首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wearable tensile strain sensors have aroused substantial attention on account of their exciting applications in rebuilding tactile inputs of human and intelligent robots. Conventional such devices, however, face the dilemma of both sensitive response to pressure and bending stimulations, and poor breathability for wearing comfort. In this paper, a breathable, pressure and bending insensitive strain sensor is reported, which presents fascinating properties including high sensitivity and remarkable linearity (gauge factor of 49.5 in strain 0–100%, R2 = 99.5%), wide sensing range (up to 200%), as well as superior permeability to moisture, air, and water vapor. On the other hand, it exhibits negligible response to wide-range pressure (0–100 kPa) and bending (0–75%) inputs. This work provides a new route for achieving wearing comfortable, high-performance, and anti-jamming strain sensors.  相似文献   

2.
Multifunctional micro‐force sensing in one device is an urgent need for the higher integration of the smaller flexible electronic device toward wearable health‐monitoring equipment, intelligent robotics, and efficient human–machine interface. Herein, a novel microchannel‐confined MXene‐based flexible piezoresistive sensor is demonstrated to simultaneously achieve multi‐types micro‐force sensing of pressure, sound, and acceleration. Benefiting from the synergistically confined effect of the fingerprint‐microstructured channel and the accordion‐microstructured MXene materials, the as‐designed sensor remarkably endows a low detection limit of 9 Pa, a high sensitivity of 99.5 kPa?1, and a fast response time of 4 ms, as well as non‐attenuating durability over 10 000 cycles. Moreover, the fabricated sensor is multifunctionally capable of sensing sounds, micromotion, and acceleration in one device. Evidently, such a multifunctional sensing characteristic can highlight the bright prospect of the microchannel‐confined MXene‐based micro‐force sensor for the higher integration of flexible electronics.  相似文献   

3.
Flexible gas sensors play an indispensable role in diverse applications spanning from environmental monitoring to portable medical electronics. Full wearable gas monitoring system requires the collaborative support of high-performance sensors and miniaturized circuit module, whereas the realization of low power consumption and sustainable measurement is challenging. Here, a self-powered and reusable all-in-one NO2 sensor is proposed by structurally and functionally coupling the sensor to the battery, with ultrahigh sensitivity (1.92%/ppb), linearity (R2 = 0.999), ultralow theoretical detection limit (0.1 ppb), and humidity immunity. This can be attributed to the regulation of the gas reaction route at the molecular level. The addition of amphiphilic zinc trifluoromethanesulfonate (Zn(OTf)2) enables the H2O-poor inner Helmholtz layer to be constructed at the electrode–gel interface, thereby facilitating the direct charge transfer process of NO2 here. The device is then combined with a well-designed miniaturized low-power circuit module with signal conditioning, processing and wireless transmission functions, which can be used as wearable electronics to realize early and remote warning of gas leakage. This study demonstrates a promising way to design a self-powered, sustainable, and flexible gas sensor with high performance and its corresponding wireless sensing system, providing new insight into the all-in-one system of gas detection.  相似文献   

4.
Conductive hydrogels as flexible electronic devices, not only have unique attractions but also meet the basic need of mechanical flexibility and intelligent sensing. How to endow anisotropy and a wide application temperature range for traditional homogeneous conductive hydrogels and flexible sensors is still a challenge. Herein, a directional freezing method is used to prepare anisotropic MXene conductive hydrogels that are inspired by ordered structures of muscles. Due to the anisotropy of MXene conductive hydrogels, the mechanical properties and electrical conductivity are enhanced in specific directions. The hydrogels have a wide temperature resistance range of −36 to 25 °C through solvent substitution. Thus, the muscle-inspired MXene conductive hydrogels with anisotropy and low-temperature resistance can be used as wearable flexible sensors. The sensing signals are further displayed on the mobile phone as images through wireless technology, and images will change with the collected signals to achieve motion detection. Multiple flexible sensors are also assembled into a 3D sensor array for detecting the magnitude and spatial distribution of forces or strains. The MXene conductive hydrogels with ordered orientation and anisotropy are promising for flexible sensors, which have broad application prospects in human–machine interface compatibility and medical monitoring.  相似文献   

5.
Flexible and wearable sensors are highly desired for health monitoring, agriculture, sport, and indoor positioning systems applications. However, the currently developed wireless wearable sensors, which are communicated through radio signals, can only provide limited positioning accuracy and are often ineffective in underwater conditions. In this paper, a wireless platform based on flexible piezoelectric acoustics is developed with multiple functions of sensing, communication, and positioning. Under a high frequency (≈13 MHz) stimulation, Lamb waves are generated for respiratory monitoring. Whereas under low-frequency stimulation (≈20 kHz), this device is agitated as a vibrating membrane, which can be implemented for communication and positioning applications. Indoor communication is demonstrated within 2.8 m at 200 bps or 4.2 m at 25 bps. In combination with the sensing function, real-time respiratory monitoring and wireless communication are achieved simultaneously. The distance measurement is achieved based on the phase differences of transmitted and received acoustic signals within a range of 100 cm, with a maximum error of 3 cm. This study offers new insights into the communication and positioning applications using flexible acoustic wave devices, which are promising for wireless and wearable sensor networks.  相似文献   

6.
Flexible triboelectric nanogenerators (TENGs) with multifunctional sensing capabilities offer an elegant solution to address the growing energy supply challenges for wearable smart electronics. Herein, a highly stretchable and durable electrode for wearable TENG is developed using ZIF-8 as a reinforcing nanofiller in a hydrogel with LiCl electrolyte. ZIF-8 nanocrystals improve the hydrogel's mechanical properties by forming hydrogen bonds with copolymer chains, resulting in 2.7 times greater stretchability than pure hydrogel. The hydrogel electrode is encapsulated by microstructured silicone layers that act as triboelectric materials and prevent water loss from the hydrogel. Optimized ZIF-8-based hydrogel electrodes enhance the output performance of TENG through the dynamic balance of electric double layers (EDLs) during contact electrification. Thus, the as-fabricated TENG delivers an excellent power density of 3.47 Wm2, which is 3.2 times higher than pure hydrogel-based TENG. The developed TENG can scavenge biomechanical energy even at subzero temperatures to power small electronics and serve as excellent self-powered pressure sensors for human-machine interfaces (HMIs). The nanocomposite hydrogel-based TENG can also function as a wearable biomotion sensor, detecting body movements with high sensitivity. This study demonstrates the significant potential of utilizing ZIF-8 reinforced hydrogel as an electrode for wearable TENGs in energy harvesting and sensor technology.  相似文献   

7.
Wearable electronic sensors have attracted extensive attention in multifunctional electronic skin, personalized health monitoring, intelligent human–machine interaction, and smart medical treatment. However, critical challenge exists in simultaneously achieving excellent sensing performances with high sensitivity, rapid response, low sensing limit, and excellent cycling stability for full-scale human healthcare detection and further timely photothermal therapy. For highly sensitive human skin, the spinosum microstructure in epidermis and dermis takes an important part in sensing signal amplification and transmission. Inspired by the spinosum microstructure of human skin for highly sensitive tactile perception, a skin-inspired flexible electronic sensor is prepared from the face-to-face assembly of an as-prepared polybutylene adipate-polyurethane (PBAPU) elastomer matrix with conducting MXene nanosheets-coated urchin-like microstructure templated from natural chrysanthemum pollen grain microstructures, and an interdigitated electrode-coated PBAPU elastomer substrate. The PBAPU elastomer matrix is newly prepared, exhibiting outstanding tensile strength (18.87 MPa), high stretchability (1190%), and comparable elastic modulus (1.7 MPa) to human skin. The as-assembled flexible electronic sensor exhibits a highly sensitive sensitivity (up to 784.02 kPa−1), low detection limit (0.12 Pa), and reliable cycling stability for intelligent human–machine interfacing. The MXene nanosheets-coated urchin-like microstructure-contained PBAPU possesses efficient photothermal heating performance to achieve on-demand photothermal therapy for rehabilitation training.  相似文献   

8.
Wearable, flexible, and even stretchable tactile sensors, such as various types of electronic skin, have attracted extensive attention, which can adapt to complex and irregular surfaces, maximize the matching of wearable devices, and conformally apply onto human organs. However, it is a great challenge to simultaneously achieve breathability, permeability, and comfortability for their development. Herein, mitigating the problem by miniaturizing and integrating the sensors is tried. Highly flexible and stretchable coaxial structure fiber-shaped triboelectric nanogenerators (F-TENGs) with a diameter of 0.63 mm are created by orderly depositing conductive material of silver nanowires/carbon nanotubes and encapsulated polydimethylsiloxane onto the stretchable spandex fiber. As a self-powered multifunctional sensor, the resulting composite fiber can convert mechanical stimuli into electrical signals without affecting the normal human body. Moreover, the F-TENGs can be easily integrated into traditional textiles to form tactile sensor arrays. Through the tactile sensor arrays, the real-time tactile trajectory and pressure distribution can be precisely mapped. This work may provide a new method to fabricate fiber-based pressure sensors with high sensitivity and stretchability, which have great application prospects in personal healthcare monitoring and human–machine interactions.  相似文献   

9.
Pressure sensors have attracted tremendous attention because of their potential applications in the fields of health monitoring, human–machine interfaces, artificial intelligence, and so on. Improving pressure‐sensing performances, especially the sensitivity and the detection limit, is of great importance to expand the related applications, however it is still an enormous challenge so far. Herein, highly sensitive piezoresistive pressure sensors are reported with novel light‐boosting sensing performances. Rose petal–templated positive multiscale millimeter/micro/nanostructures combined with surface wrinkling nanopatterns endow the assembled pressure sensors with outstanding pressure sensing performance, e.g. an ultrahigh sensitivity (70 KPa?1, <0.5 KPa), an ultralow detection limit (0.88 Pa), a wide pressure detect ion range (from 0.88 Pa to 32 KPa), and a fast response time (30 ms). Remarkably, simple light illumination further enhances the sensitivity to 120 KPa?1 (<0.5 KPa) and lowers the detection limit to 0.41 Pa. Furthermore, the flexible light illumination offers unprecedented capabilities to spatiotemporally control any target in multiplexed pressure sensors for optically enhanced/tailorable sensing performances. This light‐control strategy coupled with the introduction of bioinspired multiscale structures is expected to help design next generation advanced wearable electronic devices for unprecedented smart applications.  相似文献   

10.
Approximately 4.5% to 7.0% of hospitalized patients suffer from pressure ulcers. Mitigating risks for pressure ulcers through sensors remains a challenge and a high requirement. A simple, low-cost, battery-free, multi-parameter passive wireless flexible sensor (MPWFS) for all-around pressure and temperature monitoring to prevent pressure ulcers is developed. The pressure sensing unit is fabricated with functional gradient-structured balsa wood and has high sensitivity of 0.34 kPa−1 with a wide detection range of 0–20 kPa. The temperature sensing unit, which is 0.4 mm × 0.2 mm, is embedded in the surface of the pressure sensing unit, enabling temperature monitoring with a resolution of 0.1 °C. The flexible Radio Frequency energy-harvesting unit, data acquisition, and processing, as well as Bluetooth-Low-Energy wireless transmission, are integrated within a 20 mm × 20 mm unit. It acquires continuous temperature and pressure data without a battery at any position more than 1 m away from the power transmitter. Moreover, the combination of the sensor array design with a mobile terminal provides the MPWFS's various benefits, including tracking changes in the supine posture, warning about pressure ulcers, and monitoring falls out of bed. This study presents a new method for long-term bedridden patient care.  相似文献   

11.
Very recently, MXene-based wearable hydrogels have emerged as promising candidates for epidermal sensors due to their tissue-like softness and unique electrical and mechanical properties. However, it remains a challenge to achieve MXene-based hydrogels with reliable sensing performance and prolonged service life, because MXene inevitably oxidizes in water-containing system of the hydrogels. Herein, catechol-functionalized poly(vinyl alcohol) (PVA-CA)-based hydrogels is proposed to inhibit the oxidation of MXene, leading to rapid self-healing and superior strain sensing behaviors. Sufficient interaction of hydrophobic catechol groups with the MXene surface reduces the oxidation-accessible sites in the MXene for reaction with water and eventually suppresses the oxidation of MXene in the hydrogel. Furthermore, the PVA-CA-MXene hydrogel is demonstrated for use as a strain sensor for real-time motion monitoring, such as detecting subtle human motions and handwriting. The signals of PVA-CA-MXene hydrogel sensor can be accurately classified using deep learning models.  相似文献   

12.
Sensing of mechanical motion based on flexible electromagnetic sensors is challenging due to the complexity of obtaining flexible magnetic membranes with confined and enhanced magnetic fields. A fully flexible electromechanical system (MEMS) sensor is developed to conduct wearable monitoring of mechanical displacement with excellent adaptability to complex surface morphology through a suspended flexible magnet enclosed within a novel setup formed by a multi‐layer flexible coil and annular origami magnetic membranes. The annular membranes not only regulate the overall distribution of the magnetic field and enhance the overall magnetism by 291%, but also greatly increase the range of the magnetic field to cover the entire region of the coil. The sensor offers a broad frequency response ranging from 1 Hz to 10 kHz and a sensitivity of 0.59 mV µm?1 at 1.7 kHz. The fully flexible format of the sensor enables various applications demonstrated by biophysical sensing, motion detection, voice recognition, and machine diagnostics through direct attachment on soft and curvilinear surfaces. Similar sensors can combine multiple sensing and energy harvesting modalities to achieve battery‐less and self‐sustainable operation, and can be deployed in large numbers to conduct distributed sensing for machine status assessment, health monitoring, rehabilitation, and speech aid.  相似文献   

13.
MXenes are an emerging class of 2D transition metal carbides and nitrides. They have been widely used in flexible electronics owing to their excellent conductivity, mechanical flexibility, and water dispersibility. In this study, the electrode and active layer applications of MXene materials in electronic skins are realized. By utilizing vacuum filtration technology, few-layer MXene electrodes are integrated onto the top and bottom surfaces of the 3D polyacrylonitrile (PAN) network to form a stable electronic skin. The fabricated flexible device with Ti3C2Tx MXene electrodes outperforms those with other electrodes and exhibits excellent device performance, with a high sensitivity of 104.0 kPa−1, fast response/recovery time of 30/20 ms, and a low detection limit of 1.5 Pa. Furthermore, the electrode and the constructed MXene/PAN-based flexible pressure sensor exhibit robust mechanical stability and can survive 240 bending cycles. Such a robust, flexible device can be enlarged or folded like a jigsaw puzzle or origami and transformed from 2D to 3D structures; moreover, it can detect tiny movements of human muscles, such as movements corresponding to sound production and intense movements during bending of fingers.  相似文献   

14.
Noninvasive and real‐time cuffless blood pressure (BP) measurement realizes the idea of unobtrusive and continuous BP monitoring which is essential for diagnosis and prevention of cardiovascular diseases associated with hypertension. In this paper, a wearable sensor patch system that integrates flexible piezoresistive sensor (FPS) and epidermal electrocardiogram (ECG) sensors for cuffless BP measurement is presented. By developing parametric models on the FPS sensing mechanism and optimizing operational conditions, a highly stable epidermal pulse monitoring method is established and beat‐to‐beat BP measurement from the ECG and epidermal pulse signals is demonstrated. In particular, this study highlights the compromise between sensor sensitivity and signal stability. As compared with the current optical‐based cuffless BP measurement devices, the sensing patch requires much lower power consumption (3 nW) and is capable of detecting subtle physiological signal variations, e.g., pre and postexercises, thus providing a promising solution for low‐power, real‐time, and home‐based BP monitoring.  相似文献   

15.
Promoted by the demand for wearable devices, graphene has been proved to be a promising material for potential applications in flexible and highly sensitive strain sensors. However, low sensitivity and complex processing of graphene retard the development toward the practical applications. Here, an environment‐friendly and cost‐effective method to fabricate large‐area ultrathin graphene films is proposed for highly sensitive flexible strain sensor. The assembled graphene films are derived rapidly at the liquid/air interface by Marangoni effect and the area can be scaled up. These graphene‐based strain sensors exhibit extremely high sensitivity with gauge factor of 1037 at 2% strain, which represents the highest value for graphene platelets at this small deformation so far. This simple fabrication for strain sensors with highly sensitive performance of strain sensor makes it a novel approach to applications in electronic skin, wearable sensors, and health monitoring platforms.  相似文献   

16.
Flexible strain sensors have enormous potential in wearable devices, robots, and health monitoring equipment. However, the poor stretchability of strain sensors based on semiconductors and the low sensitivity of resistance change-based hydrogel strain sensors hinders the comprehensive application. Herein, a flexible piezoionic SnSe-hydrogel composite with an optimized structure and improved performance is designed. The piezoionic output rises nonlinearly as the applied force increases, with the piezoionic coefficient up to 1780 nV Pa−1 and −7.21 nA Pa−1. The composite can realize the continuous positioning in 1D space based on the piezoionic effect. It also demonstrates self-powered characteristics, an ultrafast response speed of 6–8 ms, and a high gauge factor of 95.89. The sensor is exemplified to monitor fist clenching and finger bending, which has the potential to discriminate different joint movements. Meanwhile, the device can light up a light–emitting diode under pressure and bending. The as-prepared piezoionic SnSe-hydrogel device, having both high stretchability and sensitivity, may shed light on developing high-performance flexible strain sensors and generators.  相似文献   

17.
Flexible strain sensors with high sensitivity and high mechanical robustness are highly desirable for their accurate and long-term reliable service in wearable human-machine interfaces. However, the current application of flexible strain sensors has to face a trade-off between high sensitivity and high mechanical robustness. The most representative examples are micro/nano crack-based sensors and serpentine meander-based sensors. The former one typically shows high sensitivity but limited robustness, while the latter is on the contrary. Herein, ultra-robust and sensitive flexible strain sensors are developed by crack-like pathway customization and ingenious modulation of low/high-resistance regions on a serpentine meander structure. The sensors show high cyclic stability (10 000 cycles), strong tolerance to harsh environments, high gauge factor (>1000) comparable with that of the crack-based sensor, and fast response time (<58 ms). Finally, the sensors are integrated into a wearable sign language translation system, which is wireless, low-cost, and lightweight. Recognition rates of over 98% are demonstrated for the translation of 21 sign languages with the assistance of machine learning. This system facilitates achieving barrier-free communication between signers and nonsigners and offers broad application prospects in gesture interaction.  相似文献   

18.
Low-cost and wearable heart sound sensors can facilitate early detection and monitoring of cardiovascular and respiratory diseases. Such sensors are currently limited by either the complexity of fabrication processes or low sensitivity and reliability for weak signal detection. Here, a hybrid near-field/far-field electrospinning approach is demonstrated that enables low-cost fabrication and optimization of triboelectric heterostructures for heart sound sensing. Specifically, by combining the far-field produced highly polarized and porous polyvinylidene difluoride network for triboelectric electrification and near-field patterned polyurethane grid spacers for vibration enhancement and charge trapping, the greatly improved sensor output at the heart sound frequency (50–150 Hz) and intensity (<80 dB) range, demonstrating record high sensitivity of 7027 mV Pa−1 and low detection limit of 47 dB. The sensor exhibits excellent stability under both sudden physical disturbance and long-term cycling stress, showing no degradation during 7 h of continuous operation. It is demonstrated that the sensor can be integrated with apparel and capture high-quality heart sound signals at all five diagnostic auscultation points and distinguish characteristic heart sound patterns caused by different cardiovascular diseases.  相似文献   

19.
Porous conductive composites hold immense promise in flexible sensors and soft robotics due to their pressure-responsive electrical conductivity. Unlike non-porous composites whose pressure sensitivity is limited by relatively high elastic modulus, porous materials show improved pressure sensitivity owing to their lower stiffness. Despite this, existing porous composites still suffer from insufficient pressure sensitivity or narrow detection ranges, severely restricting their applications. This work presents a liquid metal hybrid filler porous composite to address these issues. Through experiment and simulation optimization, the composite exhibits a conductivity increase of five order-of-magnitude over 0–250 kPa, demonstrating a 900% higher pressure sensitivity than the best non-porous counterpart in this work. The composite maintains a highly linear response (R2 of 0.999) over an exceptionally wide dynamic range up to 8.9 MPa, with a pressure sensitivity of 8.1 MPa–1, surpassing the state-of-the-art in both pressure range and sensitivity. A proof-of-concept pressure sensor array further demonstrates the composite's excellent sensing performance, showing stable response under 100-cycle loading with a measured pressure deviation of only 1.4%, outperforming existing commercial pressure sensors in terms of sensitivity, detection range and cyclic stability. The porous material design strategy opens doors for high sensitivity pressure sensors in wearable devices, flexible electronics, and soft robotics.  相似文献   

20.
The performance of flexible and stretchable sensors relies on the optimization of both the flexible substrate and the sensing element, and their synergistic interactions. Herein, a novel strategy is reported for cost‐effective and scalable manufacturing of a new class of porous materials as 3D flexible and stretchable piezoresistive sensors, by assembling carbon nanotubes onto porous substrates of tunable Poisson ratios. It is shown that the piezoresistive sensitivity of the sensors increases as the substrate's Poisson's ratio decreases. Substrates with negative Poisson ratios (auxetic foams) exhibit significantly higher piezoresistive sensitivity, resulting from the coherent mode of deformation of the auxetic foam and enhanced changes of tunneling resistance of the carbon nanotube networks. Compared with conventional foam sensors, the auxetic foam sensor (AFS) with a Poisson's ratio of –0.5 demonstrates a 300% improvement in piezoresistive sensitivity and the gauge factor increases as much as 500%. The AFS has high sensing capability, is extremely robust, and capable of multimodal sensing, such as large deformation sensing, pressure sensing, shear/torsion sensing, and underwater sensing. AFS shows great potential for a broad range of wearable and portable devices applications, which are described by reporting on a series of demonstrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号