首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Pulsed laser deposition was used to deposit high-quality indium tin oxide (ITO) thin solid films on polyethylene napthalate (PEN) flexible display substrates. The electrical, optical, microstructural, mechanical and adhesive properties of the functional thin layer were investigated as a function of a narrow range of background oxygen gas pressure at room temperature, which is the most desirable thermal condition for growing transparent conducting oxides on flexible display polymer substrates. ITO films (240 ± 35 nm thick) deposited on PEN at room temperature in the range of 0.33 to 2.66 Pa background oxygen pressure are observed to exhibit low electrical resistivity (~ 10− 4 Ω cm) and high optical transmission (~ 90%). Electromechanical uniaxial tensile testing, of the hybrid thin structures, results in crack onset nominal strains of around 2%. The ITO surface adhesion reaches a maximum at 1.33 Pa deposition pressure.  相似文献   

2.
5% SnO2 doped tantalum oxide (Ta2O5) films are deposited on quartz substrates at different substrate temperatures of 300 K, 773 K, 873 K and 973 K using pulsed laser deposition in an oxygen ambient of 0.002 mbar. Undoped Ta2O5 films are also deposited on quartz substrates kept at substrate temperature 973 K under the same oxygen ambient using PLD. The films are characterized using GIXRD, AFM, FTIR, micro-Raman and UV-visible spectroscopy. Undoped films show an amorphous nature even at a substrate temperature of 973 K, whereas, SnO2 doped films show crystalline nature even for deposition at 300 K. As far as our knowledge goes, this is the first report of crystalline Ta2O5 films deposited at room temperature. The average size of the crystallites calculated using the Debye-Scherrer formula, shows that the size of the crystallite decreases with increase in substrate temperature. FTIR and micro-Raman spectroscopic analysis reveals the presence of Ta-O-Ta, O-Ta and O-Ta-O vibrational bands in the films. Raman analysis indicates that the addition of SnO2 suppresses the bond formation and changes the magnitude of bonds in Ta2O5. AFM patterns reveal the formation of Ta2O5 nanorods of diameter about 100 nm for the doped film deposited at 973 K. Optical transmittance of the films is found to be sensitive to substrate temperature as well as to the presence of SnO2. A blue shift in the band-gap of the doped films is observed. The decrease of band-gap with decrease of particle size observed for SnO2 doped films can be due to a band-bending effect. The transmittance of the films is found to depend on SnO2 doping and substrate temperature.  相似文献   

3.
Zinc oxide (ZnO) thin films were deposited on soda lime glass substrates by pulsed laser deposition (PLD) in an oxygen-reactive atmosphere. The structural, optical, and electrical properties of the as-prepared thin films were studied in dependence of substrate temperature and oxygen pressure. High quality polycrystalline ZnO films with hexagonal wurtzite structure were deposited at substrate temperatures of 100 and 300 °C. The RMS roughness of the deposited oxide films was found to be in the range 2-9 nm and was only slightly dependent on substrate temperature and oxygen pressure. Electrical measurements indicated a decrease of film resistivity with the increase of substrate temperature and the decrease of oxygen pressure. The ZnO films exhibited high transmittance of 90% and their energy band gap and thickness were in the range 3.26-3.30 eV and 256-627 nm, respectively.  相似文献   

4.
Jaehyeong Lee 《Thin solid films》2008,516(7):1386-1390
Antimony doped tin oxide (SnO2:Sb) films have been prepared by d.c. magnetron sputtering and the properties of the films depend on deposition conditions, such as O2 gas ratio, were investigated. The gas composition was found to affect the properties of the films. With the incorporation additional oxygen, the electrical and optical properties of films significantly improved. The minimum value of resistivity of the films was 4.9 × 10− 3 Ω cm at the oxygen concentration of 30% and the optical transmittance was over 80%.  相似文献   

5.
In this work, microstructural and physical properties were studied in the tin oxide films deposited by thermal evaporation of Sn films on stainless steel substrates followed by in situ D.C. plasma oxidation at 200 °C substrate temperature. The surface properties were studied by scanning electron microscopy, X-ray diffraction, atomic force microscopy and four-point probe electrical resistivity. The typical calculated grain size of the films deposited by thermal evaporation was between 28 nm and 66 nm and the texture structure was found to be dependent on the thermal deposition pressure. A cassiterite structure of SnO2 was produced by D.C. plasma oxidation with the main diffraction peaks of the (101), (200), (211), (310) and (221) planes at the 25% and 50% O2 partial pressure conditions. However, at 12.5% O2 partial pressure oxidation conditions, amorphous tin oxide structure and crystalline SnO phases were detected. Increasing thermal deposition pressure resulted in preferential texture formation at (211) and (310) planes. The surface structure investigation of the produced films by SEM and AFM studies showed large SnO2 islands with approximately 1.0 μm and 1.5 μm sized nodules, and they are called as grape-like structures. The grape-like grains possess nano grains, which are between 20 nm and 30 nm in diameter calculated by Scherer's formula. The grape-like grains were seen to be separated by large cavities and the size of these cavities and nano grains was seen to be larger when the O2 partial pressure is increased. The four-point probe resistivity of the films, grown at different oxidation temperatures, decreased with the increase in oxygen partial pressure. The values of resistivity for SnO2 phase were measured as low as 10−5 Ω-cm and observed to decrease with increasing thermal deposition pressure and oxygen partial pressure.  相似文献   

6.
We report on a detailed study on the optical and electrical properties of Au films made by sputter deposition onto glass substrates with and without transparent and electrically conducting layers of SnO2:In. The Au films had thicknesses up to 10.7 nm and hence spanned the range for thin film growth from discrete islands, via large scale coalescence and formation of a meandering conducting network, to the formation of a more or less “holey” film. Scanning electron microscopy and atomic force microscopy demonstrated that the SnO2:In films were considerably rougher than the glass itself, and this roughness influenced the Au film formation so that large scale coalescence set in at a somewhat larger thickness for films on SnO2:In than on glass. Measurements of spectral optical transmittance and reflectance and of electrical resistance gave a fully consistent picture that could be reconciled with impeded Au film formation on the SnO2:In layer; this led to pronounced “plateaus” in the near infrared optical spectra for Au films on SnO2:In and a concomitant change from such two-layer films having a lower resistance than the single gold film at thicknesses below large scale coalescence to the opposite behavior for larger film thicknesses. Our work highlights the importance of the substrate roughness for transparent conductors comprising coinage metal films backed by wide band gap transparent conducting oxides.  相似文献   

7.
Indium tin oxide (ITO) thin films were deposited on unheated polyethylene naphthalate substrates by radio-frequency (rf) magnetron sputtering from an In2O3 (90 wt.%) containing SnO2 (10 wt.%) target. We report the structural, electrical and optical properties of the ITO films as a function of rf power and deposition time. Low rf power values, in the range of 100-130 W, were employed in the deposition process to avoid damage to the plastic substrates by heating caused by the plasma. The films were analyzed by X-ray diffraction and optical transmission measurements. A Hall measurement system was used to measure the carrier concentration and electrical resistivity of the films by the Van der Pauw method. The X-ray diffraction measurements analysis showed that the ITO films are polycrystalline with the bixbite cubic crystalline phase. It is observed a change in the preferential crystalline orientation of the films from the (222) to the (400) crystalline orientation with increasing rf power or deposition time in the sputtering process. The optical transmission of the films was around 80% with electrical resistivity and sheet resistance down to 4.9 × 10- 4 Ωcm and 14 Ω/sq, respectively.  相似文献   

8.
The influence of deposition power, thickness and oxygen gas flow rate on electrical and optical properties of indium tin oxide (ITO) films deposited on flexible, transparent substrates, such as polycarbonate (PC) and metallocene cyclo-olefin copolymers (mCOC), at room temperature was studied. The ITO films were prepared by radio frequency magnetron sputtering with the target made by sintering a mixture of 90 wt.% of indium oxide (In2O3) and 10 wt.% of tin oxide (SnO2). The results show that (1) average transmission in the visible range (400-700 nm) was about 85%-90%, and (2) ITO films deposited on glass, PC and mCOC at 100 W without supplying additional oxygen gas had optimum resistivity of 6.35 × 10−4 Ω-cm, 5.86 × 10−4 Ω-cm and 6.72 × 10−4 Ω-cm, respectively. In terms of both electrical and optical properties of indium tin oxide films, the optimum thickness was observed to be 150-300 nm.  相似文献   

9.
Atmospheric pressure chemical vapor deposition (APCVD) system, designed for the deposition of F-doped SnO2 thin films, is compatible with industrial requirements such as high process speed, scaling to wide substrate widths and low costs. Precise method for measuring the optical absorptance in the spectral range 300–1700 nm combines transmittance, reflectance and photothermal deflection (PDS) spectra measured on the same spot of the sample immersed in the transparent liquid with a relatively high index of refraction. The effects of the film thickness, doping gas addition and the susceptor temperature on the optical absorptance and electrical resistivity of the TCO films are assessed. We show that the doping gas concentration and the susceptor temperature influence both the incorporation ratio of dopants into SnO2 film as well as the defect concentration. The SnO2 films growth at optimum APCVD conditions have thickness 0.7 µm, average surface roughness about 40 nm, sheet electrical resistance 10 Ω/sq and the optical absorption 1% at 500 nm and about 5% at 1000 nm.  相似文献   

10.
Titanium nitride (TiN) thin films were prepared by means of reactive DC sputtering on quartz and sapphire substrates. Structural, electrical and optical effects of deposition parameters such as thickness, substrate temperature, substrate bias voltage were studied. The effect of substrate temperature variations in the 100-300°C range and substrate bias voltage variations in the 0-200 V DC range for 45-180 nm thick TiN films were investigated. Temperature-dependent electrical resistivity in the 100-350 K range and optical transmission in the 300-1500 nm range were measured for the samples. In addition, structural and morphological properties were studied by means of XRD and STM techniques.The smoothest surface and the lowest electrical resistivity was recorded for the optimal samples that were biased at about Vs=−120 V DC. Unbiased films exhibited a narrow optical transmission window between 300 and 600 nm. However, the transmission became much greater with increasing bias voltage for the same substrate temperature. Furthermore, it was found that lower substrate temperatures produced optically more transparent films.Application of single layers of MgF2 antireflecting coating on optimally prepared TiN films helped increase the optical transmission in the visible region to more than 40% for 45 nm thick samples.  相似文献   

11.
Polycrystalline thin films of zinc oxide were deposited by pulsed laser deposition onto silicon substrates at different oxygen partial pressures in the range of 1-35 Pa. For ablation of the sintered zinc oxide target a pulsed Nd:YAG laser was used. Other processing parameters such as laser pulse energy, pulse repetition rate, substrate temperature and deposition pressure were identical. The effect of oxygen pressure on the structural properties of the films was systematically studied by using atomic force microscopy. The surface morphology, average roughness Sa, root mean square Sq, and mean size of grains on selected places with 2 × 2 μm2 area of prepared samples were evaluated. Detailed structural analysis confirmed that partial oxygen pressure leads to the modification of surface morphology. Mean grain size in height and lateral direction decreases with raising oxygen pressure from 1 to 5 Pa while the further increase of oxygen pressure from 5 to 35 Pa results in grain size enlargement. The zinc oxide film formed at oxygen partial pressure 5 Pa shows smallest values of evaluated parameters (Sa = 0.6 nm, Sq = 0.7 nm and mean size of grains 50 nm).  相似文献   

12.
Microstructure-Property relationships in thin film ITO   总被引:1,自引:0,他引:1  
Polycrystalline tin-doped indium oxide (ITO) thin films were prepared by pulsed laser deposition (PLD) with an ITO (In2O3-10 wt.% SnO2) target and deposited on borosilicate glass substrates. By changing independently the deposition temperature and the oxygen pressure, a variety of microstructures were deposited. These different microstructures were mainly investigated not only by transmission electron microscopy (TEM) with cross-section and plan-view electron micrographs, but also by scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray diffraction. Composition changes in ITO thin films grown under different deposition conditions were characterized by energy dispersive X-ray spectroscopy (EDX). The optical and electrical properties were studied respectively by UV-visible spectrophotometry and a four-point probe. The best compromise in terms of high transmittance (T) in the visible range and low resistivity (ρ) was obtained for films deposited between 0.66 and 2 Pa oxygen pressure (PO2) at 200 °C substrate temperature (Ts). The influence of PO2 and Ts on the microstructure and ITO film properties is discussed.  相似文献   

13.
S. Gayam 《Thin solid films》2007,515(15):6060-6063
Thin films of zinc-tin-oxide (ZTO) have been deposited on SnO2:F coated glass substrates by co-sputtering of SnO2 and ZnO. The deposition conditions for ZTO were controlled in order to vary film stoichiometry. The electro-optical and structural properties of ZTO have been studied as a function of their stoichiometric ratio and post-deposition annealing conditions. The same films were subsequently utilized as part of a bi-layer transparent front contact for the fabrication of CdTe solar cells: glass/SnO2:F/ZTO. The performance of these devices suggested that the ZTO deposition and cell processing conditions can be optimized for enhanced device performance in particular for devices with thin CdS. Specifically, high blue spectral response (> 70% at 450 nm), accompanied by high open-circuit voltages (830 mV), and fill factors (70+%) have been demonstrated. Best solar cell performance was obtained for multi-phase ZTO films deposited at substrate temperatures of 400°C and a Zn/Sn ratio of 2.0, and which contained the binary phase of ZnO2.  相似文献   

14.
Amorphous ZnO-SnO2-In2O3 films were grown by direct current magnetron sputtering from vacuum hot pressed ceramic oxide targets of Zn:In:Sn cation ratios 1:2:1 and 1:2:1.5 onto glass substrates. X-ray diffraction analysis showed that the microstructure remained amorphous during annealing at 200 °C for up to 5 hours. By monitoring the electrical resistivity, oxygen content and substrate temperature were optimized during deposition. The optimal films were characterized by Hall Effect, work function and optical spectroscopy measurements. Films of 1:2:1 composition showed the lowest resistivity (7.6 × 10− 4 Ω-cm), when deposited onto substrates preheated to 300 °C. Transmissivity of all films exceeded 80% in the visible spectral region. The energy gap was 3.52-3.74 eV, and the work function ranged 5.08-5.22 eV, suitable for cathode applications in organic light emitting diodes. Overall, the film characteristics were comparable or superior to those of amorphous tin-doped indium oxide and zinc-doped indium oxide films and may serve as viable, lower-cost alternatives.  相似文献   

15.
The structural, electrical, and optical properties of zinc-tin-oxide (ZTO) films with different compositions prepared by thermal co-evaporation using ZnO and SnO2 sources were investigated. The as-deposited films were amorphous but opaque. The lowest resistivity, ~ 8 × 10− 5 Ω cm, was obtained for ZTO with 33 at.% Sn. Upon post-annealing in air, a sharp increase in transparency was observed between 350 and 550 °C, accompanying with a marked decrease in conductivity. This was attributed to re-oxidation of partially reduced oxides, leading to a lower density of oxygen vacancies. Our study showed that conductive and transparent ZTO films with low Sn content may be prepared by co-evaporation deposition, and suitable for use in devices as transparent electrodes.  相似文献   

16.
Indium tin oxide (ITO) films were deposited on soda lime glass and polyimide substrates using an innovative process known as High Target Utilisation Sputtering (HiTUS). The influence of the oxygen flow rate, substrate temperature and sputtering pressure, on the electrical, optical and thermal stability properties of the films was investigated. High substrate temperature, medium oxygen flow rate and moderate pressure gave the best compromise of low resistivity and high transmittance. The lowest resistivity was 1.6 × 10− 4 Ω cm on glass while that on the polyimide was 1.9 × 10− 4 Ω cm. Substrate temperatures above 100 °C were required to obtain visible light transmittance exceeding 85% for ITO films on glass. The thermal stability of the films was mainly influenced by the oxygen flow rate and thus the initial degree of oxidation. The film resistivity was either unaffected or reduced after heating in vacuum but generally increased for oxygen deficient films when heated in air. The greatest increase in transmittance of oxygen deficient films occurred for heat treatment in air while that of the highly oxidised films was largely unaffected by heating in both media. This study has demonstrated the potential of HiTUS as a favourable deposition method for high quality ITO suitable for use in thin film solar cells.  相似文献   

17.
Polycrystalline thin films of cadmium stannate (Cd2SnO4) were deposited by spray pyrolysis method on the Corning substrates at substrate temperature of 525 °C. Further, the films were annealed at 600 °C in vacuum for 30 min. These films were characterized for their structural, electrical and optical properties. The experimental results showed that the post-deposition annealing in vacuum has a significant influence on the properties of the films. The average grain size of the film was increased from 27.3 to 35.0 nm on heat treatment. The average optical transmittance in the visible region (500-850 nm) is decreased from 81.4% to 73.4% after annealing in vacuum. The minimum resistivity achieved in the present study for the vacuum annealed films is the lowest among the reported values for the Cd2SnO4 thin films prepared by spray pyrolysis method.  相似文献   

18.
Copper indium disulphide films were produced by electrostatic spray deposition using a water/alcohol solution of copper chloride (CuCl2), indium chloride (InCl3) and thiourea (CS(NH2)2) sprayed onto SnO2:F coated glass substrates. The influence of various deposition parameters, namely substrate temperature (380-450 °C), applied voltage (12-18 kV), solution concentration (0.21-0.49 M), flow rate (25-200 μl/min) and needle-substrate distance (40-70 mm) were investigated. particle image velocimetry measurements were made of the spray cone and correlated with the film uniformity. The film uniformity was measured using an optically based test developed in-house. Results show that the highest concentrated spray solution and lowest deposition temperature produce non-uniform films. In contrast, a needle-substrate distance of 50 mm, and the lowest applied voltage and flow rate resulted in the most uniform films.  相似文献   

19.
Yanwei Huang 《Thin solid films》2010,518(8):1892-8340
Tungsten-doped tin oxide (SnO2:W) transparent conductive films were prepared on quartz substrates by pulsed plasma deposition method with a post-annealing. The structure, chemical states, electrical and optical properties of the films have been investigated with tungsten-doping content and annealing temperature. The lowest resistivity of 6.67 × 10− 4 Ω cm was obtained, with carrier mobility of 65 cm2 V− 1 s− 1 and carrier concentration of 1.44 × 1020 cm− 3 in 3 wt.% tungsten-doping films annealed at 800 °C in air. The average optical transmittance achieves 86% in the visible region, and approximately 85% in near-infrared region, with the optical band gap ranging from 4.05 eV to 4.22 eV.  相似文献   

20.
Thick aluminum-doped zinc oxide films were deposited at substrate temperatures from 100 °C to room temperature on polyethylene terephthalate by radio frequency magnetron sputtering, varying the deposition parameters such as radio frequency power and working pressure.Structural, optical and electrical properties were analyzed using an x-ray diffractometer, a spectrophotometer and a four-point probe, respectively. Films were polycrystalline showing a strong preferred c-axis orientation (002). The best optical and electrical results were achieved using a substrate temperature of 100 °C. Furthermore, high transmittances close to 80% in the visible wavelength range were obtained for those films deposited at the lowest Argon pressure used of 0.2 Pa. In addition, resistivities as low as 1.1 × 10− 3 Ω cm were reached deposited at a RF power of 75 W. Finally, a comparison of the properties of the films deposited on polymer and glass substrates was performed, obtaining values of the figure of merit for the films on polymer comparable to those obtained on glass substrates, 17,700 Ω− 1 cm− 1 vs 14,900 Ω− 1 cm− 1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号