首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Cell planning is one essential operation in wireless networks, and it significantly affects system performance and cost. Many research efforts consider the cell planning problem with identical base stations (BSs) or to construct a new network on the region without any infrastructure. However, long‐term evolution (LTE) adopts heterogeneous network, which allows operators to tactically deploy small cells to enhance signal coverage and improve performance. It thus motivates us to propose a small‐cell planning problem by adaptively adding low‐powered BSs with the limitation of budget to an existing network to increase its energy efficiency, which is defined by the ratio of network throughput to the amount of energy consumption of BSs. We consider 2 types of LTE small cells, namely, microcells and picocells, and develop different clustering strategies to deploy these cells. Based on the available resource and traffic demand in each cell, we then adjust the transmitted power of the deployed BS with energy concern. Experimental results demonstrate that our small‐cell planning solution can achieve high‐energy efficiency of LTE networks, which means that BSs can better use their transmitted energy to satisfy the traffic demands of user devices. This paper contributes in proposing a practical problem for cell planning with heterogeneous network consideration and developing an efficient solution to provide green communications.  相似文献   

3.
During the last two decades we have witnessed a rapid growth in wireless communication services, which has dramatically increased the number of necessary radio access components to provide the adequate capacity and acceptable quality of service. The power cost for operating this huge number of radio Base Stations (BSs) is under serious consideration by the mobile communication industry and recent research efforts have focused on energy efficient design and optimization of the radio access network in order to alleviate the energy consumption and mobile network operators OPEX. In this work, we consider a deployment of heterogeneous BSs to serve a given geographical area and propose two energy-aware algorithms to optimally determine the operational mode of those BSs under various traffic load conditions. Performance evaluation results show that the proposed algorithms can provide near optimal solutions and achieve substantial network energy consumption reduction without compromising the efficient operation of the mobile network. We further benefit from the outcome of this formulation framework and propose BS activation schemes that yield proper BS activation profiles for continuous-time operation in the same network deployment. Various traffic loads are investigated in several simulation campaigns and our proposed schemes yield quite satisfactory energy saving gains compared to fully operational topology networks in all scenarios of interest examined.  相似文献   

4.
Energy efficiency is a significant requirement for the design and management of mobile networks and has recently gained substantial attention from both network operators and the research community. The general concept of energy saving management aims to match the capacity offered by operators to the actual demand at given times and geographic areas. This paper introduces the notion of energy partition, an association of powered-on and powered-off BSs to deliver network-level energy saving. It then elaborates how such concept is applied to perform energy re-configuration to flexibly re-act to load variations encouraging none or minimal extra energy consumption. A simulation-based study evaluates the performance of the proposed algorithms under different network topologies and traffic conditions, highlights the benefits and drawbacks, and provides recommendations for deployment scenarios.  相似文献   

5.
The emergence of wireless sensor networks has imposed many challenges on network design such as severe energy constraints, limited bandwidth and computing capabilities. This kind of networks necessitates network protocol architectures that are robust, energy-efficient, scalable, and easy for deployment. This paper proposes a robust energy-aware clustering architecture (REACA) for large-scale wireless sensor networks. We analyze the performance of the REACA network in terms of quality-of-service, asymptotic throughput capacity, and power consumption. In particular, we study how the throughput capacity scales with the number of nodes and the number of clusters. We show that by exploiting traffic locality, clustering can achieve performance improvement both in capacity and in power consumption over general-purpose ad hoc networks. We also explore the fundamental trade-off between throughput capacity and power consumption for single-hop and multi-hop routing schemes in cluster-based networks. The protocol architecture and performance analysis developed in this paper provide useful insights for practical design and deployment of large-scale wireless sensor network.  相似文献   

6.
In this work, we investigate the energy efficiency in optical code division multiplexing access (OCDMA) networks with forward error correction (FEC). We have modeled the energy efficiency considering the capacity of information transmitted and the network power consumption. The proposed network power consumption model considers the optical transmitter, receiver, optical amplifiers, FEC and network infrastructure as encoders, decoders, star coupler and network control in the overall optical power network consumption balance. Furthermore, an expression relating the signal-to-noise-plus-interference ratio gain for forward error correction with low-density parity-check code scheme considering the power consumption and bandwidth occupancy has been derived. Numerical results for OCDMA networks with aggregated FEC procedure have revealed the viability of the FEC deployment aiming to increase the overall energy efficiency of OCDMA networks.  相似文献   

7.
To meet the increasing traffic and energy consumption demands of wireless networks, energy efficiency and energy efficient transmission techniques have become an urgent need for cellular networks. In this work, the problem of base station (BS) power consumption reduction for increased network energy efficiency of downlink TDMA-based transmission is considered. To meet network’s high traffic demand due to high data rates required by large numbers of users, multiple-input multiple-output (MIMO) and coordinated multi-point (CoMP) transmission have been considered. By adopting realistic power consumption models for single cell MIMO and multi-cell MIMO-CoMP networks, enhanced antenna allocation techniques are proposed and their energy efficiency is compared to the conventional power allocation schemes. It is shown that for a target signal to interference plus noise ratio (SINR), the proposed techniques consume less total power compared to traditional schemes, which leads to higher energy efficiency. In addition, for same power level, the symbol error rate (SER) is reduced and system’s sum rate increases, which leads to higher spectral efficiency.  相似文献   

8.
拓扑控制是移动自组织网络提高网络能量利用率和网络容量的一种重要机制。针对移动自组织网络拓扑易变、带宽和能量有限等特点,简要介绍了一种节约节点能耗,有效提高整个网络寿命的拓扑控制算法;通过对基于邻居个数的拓扑控制协议K-Neigh算法的仿真,研究了不同k值的选择下拓扑控制对节点功耗和网络性能(包括吞吐量、丢包率和时延等)的影响。其结果表明选择合适的k值可以取得节点功耗和网络性能的平衡,而且经过K-Neigh拓扑控制后的网络具有很好的鲁棒性。  相似文献   

9.
Current wireless networks face unprecedented challenges because of the exponentially increasing demand for mobile data and the rapid growth in infrastructure and power consumption. This study investigates the optimal energy efficiency of millimeter wave (mmWave) cellular networks, given that these networks are some of the most promising 5G-enabling technologies. Based on the stochastic geometry, a mathematical framework of coverage probability is proposed and the optimal energy efficiency is obtained with coverage performance constraints. Numerical results show that increasing the base station density damages coverage performance exceeding the threshold. This work demonstrates an essential understanding of the deployment and dynamic control of energy-efficient mmWave cellular networks.  相似文献   

10.
With the increase in the number of users, the role of massive MIMO has become more significant. But there is a significant increase in the power and energy consumption in the massive MIMO network for transmission, processing, and reception. Hence, the prior role is to reduce the power consumption and increase the energy efficiency of the network. In this paper, the work is done to reduce the power consumption, while maintaining the reduced complexity in the massive MIMO and small‐cell scenario, and to increase the energy efficiency, by optimizing the number of users and number of transmission antennas in the massive MIMO scenario. This paper has also found out the optimal values of the energy efficiency, number of transmission antennas, and number of users for a massive MIMO network in different deployment scenarios like indoor hotspot, ultradense, dense urban, urban, suburban, and rural areas in both single‐cell scenario and multicell scenario at the base station and user equipment side according to the ITU‐R M.2135 standard.  相似文献   

11.
There has been active research worldwide to develop the next generation, i.e., fifth generation, wireless network. Next generation mobile communication networks are broadening their spectrum to higher frequency bands (above 6 GHz) to support a high data rate up to multigigabits per second. This work examines how to substantially improve energy efficiency for next fifth generation mobile communication systems. It is depicted how by limited exchange of information between neighboring base stations it is possible to maintain quality of service, over a range of traffic loads, while enabling inactive base stations to sleep. Performance of distributed energy efficient topology management schemes are compared against the system without topology management. Performance evaluation is examined using both analytical and simulation based models. Extensive numerical results show that the schemes deliver a significant energy reduction in energy consumption in the mobile network systems.  相似文献   

12.
The increase in data traffic calls for investment in mobile networks; however, the saturating revenue of mobile broadband and increasing capital expenditure are discouraging mobile operators from investing in next-generation mobile networks. Mobile network sharing is a viable solution for operators and regulators to resolve this dilemma. This research uses a difference-in-differences analysis of 33 operators (including 11 control operators) to empirically evaluate the cost reduction effect of mobile network sharing. The results indicate a reduction in overall operating expenditure and short-term capital expenditure by national roaming. This finding implies that future technology and standards development should focus on flexible network operation and maintenance, energy efficiency, and maximizing economies of scale in radio access networks. Furthermore, mobile network sharing will become more viable and relevant in a 5G network deployment as spectrum bands are likely to increase the total cost of ownership of mobile networks and technical enablers will facilitate network sharing.  相似文献   

13.
移动通信和无线局域网的快速发展使两者的融合成为热点。描述了融合网络的场景和耦合方案,对现有融合网的认证机制缺点进行了分析,提出把传输层安全协议TLS引入到融合网认证中,并对该认证机制对融合网络安全的增强进行了详细描述和分析。最后搭建了融合网络的试验平台,测量了新的认证机制在执行时延、吞吐量以及能量耗费方面的性能。结果表明,新认证机制在大大增强了融合网络安全性的同时提高了网络的性能和效率。  相似文献   

14.
Traditionally mobile operators have met the surge in mobile data traffic and the growing number of rural subscribers by deploying more macro base stations. This increases overall energy consumption, operational costs and carbon footprint of cellular networks. In this paper we investigate solutions for reducing the number and size of active macrocells following traffic load conditions in both homogeneous and heterogeneous networks. Results are presented as overall energy reduction gains for homogeneous macro-only and micro-only networks and heterogeneous joint macro-relay and micro-relay networks, using long-term-evolution-advanced technology. Results show that reducing the number of active cells using sleep mode at base stations, in low to medium traffic load conditions, combined with the deployment of small cells offer energy gains in both homogeneous and heterogeneous networks. However, the most significant gains are observed in heterogeneous networks.  相似文献   

15.
In a multi‐hop sensor network, sensors largely rely on other nodes as a traffic relay to communicate with targets that are not reachable by one hop. Depending on the topology and position of nodes, some sensors receive more relaying traffic and lose their energy faster. Such imbalanced energy consumption may lead to server problems like network partitioning. In this paper, we study the problem of energy consumption balancing (ECB) in heterogeneous sensor networks by assuming general any‐to‐any traffic pattern. We consider both factors of transmission power and forwarding load in measuring energy consumption. To find a solution, we formulate the problem as a strategic network formation game with a new utility function. We show that this game is guaranteed to converge to strongly connected topologies which have better ECB and bounded inefficiency. We propose a localized algorithm in which every node knows only about its k‐hop neighbourhood. Through simulations on uniform and clustered networks with various densities, we show that the performance of our algorithm is comparable with global and centralized algorithms. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
With the exponentially increasing of users’ demand for mobile data traffic,massive small cells have been deployed to satisfy the users’ quality of service (QoS) by operators.However,a significant energy would be consumed caused by dense deployment.To this end,a dense heterogeneous cellular network deployment strategy was proposed with QoS guarantee to decline system energy consumption.Firstly,a dense Macro-Femto biased cellular network was used to build the network model,the two QoS indicators of SINR coverage and user average rate was analyzed by stochastic geometry theory.Then,under the condition of QoS constraint,average spatial power consumption (ASPC) was taken as the optimization goal,optimal deploy density and transmission power of Femto were achieved by using optimization theory.Finally,the experimental results show that,comparing with the traditional strategy which only considering base station density,the proposed strategy has advantages in terms of energy efficiency while QoS guarantee.  相似文献   

17.
Elastic optical networks offer a reliable platform for achieving energy efficiency by supporting extensive optical grooming of variable‐rate data traffic along with the traditional electrical data aggregation methods. The procedure of routing and spectrum allocation in a topology of nodes has explicit effect to the amount of consumed power. A new energy‐efficient method for designing the virtual topology in IP‐over‐elastic networks is introduced and evaluated. It is concluded that it consumes less power under different elastic transponder types, it designs the virtual topology using fewer transponders, and finally, there is a slight increase in the number of end‐to‐end lightpath hops. The proposed method is characterized by high performance and low lightpath establishment complexity. Therefore, it is suitable for a broad range of network configurations and transponder types.  相似文献   

18.
无线自组网中的移动节点大多依靠电池提供能量,因此能量是影响无线自组网性能的一个很大的瓶颈,作为事实上的无线自组网媒体接入协议,802.11并没有动态调整传输功率的能力,大大限制了网络的生存时间。采用功率控制可以提高节点的功率使用效率,减少相邻节点间的干扰,改善网络的性能。在802.11基础上提出一种基于信噪比的动态传输功率控制算法。通过进行计算机仿真,与802.11协议相比,在保持吞吐量性能的前提下,大大减少了节点的功率消耗,提高了节点的能量利用率。  相似文献   

19.
基于进化优化的移动感知节点部署算法   总被引:1,自引:0,他引:1       下载免费PDF全文
南国芳  陈忠楠 《电子学报》2012,40(5):1017-1022
 移动传感器网络中节点部署优化直接影响到网络的能量消耗、对目标区域监控的性能及整个网络的生命周期.本文从网络覆盖和能量消耗两个方面,采用多目标优化对节点部署问题建模,并从集中式角度给出了节点部署问题的遗传算法求解过程.针对一类初始中心部署模型进行实验验证,并和基于向量的算法(VEC)、基于维诺图的算法(VOR)及基于边界扩张虚拟力算法(BEVF)进行性能对比,证明了该算法在大多数情况下可使传感器网络对目标区域的覆盖率最大化,同时保证了网络的连通和网络能耗最小,进而延长了网络的生命周期.  相似文献   

20.
Heterogeneous network (HetNet) is one of the most promising approaches of IMT Advanced, which not only offers higher capacity and data rate, but also network Energy Efficiency (EE). HetNet is an advanced network that promotes complex cooperation between multiple tiers or sizes of base stations, i.e. macro, micro, pico, and femto base stations towards the above benefits. In this paper, a theoretical model for evaluating the EE of HetNet is proposed. Then, a sleep mode mechanism on picocells is proposed to reduce the total energy consumption which subsequently improves the EE. Simulation results show that EE can be increased by balancing the traffic load between different types of base stations. In fact, the improvement very much depends on the percentage of traffic that is offloaded to picocells. At low to medium traffic load conditions, significant improvements in EE can be observed through the proposed sleep mechanism. It is observed that by combining the sleep mode feature of picocells and load balancing between the different types of base stations in HetNet, further EE improvements up to 68 % for low traffic load and up to 33 % for medium traffic load can be achieved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号