首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
For pt. I see ibid., vol.43, no.5, p.1090, 1990. In part I we studied the system-theoretic properties of discrete time transfer matrices in the context of inversion, and classified them according to the types of inverses they had. In particular, we outlined the role of causal FIR matrices with anticausal FIR inverses (abbreviated cafacafi) in the characterization of FIR perfect reconstruction (PR) filter banks. Essentially all FIR PR filter banks can be characterized by causal FIR polyphase matrices having anticausal FIR inverses. In this paper, we introduce the most general degree-one cafacafi building block, and consider the problem of factorizing cafacafi systems into these building blocks. Factorizability conditions are developed. A special class of cafacafi systems called the biorthogonal lapped transform (BOLT) is developed, and shown to be factorizable. This is a generalization of the well-known lapped orthogonal transform (LOT). Examples of unfactorizable cafacafi systems are also demonstrated. Finally it is shown that any causal FIR matrix with FIR inverse can be written as a product of a factorizable cafacafi system and a unimodular matrix  相似文献   

2.
A new approach for the characterization of M-channel finite impulse response (FIR) perfect reconstruction (PR) filterbanks is proposed. By appropriately restricting the eigenstructure of the polyphase matrix of the bank, a complete characterization of order-one polyphase matrices is obtained in which the polynomial part is in a block diagonal form. Nilpotent matrices play a crucial role in the structure. This structure allows imposing restrictions on the order of the inverse of the polyphase matrix and/or analysis-synthesis delay (reconstruction delay). Next, we derive an alternate complete characterization in terms of the degree of the determinant and the McMillan degree of order-one polyphase matrix, which we call the dyadic-based characterization. The characterization of Vaidyanathan and Chen (1995) for matrices with anticausal inverse turns out to be a special case of the proposed characterization. The dyadic-based characterization is more suitable for design without any above-mentioned restriction since it allows better initialization. We finally present design examples with different cost functions  相似文献   

3.
In this paper, perfect reconstruction polyphase infinite impulse response (IIR) filter banks involving causal and anticausal inverses are examined for finite-length signals. First, a novel and efficient nonexpansive perfect reconstruction algorithm based on the state-space implementation is presented. Then the proposed method is extended to support linear signal extensions at the boundaries in a nonexpansive manner. The powerfulness of the proposed algorithm is demonstrated with the image compression results.   相似文献   

4.
The paper presents two formulations of causal cubic splines with equidistant knots. Both are based on a causal direct B-spline filter with parallel or cascade implementation. In either implementation, the causal part of the impulse response is realized with an efficient infinite-impulse-response (IIR) structure, while only the anticausal part is approximated with a finite-order finite-impulse-response (FIR) filter. Resulting cubic coefficients are computed from the causal B-spline coefficients by using a third-order output FIR filter with either single-input multiple-output (SIMO) or multiple-input multiple-output (MIMO) structure, depending on the chosen formulation of the cubic spline. The paper demonstrates and proves that the properties of the resulting causal splines are quite different, whether they are based on a more popular B-spline formulation, or a bit neglected tridiagonal matrix formulation. It is shown that the proposed low-complexity but accurate causal interpolators can be realized for many practical applications with the delay of only a few samples.   相似文献   

5.
We present a complete characterization and design of orthogonal infinite impulse response (IIR) and finite impulse response (FIR) filter banks in any dimension using the Cayley transform (CT). Traditional design methods for one-dimensional orthogonal filter banks cannot be extended to higher dimensions directly due to the lack of a multidimensional (MD) spectral factorization theorem. In the polyphase domain, orthogonal filter banks are equivalent to paraunitary matrices and lead to solving a set of nonlinear equations. The CT establishes a one-to-one mapping between paraunitary matrices and para-skew-Hermitian matrices. In contrast to the paraunitary condition, the para-skew-Hermitian condition amounts to linear constraints on the matrix entries which are much easier to solve. Based on this characterization, we propose efficient methods to design MD orthogonal filter banks and present new design results for both IIR and FIR cases.  相似文献   

6.
Perfect linear-phase two-channel QMF banks require the use of finite impulse response (FIR) analysis and synthesis filters. Although they are less expensive and yield superior stopband characteristics, perfect linear phase cannot be achieved with stable infinite impulse response (IIR) filters. Thus, IIR designs usually incorporate a postprocessing equalizer that is optimized to reduce the phase distortion of the entire filter bank. However, the analysis and synthesis filters of such an IIR filter bank are not linear phase. In this paper, a computationally simple method to obtain IIR analysis and synthesis filters that possess negligible phase distortion is presented. The method is based on first applying the balanced reduction procedure to obtain nearly allpass IIR polyphase components and then approximating these with perfect allpass IIR polyphase components. The resulting IIR designs already have only negligible phase distortion. However, if required, further improvement may be achieved through optimization of the filter parameters. For this purpose, a suitable objective function is presented. Bounds for the magnitude and phase errors of the designs are also derived. Design examples indicate that the derived IIR filter banks are more efficient in terms of computational complexity than the FIR prototypes and perfect reconstruction FIR filter banks. Although the PR FIR filter banks when implemented with the one-multiplier lattice structure and IIR filter banks are comparable in terms of computational complexity, the former is very sensitive to coefficient quantization effects  相似文献   

7.
Some results in the theory of crosstalk-free transmultiplexers   总被引:3,自引:0,他引:3  
The crosstalk-free transmultiplexer (CF-TMUX) focuses on crosstalk cancellation (CC) rather than on suppressing it. The authors present an analysis of the CF-TMUX based on the polyphase component matrices of the filter banks used in TDM→FDM and FDM→TDM conversions, respectively. Thus a necessary and sufficient condition for complete CC is obtained. It is shown that the filters for a CF-TMUX are the same as the filters for a 1-skewed alias free QMF bank. In addition, if the QMF bank satisfies the perfect reconstruction (PR) property, then the TMUX also satisfies PR. The relation between CF-TMUX filters and alias-free QMF banks is used to obtain a direct design procedure for CF-TMUX filters (both FIR and IIR). It is also shown that approximately crosstalk-free TMUX filters can be obtained from any approximately alias-free QMC bank. Design examples and comparison tables are included  相似文献   

8.
In this paper, we propose a method for designing a class of M‐channel, causal, stable, perfect reconstruction, infinite impulse response (IIR), and parallel uniform discrete Fourier transform (DFT) filter banks. It is based on a previously proposed structure by Martinez et al. [1] for IIR digital filter design for sampling rate reduction. The proposed filter bank has a modular structure and is therefore very well suited for VLSI implementation. Moreover, the current structure is more efficient in terms of computational complexity than the most general IIR DFT filter bank, and this results in a reduced computational complexity by more than 50% in both the critically sampled and oversampled cases. In the polyphase oversampled DFT filter bank case, we get flexible stop‐band attenuation, which is also taken care of in the proposed algorithm.  相似文献   

9.
Proposes a novel framework for a new class of two-channel biorthogonal filter banks. The framework covers two useful subclasses: i) causal stable IIR filter banks. ii) linear phase FIR filter banks. There exists a very efficient structurally perfect reconstruction implementation for such a class. Filter banks of high frequency selectivity can be achieved by using the proposed framework with low complexity. The properties of such a class are discussed in detail. The design of the analysis/synthesis systems reduces to the design of a single transfer function. Very simple design methods are given both for FIR and IIR cases. Zeros of arbitrary multiplicity at aliasing frequency can be easily imposed, for the purpose of generating wavelets with regularity property. In the IIR case, two new classes of IIR maximally flat filters different from Butterworth filters are introduced. The filter coefficients are given in closed form. The wavelet bases corresponding to the biorthogonal systems are generated. the authors also provide a novel mapping of the proposed 1-D framework into 2-D. The mapping preserves the following: i) perfect reconstruction; ii) stability in the IIR case; iii) linear phase in the FIR case; iv) zeros at aliasing frequency; v) frequency characteristic of the filters  相似文献   

10.
Multirate filter banks with block sampling   总被引:5,自引:0,他引:5  
Multirate filter banks with block sampling were recently studied by Khansari and Leon-Garcia (1993). In this paper, we want to systematically study multirate filter banks with block sampling by studying general vector filter banks where the input signals and transfer functions in conventional multirate filter banks are replaced by vector signals and transfer matrices, respectively. We show that multirate filter banks with block sampling studied by Khansari and Leon-Garcia are special vector filter banks where the transfer matrices are pseudocirculant. We present some fundamental properties for the basic building blocks, such as Noble identities, interchangeability of down/up sampling, polyphase representations of M-channel vector filter banks, and multirate filter banks with block sampling. We then present necessary and sufficient conditions for the alias-free property, finite impulse response (FIR) systems with FIR inverses, paraunitariness, and lattice structures for paraunitary vector filter banks. We also present a necessary and sufficient condition for paraunitary multirate filter banks with block sampling. As an application of this theory, we present all possible perfect reconstruction delay chain systems with block sampling. We also show some examples that are not paraunitary for conventional multirate filter banks but are paraunitary for multirate filter banks with proper block sampling. In this paper, we also present a connection between vector filter banks and vector transforms studied by Li. Vector filter banks also play important roles in multiwavelet transforms and vector subband coding  相似文献   

11.
In this brief, we derive conditions on the polyphase matrix of 2-D finite-impulse response (FIR) quincunx filter banks, for the filters in the filter bank to have quadrantal or diagonal symmetry. These conditions provide a framework for synthesizing polyphase structures which structurally enforce the symmetry. This is demonstrated by constructing examples of small parameterized matrix structures which satisfy the above conditions, thus giving perfect reconstruction FIR quincunx filter banks with quadrantal or diagonally symmetric short-kernel (i.e., short-support) filters. It is also shown that cascades of the above constructed small structures can be used to construct filters of higher order.  相似文献   

12.
Filter banks over finite fields have found applications in digital signal processing and error-control coding. One method to design a filter bank is to factor its polyphase matrix into the product of elementary building blocks that are fully parameterized. It has been shown that this factorization is always possible for one-dimensional (1-D) paraunitary filter banks. In this paper, we focus on two-channel two-dimensional (2-D) paraunitary filter banks that are defined over fields of characteristic two. We generalize the 1-D factorization method to this case. Our approach is based on representing a bivariate finite-impulse-response paraunitary matrix as a polynomial in one variable whose coefficients are matrices over the ring of polynomials in the other variable. To perform the factorization, we extend the definition of paraunitariness to the ring of polynomials. We also define two new building blocks in the ring setting. Using these elementary building blocks, we can construct FIR two-channel 2-D paraunitary filter banks over fields of characteristic two. We also present the connection between these 2-D filter banks and 2-D error-correcting codes. We use the synthesis bank of a 2-D filter bank over the finite field to design 2-D lattice-cyclic codes that are able to correct rectangular erasure bursts. The analysis bank of the corresponding 2-D filter bank is used to construct the parity check matrix. The lattice-cyclic property of these codes provides very efficient decoding of erasure bursts for these codes.   相似文献   

13.
The advantage of infinite-impulse response (IIR) filters over finite-impulse response (FIR) ones is that the former require a much lower order (much fewer multipliers and adders) to obtain the desired response specifications. However, in contrast with well-developed FIR filter bank design theory, there is no satisfactory methodology for IIR filter bank design. The well-known IIR filters are mostly derived by rather heuristic techniques, which work in only narrow design classes. The existing deterministic techniques usually lead to too high order IIR filters and thus cannot be practically used. In this paper, we propose a new method to solve the low-order IIR filter bank design, which is based on tractable linear-matrix inequality (LMI) optimization. Our focus is the quadrature mirror filter bank design, although other IIR filter related problems can be treated and solved in a similar way. The viability of our theoretical development is confirmed by extensive simulation.  相似文献   

14.
Regularity is a fundamental and desirable property of wavelets and perfect reconstruction filter banks (PRFBs). Among others, it dictates the smoothness of the wavelet basis and the rate of decay of the wavelet coefficients. This paper considers how regularity of a desired degree can be structurally imposed onto biorthogonal filter banks (BOFBs) so that they can be designed with exact regularity and fast convergence via unconstrained optimization. The considered design space is a useful class of M-channel causal finite-impulse response (FIR) BOFBs (having anticausal FIR inverses) that are characterized by the dyadic-based structure W(z)=I-UV/sup /spl dagger//+z/sup -1/UV/sup /spl dagger// for which U and V are M/spl times//spl gamma/ parameter matrices satisfying V/sup /spl dagger//U=I/sub /spl gamma//, 1/spl les//spl gamma//spl les/M, for any M/spl ges/2. Structural conditions for regularity are derived, where the Householder transform is found convenient. As a special case, a class of regular linear-phase BOFBs is considered by further imposing linear phase (LP) on the dyadic-based structure. In this way, an alternative and simplified parameterization of the biorthogonal linear-phase filter banks (GLBTs) is obtained, and the general theory of structural regularity is shown to simplify significantly. Regular BOFBs are designed according to the proposed theory and are evaluated using a transform-based image codec. They are found to provide better objective performance and improved perceptual quality of the decompressed images. Specifically, the blocking artifacts are reduced, and texture details are better preserved. For fingerprint images, the proposed biorthogonal transform codec outperforms the FBI scheme by 1-1.6 dB in PSNR.  相似文献   

15.
Design procedures for stable, causal and perfect reconstruction IIR parallel uniform DFT filter banks (DFT FBs) are presented. In particular a family of IIR prototype filters is a good candidate for DFT FB, where a tradeoff between frequency selectivity and numerical properties (as measured by the Weyl-Heisenberg frames theory) could be made. Some realizations exhibiting a simple and a massively parallel and modular processing structure making a VLSI implementation very suitable are shown. In addition, some multipliers in the filters (both the analysis and synthesis) could be made; powers or sum of powers of 2, in particular for feedback loops, resulting in a good sensitivity behavior. For these reasons as well as for the use of low order IIR filters (as compared with conventional FIR filters), the overall digital filter bank structure is efficient for high data rate applications. Some design examples are provided  相似文献   

16.
The problem of finding N-K filters of an N-band maximally decimated FIR analysis filter bank, given K filters, so that FIR perfect reconstruction can be achieved, is considered. The perfect reconstruction condition is expressed as a requirement of unimodularity of the polyphase analysis filter matrix. Based on the theory of Euclidean division for matrix polynomials, the conditions the given transfer functions must satisfy are given, and a complete parameterization of the solution is obtained. This approach provides an interesting alternative to the method of the complementary filter in the case of N>2,K相似文献   

17.
In this paper, new design and factorization methods of two-channel perfect reconstruction (PR) filter banks (FBs) with casual-stable IIR filters are introduced. The polyphase components of the analysis filters are assumed to have an identical denominator in order to simplify the PR condition. A modified model reduction is employed to derive a nearly PR causal-stable IIR FB as the initial guess to obtain a PR IIR FB from a PR FIR FB. To obtain high quality PR FIR FBs for carrying out model reduction, cosine-rolloff FIR filters are used as the initial guess to a nonlinear optimization software for solving to the PR solution. A factorization based on the lifting scheme is proposed to convert the IIR FB so obtained to a structurally PR system. The arithmetic complexity of this FB, after factorization, can be reduced asymptotically by a factor of two. Multiplier-less IIR FB can be obtained by replacing the lifting coefficients with the canonical signal digitals (CSD) or sum of powers of two (SOPOT) coefficients.  相似文献   

18.
The two-channel perfect-reconstruction quadrature-mirror-filter banks (PR QMF banks) are analyzed in detail by assuming arbitrary analysis and synthesis filters. Solutions where the filters are FIR or IIR correspond to the fact that a certain function is monomial or nonmonomial, respectively. For the monomial case, the design problem is formulated as a nonlinear constrained optimization problem. The formulation is quite robust and is able to design various two-channel filter banks such as orthogonal and biorthogonal, arbitrary delay, linear-phase filter banks, to name a few. Same formulation is used for causal and stable PR IIR filter bank solutions  相似文献   

19.
20.
On orthonormal wavelets and paraunitary filter banks   总被引:2,自引:0,他引:2  
The known result that a binary-tree-structured filter bank with the same paraunitary polyphase matrix on all levels generates an orthonormal basis is generalized to binary trees having different paraunitary matrices on each level. A converse result that every orthonormal wavelet basis can be generated by a tree-structured filter bank having paraunitary polyphase matrices is then proved. The concept of orthonormal bases is extended to generalized (nonbinary) tree structures, and it is seen that a close relationship exists between orthonormality and paraunitariness. It is proved that a generalized tree structure with paraunitary polyphase matrices produces an orthonormal basis. Since not all phases can be generated by tree-structured filter banks, it is proved that if an orthonormal basis can be generated using a tree structure, it can be generated specifically by a paraunitary tree  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号