential loading capacity and optimum operating conditions of the IUASB, CUASB and TUASB reactors. The potential methane production (PMP) rates of the CUASB, IUASB and TUASB reactors were measured as 230 cm3 CH4 gVSS−1 day−1, 350 cm3 CH4 gVSS−1 day−1 and 376 cm3 CH4 gVSS−1 day−1 respectively. When the PMP rates were compared with actual methane production (AMP) rates obtained from the three UASB reactors, AMP/PMP ratios were evaluated to be 0.18, 0.12 and 0.13 for CUASB, TUASB and IUASB reactors respectively. This showed that the CUASB, TUASB and IUASB reactors were using only 18%, 12% and 13% of their potential acetoclastic methanogenic capacity respectively. These results can be interpreted that the three UASB reactors were underloaded compared with their potential acetoclastic methanogenic capacities. It was, therefore, recommended that the three UASB reactors should be loaded at higher organic loading rates or sludge withdrawn in order to maintain an AMP/PMP ratio of 0.6–0.7, which can ensure desired reactor performance with safer operation. Results of epifluoresence microscopic examinations showed that the percentage of total autofluorescent methanogens was approximately 30% of the total population in sludges from the TUASB and IUASB reactors whereas it was 20% in sludge from the CUASB reactor. The two UASB reactors treating raki distillery wastewaters contained sludges having a higher percentage of autofluorescent methanogenic population and higher acetoclastic methanogenic activity. Copyright © 2004 Society of Chemical Industry  相似文献   

3.
The feasibility of the expanded granular sludge bed (EGSB) system for the treatment of malting waste water under psychrophilic conditions was investigated by operating a pilot-scale 225·5 dm3 EGSB-reactor system in the temperature range from 13 to 20°C. The concentration of chemical oxygen demand (COD) in the malting waste water was between 282 and 1436 mg dm−3. The anaerobically biodegradable COD of the waste water was about 73%, as determined in the batch bioassays. During reactor operation at 16°C, the COD removal efficiencies averaged about 56%, at organic loading rates (OLR) ranging between 4·4 and 8·8 kg COD m−3 day−1 and a hydraulic retention time (HRT) of approximately 2·4 h. At 20°C, removal efficiencies were approximately 66% and 72%, respectively, at OLRs of 8·8 and 14·6 kg COD m−3 day−1, corresponding to HRTs of 2·4 and 1·5 h. The specific methanogenic activity with the sludge from the reactor, assessed on acetate and volatile fatty acids mixture as substrates, significantly increased (80%) in time, indicating an enrichment of methanogens and acetogens even at the low temperatures applied. These findings are of considerable practical importance because they indicate that anaerobic treatment of low strength waste waters at low temperature might become a feasible option. © 1997 SCI.  相似文献   

4.
Four anaerobic reactors were studied for the purposes of this work: two anaerobic fluidized bed reactors (AFBR) using diatomaceous earth and granular activated carbon as immobilization media (R1 and R2, respectively), a packed-bed reactor (R3), and a suspended growth reactor (R4). A nutrient-supplemented wastestream with glucose as the main carbon source was treated. Successful reactor start-up was achieved for all four anaerobic reactors. These reactors were able to handle organic loading rates of more than 12000, 7500, 6000 and 650 mg dm−3 day−1 for R1–R4, respectively. Anaerobic fluidized bed reactors were less affected by interruptions and adverse operating conditions than were packed-bed and suspended growth reactors. Immobilized cell reactors and, specifically, AFBRs were clearly superior to conventional high-rate digesters. This enhanced performance is primarily due to the very high cell retention ability of such reactors. High total organic carbon (TOC) removal efficiencies were achievable under pseudo-steady state operation. Removal efficiencies above 98% were observed for all reactors. Specific biogas production rates of 1·5–1·7, 1·4–1·7, 1·1–1·5 and 0·9–1·3 dm3 of methane per gram of TOC removed for R1–R4, respectively, were attained. A consistent biogas methane content of 52·5–55·9% was observed. Biomass concentrations of 84, 91, 21 and 1·9 g VS dm−3 were measured for R1–R4, respectively. Extremely high biomass concentrations in AFBRs were possible due to the high available specific surface area. © 1997 SCI.  相似文献   

5.
This work describes a comparative study of staged and non‐staged anaerobic filters for treating a synthetic dairy waste. The effect of decreasing the hydraulic retention time from 2 days to 10 h at a constant substrate concentration of 9 g COD dm−3 by applying lateral feedings in the staged digester was evaluated with respect to overall reactor performance, in comparison with a conventional up‐flow anaerobic filter. There was no advantage on the use of a multi‐feed staged system under the operating conditions tested. The overall performance and the microbial activity segregation were similar for both configurations. The microbial aggregates present in both digesters, particularly in the top sections, changed significantly in biological, physical and morphological properties. The presence of aggregates larger than 4 mm equivalent diameter in those sections did not prevent a strong washout phenomenon. An effect of disintegration attributed to biogas accumulation and release was observed, when those large particles become smaller and their surface became rougher. Due to biomass accumulation, at the end of the trial period, only 40% of the total volume was occupied by the liquid phase. © 2000 Society of Chemical Industry  相似文献   

6.
The upflow anaerobic sludge blanket (UASB) has been used successfully to treat a variety of industrial wastewaters. It offers a high degree of organics removal, low sludge production and low energy consumption, along with energy production in the form of biogas. However, two major drawbacks are its long start‐up period and deficiency of active biogranules for proper functioning of the process. In this study, the influence of a coagulant polymer on start‐up, sludge granulation and the associated reactor performance was evaluated in four laboratory‐scale UASB reactors. A control reactor (R1) was operated without added polymer, while the other three reactors, designated R2, R3 and R4, were operated with polymer concentrations of 5 mg dm?3, 10 mg dm?3 and 20 mg dm?3, respectively. Adding the polymer at a concentration of 20 mg dm?3 markedly reduced the start‐up time. The time required to reach stable treatment at an organic loading rate (OLR) of 4.8 g COD dm?3 d?1 was reduced by more than 36% (R4) as compared with both R1 and R3, and by 46% as compared with R2. R4 was able to handle an OLR of 16 g COD dm?3 d?1 after 93 days of operation, while R1, R2 and R3 achieved the same loading rate only after 116, 116 and 109 days respectively. Compared with the control reactor, the start‐up time of R4 was shortened by about 20% at this OLR. Granule characterization indicated that the granules developed in R4 with 20 mg dm?3 polymer exhibited the best settleability and methanogenic activity at all OLRs. The organic loading capacities of the reactors were also increased by the addition of polymer. The maximum organic loading of the control reactor (R1) without added polymer was 19.2 g COD dm?3 d?1, while the three polymer‐assisted reactors attained a marked increase in organic loading of 25.6 g COD dm?3 d?1. Adding the cationic polymer could result in shortening of start‐up time and enhancement of granulation, which may in turn lead to improvement in the efficiency of organics removal and loading capacity of the UASB system. Copyright © 2004 Society of Chemical Industry  相似文献   

7.
The objective of this study was to develop an integrated process for simultaneous removal of carbon, nitrogen and phosphorus from industrial wastewaters. The process consisted of a-two step anaerobic digestion reactor, for carbon removal, coupled with a sequencing batch reactor (SBR) for nutrient removal. In the proposed process, carbon is eliminated into biogas by anaerobic digestion: acidogenesis and methanogenesis. The volatile fatty acids (VFA) produced during the first step of anaerobic digestion can be used as electron donors for both dephosphatation and denitrification. In the third reactor (SBR) dephosphatation and nitrification are induced through the application of an anaerobic–aerobic cycle. This paper describes the first trials and experiments on the SBR and a period of 210 days during which the SBR was connected to the acidogenic and methanogenic reactors. It was shown that nitrification of ammonia took place in the SBR reactor, during the aerobic phase. Furthermore, denitrification and VFA production were achieved together in the acidogenic reactor, when the efflux of nitrates from the SBR reactor was added to the first reactor influx. The proposed process was fed with a synthetic industrial wastewater, the composition of which was: total organic carbon (TOC)=2200 mg dm−3, total Kjeldahl nitrogen (TKN)=86 mg dm−3, phosphorus under phosphate form (P-PO4)=20 mg dm−3. In these conditions, removals of carbon, nitrogen and phosphorus were 98%, 78% and 95% respectively. The results show that the combination of the two-step anaerobic digestion reactor and an SBR reactor is effective for simultaneous carbon, nitrogen and phosphorus removal. Reactor arrangements enabled zones of bacterial populations to exist. Complete denitrification occurred in the acidogenic reactor and hence the anaerobic activity was not reduced or inhibited by the presence of nitrate, thus allowing high TOC removal. Stable phosphorus release and phosphorus uptake took place in the SBR after coupling of the three reactors. A fast-settling compact sludge was generated in the SBR with the operational conditions applied, thus giving good separation of supernatant fluid. The benefits from this process are the saving of (i) an external carbon source for denitrification and phosphorus removal, (ii) a reactor for the denitrification step. © 1998 Society of Chemical Industry  相似文献   

8.
Aerobic degradation or polishing is an essential step in the combined anaerobic/aerobic treatment of wastewater. In this study, a type of porous glass beads was used for immobilization of microbial cells in a three‐phase aerobic fluidized bed reactor (AFBR) with an external liquid circulation. The effects of superficial gas and liquid velocities on bed expansion, solid and gas hold‐ups and specific oxygen mass transfer rate, kLa, were investigated. A tracer study showed that the mixing and flow pattern in the 8 dm3 reactor could be simulated by a non‐ideal model of two continuous stirred tank reactors (CSTRs) in series. By treating an effluent from an upflow anaerobic sludge blanket (UASB) digester, the distribution of suspended and immobilized biomass in the reactor as well as the kinetics of COD removal were determined. The specific oxygen mass transfer rate, kLa, at a superficial gas velocity of 0.7 cm s−1 dropped by about 30% from 32 h−1 in tap water to 22 h−1 after a carrier load of 15% (v/v) was added. The measured kLa further dropped by about 20% to 18 h−1 in the wastewater, a typical value of the bubbling fermenters with no stirring. Compared with the aerobic heterotrophs under optimum growth conditions, the microbes in this reactor which was fed with anaerobic effluent plus biomass behaved like oligotrophs and showed slow specific COD removal rates. This might be attributed to the presence of a significant amount of obligate anaerobes and facultative organisms in the aerobic reactor. This was confirmed by a relatively low intrinsic oxygen uptake rate of the microbial population in the reactor, 94 mg O2 dm−3 h−1 or 19 mg O2g VS−1 h−1. © 1999 Society of Chemical Industry  相似文献   

9.
A 450 dm3 pilot‐scale upflow anaerobic sludge blanket (UASB) reactor was used for the treatment of a fermentation‐based pharmaceutical wastewater. The UASB reactor performed well up to an organic loading rate (OLR) of 10.7 kg COD m?3 d?1 at which point 94% COD removal efficiency was achieved. This high treatment efficiency did not continue, however and the UASB reactor was then operated at lower OLRs for the remainder of the study. Specific methanogenic activity (SMA) tests were, therefore, carried out to determine the potential loading capacity of the UASB reactor. For this purpose, the SMA tests were carried out at four different initial acetate concentrations, namely 500 mg dm?3, 1000 mg dm?3, 1500 mg dm?3 and 2000 mg dm?3 so that substrate limitation could not occur. The results showed that the sludge sample taken from the UASB reactor (OLR of 6.1 kg COD m?3 d?1) had a potential acetoclastic methane production (PMP) rate of 72 cm3 CH4 g?1 VSS d?1. When the PMP rate was compared with the actual methane production rate (AMP) of 67 cm3 CH4 g?1 VSS d?1 obtained from the UASB reactor, the AMP/PMP ratio was found to be 0.94 which ensured that the UASB reactor was operated using its maximum potential acetoclastic methanogenic capacity. In order to achieve higher OLRs with desired COD removal efficiencies it was recommended that the UASB reactor should be loaded with suitable OLRs pre‐determined by SMA tests. © 2001 Society of Chemical Industry  相似文献   

10.
The performance of anaerobic hybrid reactors treating an organic solvent-containing synthetic pharmaceutical wastewater was evaluated under various wastewater volumetric loading rates and influent compositional changes. The biodegradation, toxicity and treatability of the target C3 and C4 solvents, tert-butanol, isopropanol, isobutanol, sec-butanol and ethyl acetate, were examined. At a hydraulic retention time (HRT) of 2 days and volumetric loading rates ranging from 3·5 to 4·5 kg COD m−3 day−1, the reactors achieved total and soluble COD removal efficiencies of 97–99% in less than five times the HRT. These removal rates were achieved following the introduction of target solvents not previously supplied to the reactors. However, inadequate removal of tert-butanol resulted in a decrease in the soluble COD removal efficiency to 58%. Bacterial enrichments from the reactor biomass using tert-butanol as the sole substrate proved unsuccessful, confirming that tert-butanol is poorly degradable anaerobically. Inclusion of a trace metal cocktail in the feed did not affect steady-state reactor performance, but was beneficial during changes in the influent composition. After 405 days of operation, the matrix-associated biomass contributed only a minor fraction (2–4%) of the total biomass present in both reactors. On takedown, the retained biomass present in the matrix-free section of both reactors was found to be granular in nature, despite the omission of trace elements from the influent to one of the AHRs. The specific methanogenic activity profile of the granular sludge from the trace element limited AHR was, however, significantly lower (α = 0·05) than that of the reference AHR.  相似文献   

11.
A study of the effect of organic loading rate on the performance of anaerobic digestion of two‐phase olive mill solid residue (OMSR) was carried out in a laboratory‐scale completely stirred tank reactor. The reactor was operated at an influent substrate concentration of 162 g chemical oxygen demand (COD) dm?3. The organic loading rate (OLR) varied between 0.8 and 11.0 g COD dm?3 d?1. COD removal efficiency decreased from 97.0% to 82.6% when the OLR increased from 0.8 to 8.3 g COD dm?3 d?1. It was found that OLRs higher than 9.2 g COD dm?3 d?1 favoured process failure, decreasing pH, COD removal efficiency and methane production rates (QM). Empirical equations described the effect of OLR on the process stability and the effect of soluble organic matter concentration on the total volatile fatty acids (TVFA)/total alkalinity (TAlk) ratio (ρ). The results obtained demonstrated that rates of substrate uptake were correlated with concentration of biodegradable COD, through an equation of the Michaelis–Menten type. The kinetic equation obtained was used to simulate the anaerobic digestion process of this residue and to obtain the theoretical COD degradation rates in the reactor. The small deviations obtained (equal to or lower than 10%) between values calculated through the model and experimental values suggest that the proposed model predicts the behaviour of the reactor accurately. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
The effect of a decrease in operating temperature on the performance of two 10 dm3 anaerobic baffled reactors (ABR) was examined in terms of steady state chemical oxygen demand (COD) removal efficiency. To minimise variations, and have a totally biodegradable feed, a synthetic carbohydrate (sucrose)–protein (meat extract) substrate was used. The reactors were operated at 20 h hydraulic retention time (HRT), 4 g dm−3 COD, and 35°C as a base-line condition. Because of their different histories, the reactors responded differently to a decrease in operating temperature to 25°C. Reactor 1 remained stable at 97% COD removal, whereas Reactor 2 decreased to 93% removal, but rose to 97% after adding an effluent recycle of 0·25. At 15°C, the efficiency of Reactor 1 dropped to 75%, while the removal of Reactor 2 declined to 83%, and no improvement in efficiency occurred with an effluent recycle at 0·25. At 25°C, the decreased rate of catabolism of the slow-growing syntrophs and methanogens resulted in a shift of the volatile fatty acids (VFA) peak to the second compartment. However, the biomass present in the reactor prevented VFAs breaking through in the effluent. Nevertheless, at 15°C VFAs were present in the effluent, perhaps due to the lower rates of metabolism and an increase in the Ks for VFAs. Finally, at 15°C part of the increase in the effluent COD was due to the enhanced production of soluble microbial products (SMP), or a decrease in their metabolism, with these compounds constituting some 10% of the inlet COD. © 1997 SCI.  相似文献   

13.
A kinetic study of the anaerobic digestion of soft drink wastewater was undertaken, using bioreactors containing various suspended supports (bentonite, zeolite, sepiolite, saponite and polyurethane foam), on to which the microorganisms effecting the purification were immobilized. Assuming the overall anaerobic digestion process conforms to first-order kinetics, the specific rate constants, K0, derived from the reactors with saponite and sepiolite (magnesium silicates) were approximately twice those from bentonite and zeolite (aluminium silicates) and almost five times higher than in the control reactor (without support); the polyurethane support showed an intermediate behaviour. The methanogenic activity increased linearly with COD load, with saponite and sepiolite supports showing the highest values. The average yield coefficient of methane was 325 cm3 CH4 STP g?1 COD and the percentage elimination of COD was 77·8%; these values were not significantly altered by the type of support used.  相似文献   

14.
In this work, the biodegradability of wastewater from a slaughterhouse located in Ke?an, Turkey, was studied under aerobic and anaerobic conditions. A very high total COD content of 7230 mg dm?3 was found, due to an inefficient blood recovery system. Low BOD5/COD ratio, high organic nitrogen and soluble COD contents, were in accordance with a high blood content. A respirometry test for COD fractionation showed a very low readily biodegradable fraction (SS) of 2%, a rapidly hydrolysable fraction (SH) of 51%, a slowly hydrolysable fraction (XS) of 33% and an inert fraction of 6%. Kinetic analysis revealed that hydrolysis rates were much slower than these of domestic sewage. The results underlined the need for an anaerobic stage prior to aerobic treatment. Tests with an anaerobic batch reactor indicated efficient COD degradation, up to around 80% removal. Further anaerobic degradation of the remaining COD was much slower and resulted in the build up of inert COD compounds generated as part of the metabolic activities in the anaerobic reactor. Accordingly, it is suggested that an appropriate combination of anaerobic and aerobic reactors would have to limit anaerobic degradation to around 80% of the tCOD and an effluent concentration above 1000 mg dm?3, for the optimum operation of the following aerobic stage. © 2003 Society of Chemical Industry  相似文献   

15.
The evolution of biomass contained in a pilot-scale digester treating wastewater from a sea-food processing factory (15–45 g Chemical Oxygen Demand (COD) dm?3 and high salinity) was studied for 2 years. During this period, different effluents have been treated and several operational conditions were followed. Laboratory-scale experiments were carried out to determine the sludge methanogenic activity and the salinity adaptation of the biomass which developed in the digester. During the different periods, sludge concentration remained between 10 and 12 g Volatile Suspended Solids (VSS) dm?3, a value that seems to be characteristic for this reactor. A global Organic Loading Rate (OLR) balance showed no significant change of biomass concentration inside the reactor, although a quite important growth of biomass (11·5% of OLR fed) was observed. Methanogenic activity assays indicated a sludge with a good activity (0·5–0·75 g COD g?1 VSS day?1) in a saline medium could be obtained from a low activity sludge (0·047 g COD g?1 VSS day?1). Toxicity assays showed the importance of antagonistic effects of other cations on the toxicity exerted by sodium.  相似文献   

16.
An Intermittent Cycle Extended Aeration System (ICEAS) offers advantages for treating sewage; such as easy operation, process flexibility, and low capital cost. A laboratory‐scale study was made with synthetic‐domestic wastewater (COD = 300 mg dm−3; BOD = 210 mg dm−3) to investigate appropriate conditions for reduced operating cost. The results from this study indicated that the maximum hydraulic loading and organic loading were 3.5 m3 m−3 d−1 and 0.735 kg BOD m−3d−1 respectively. The BOD and COD of effluent were 15.5 mg dm−3 and 29.6 mg dm−3 for the cycle time and aeration time of 3.4 h and 2.65 h. It was not necessary to supply external artificial substrates in the reactor to deal with low wastewater flow that caused the starvation of sludge. Specific oxygen uptake rate (SOUR) was used as the index of microbial activity. The study indicated that the microbial activity could be restored (SOUR = 20.5 mg g−1 MLVSS h−1) after 5–6 days of cultivation when the sludge was deprived of substrate for 17 days. © 1999 Society of Chemical Industry  相似文献   

17.
Changes to microbial populations in a two‐phase anaerobic digestion system were studied over 34 weeks. Numbers of autofluorescent methanogenic and non‐methanogenic bacteria decreased significantly during start‐up, but did not change markedly either in the acid reactor or the upflow anaerobic filter for the remainder of the study. Although the proportion of autofluorescent methanogens increased in the acid reactor, the numbers of viable methanogens decreased 590‐fold. The numbers of viable methanogens increased 10‐fold in the port, decreased 10‐fold in the effluent and there was almost no change in the drain of the upflow anaerobic filter. The data indicated that bacterial attachment in the upflow anaerobic filter gave a 90% COD removal and a methane yield of 0.33 m3 CH4 kg−1 COD removed at an organic loading rate of 7 kg COD m−3day−1. Epifluorescence microscopy of the seed sludge revealed a diverse methanogenic population of equally dominant groups of medium rods and filaments with Methanococcus, short rods, long rods and Methanosarcina also present. The medium rod‐shaped species remained the most dominant group in the acid reactor. As the volatile fatty acid concentration increased in the acid reactor the number of Methanosarcina and filament species decreased, becoming the least dominant groups. At the end of the operation, Methanococcus species were the dominant group in the upflow anaerobic filter having been washed from the biofilm. © 2000 Society of Chemical Industry  相似文献   

18.
The addition of exogenous NH4Cl to poultry manure and synthetic medium was used to study the effect of ammonia-nitrogen on the activity and composition of a methanogenic consortium. Results indicated that the production of biogas and methane was not affected by the variation in NH4Cl concentration within the range 2–10 g dm−3 (0·5–2·6 g N-NH4 dm−3). At higher values of ammonium (10–30 g dm−3 or 2–8 g N-NH4 dm−3) a significant decline in both parameters (by 50–60% for biogas and 80–90% for methane) was observed. A significant decrease in the numbers of bacteria of all physiological groups (especially proteolytic and methanogenic) was observed when more than 30 g NH4Cl dm−3 (7·8 g N-NH4 dm−3) was added to the fermentation medium. The addition of 10% (w/v) of powdered phosphorite ore enhanced the production of biogas and methane at NH4Cl concentrations up to 30 g dm−3, and also changed the composition of the methanogenic consortium. A partial recovery in the numbers of proteolytic and methanogenic bacteria coupled with the decrease in the density of sulphate-reducers was observed. High concentrations (more than 50 g dm−3) of NH4Cl seemed to cause irreversible inhibition of methanogenesis which could not be eliminated by the addition of phosphorites. ©1997 SCI  相似文献   

19.
The production of volatile fatty acids by anaerobic digestion of solid potato waste was investigated using a batch solid waste reactor with a working capacity of 2 dm?3 at 37°C. Solid potato waste was packed into the digester and the organic content of the waste was released by microbial activity by circulating water over the bed, using batch loads of 500 g or 1000 g potato waste. The sequence of appearance of the volatile fatty acids was (acetic, propionic); (n‐butyric); (n‐valeric, iso‐valeric, caproic); (iso‐butyric). After 300 h digestion of potato waste on a small scale, the fermentation products were chiefly (mg g?1 total VFAs): acetic acid (420), butyric acid (310), propionic acid (140) and caproic acid (90), with insignificant amounts of iso‐butyric acid, n‐valeric and iso‐valeric acids. When the load of potato solids was increased, the volatile fatty acid content was similar, but butyric acid constituted 110 mg g?1 and lactic acid 400 mg g?1 of the total volatile fatty acids. The maximum soluble chemical oxygen demand (COD) achieved under the experimental conditions used was 27 and 37 g COD dm?3 at low and high loadings of potato solids, respectively. The total volatile fatty acids reached 19 g dm?3 of leachate at both loads of potato solid waste. Gas production was negligible, indicating that methanogenic activity was effectively inhibited. Copyright © 2004 Society of Chemical Industry  相似文献   

20.
The hybrid anaerobic solid–liquid (HASL) system was developed to be used in industrial‐scale operations to minimize the amount of food waste for disposal in Singapore. Thermal pre‐treatment of food waste at 70 °C for 2 h (experiment E1) or at 150 °C for 1 h (experiment E2) facilitated the hydrolytic and acidogenic processes in the acidogenic reactor and methanogenesis in the methanogenic reactor in the HASL system. The highest dissolved chemical oxygen demands in the effluents from the acidogenic reactors were 17 575, 19 980 and 24 235 mg dm?3 in the control with food waste without thermal pre‐treatment and experiments E1 and E2, respectively. The maximum concentrations of methanogens in the methanogenic reactor were 2.3 × 107, 3.8 × 107, 4.3 × 107 cells cm?3 for the control and experiments E1 and E2, respectively. However, the performances of the methanogenic phase in terms of specific activity of methanogens did not differ significantly for the control and experiments E1 and E2. Use of thermally pre‐treated food waste halved the time to produce the same quantity of methane in comparison with anaerobic digestion of fresh food waste. The fluorescent measurements of co‐enzyme F420 and oligonucleotide probe Arc915 specifically bound (hybridized) with 16S rRNA were used for monitoring of methanogens during anaerobic digestion of food waste. There was a linear correlation between these parameters and the concentration of methanogens in the effluent from the methanogenic reactor. Copyright © 2005 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号