首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Philippe Dagaut  Franck Lecomte 《Fuel》2003,82(9):1033-1040
The reduction of nitric oxide (NO) by a mixture of methane, ethylene and acetylene with and without addition of SO2 has been studied in a fused silica jet-stirred reactor operating at 1 atm in simulated conditions of the reburning zone. The temperatures were ranging from 800 to 1400 K. In these experiments, the initial mole fractions of NO and SO2 were 0 or 1000 ppm, that of methane, ethylene and acetylene were, respectively, 2400, 1200 and 600 ppm. The equivalence ratio has been varied from 0.5 to 2.5. It was demonstrated that the reduction of NO varies as the temperature and that for a given temperature, a maximum NO reduction occurs slightly above stoichiometric conditions. The addition of SO2 inhibited the process of reduction of NO under the present conditions. The present results generally follow those obtained in previous studies involving simple hydrocarbons or natural gas as reburn fuel. A detailed chemical kinetic modeling of the present experiments was performed using an updated and improved kinetic scheme (1006 reversible reactions and 145 species). An overall reasonable agreement between the present data and the modeling was obtained. Also, the proposed kinetic mechanism can be successfully used to model the reduction of NO by ethane, ethylene, a natural gas blend (methane-ethane 10:1). The kinetic modeling indicates that the reduction of NO proceeds via the following sequence of reactions: HCCO+NO=HCNO+CO; HCCO+NO=HCN+CO2; HCN+O=NCO+H; HCN+O=NH+CO; HCN+H=CN+H2; HCNO+H=HCN+OH; CN+O2=NCO+O; NCO+H=NH+CO; NCO+NO=N2O+CO; NCO+NO=CO2+N2; NH+NO=N2O+H; NH+NO=N2+OH. The inhibition of this process by SO2 is explained by the sequence of reactions H+SO2+M=HOSO+M and HOSO+H=SO2+H2 that acts as a termination process: H+H+M=H2+M.  相似文献   

2.
Selective synthesis of gasoline-range hydrocarbons (C5-C12) was investigated in a fixed-bed micro reactor using two series of CO2-containing syngas with various mole CO2/(CO + CO2) and H2/(CO + CO2) ratios, where Fischer-Tropsch synthesis(FTS) and in situ hydrocracking/hydroisomerization were performed over bifunctional Co/SiO2/HZSM-5 catalyst. CO2 was converted at 0.15-0.55 of CO2/(CO + CO2) ratio under H2-rich condition (H2/(CO + CO2) = 2.0), highest conversion of 20.3% at 0.42. Further increasing CO2 content decreased CO2 conversion and quite amount of CO2 acted as diluting component. For the syngas with low H2 content or H2/(CO + CO2) ratio(< 1.85, H2/CO = 2.0), the competitive adsorption of CO, H2 and CO2 resulted in low CO, CO2 and total carbon conversion, which was 57.9%, 12.7% and 31.4% respectively at 0.74 of H2/(CO + CO2) ratio(H2/CO/CO2/N2 = 40.8/20.4/34.8/4). FTS results indicated that high H2 content and proper H2/(CO + CO2) ratio were favorable for the conversion of CO2-containing syngas. More than 45% selectivity to gasoline-range hydrocarbons including isoparaffins was obtained under the two series of syngas. It was also tested that the catalytic activity of Co/SiO2/HZSM-5 kept stable under CO2-containing syngas(< 7.5%). And the quick catalytic deactivation under high CO2 containing syngas(H2/CO/CO2/N2 = 45.3/23.2/27.1/3.06) was due to carbon deposition and pore blockage by heavy hydrocarbon, tested by thermal gravimetry, N2 physisorption and scanning electron microscopy(SEM).  相似文献   

3.
The purpose of the current study is to evaluate the mercury removal ability of F400 and Norit FGD activated carbons, through fixed bed adsorption tests at inert atmosphere (Hg° + N2). Additionally, adsorption tests were realized on F400 activated carbon, in the presence of HCl, O2, SO2 and CO2 in nitrogen flow. The obtained results, revealed that F400 activated carbon, with a high-developed micropore structure and increased BET area, exhibit larger Hg° adsorptive capacity compared to Norit. HCl and O2, can strongly affect mercury adsorption, owing to heterogeneous oxidation and chemisorption reactions, which is in accordance with the assumptions of some researchers. Additionally, SO2 presence enhances mercury adsorption, in contrast with the conclusions evaluated in other studies. The above result could be attributed to the possible formation of sulphur spaces on activated carbon surface and consist of a clarification for the role of SO2 on mercury adsorption. On the contrary, the mercury adsorption efficiency of F400 activated carbon showed a decrease at about 25%, with increasing CO2 concentration from 0 to 12%.  相似文献   

4.
《Fuel》2003,82(2):147-151
The aim of this paper is to show how a cheap carbonaceous material such as low rank coal-based carbon (or char) can be used in the combined SO2/NO removal from exhaust gas at the linear gas velocity used in commercial systems (0.12 m s−1). Char is produced from carbonization and optionally activated with steam. This char is used in a first step to abate the SO2 concentration at the following conditions: 100 °C, space velocity of 3600 h−1, 6% O2, 10% H2O, 1000 ppmv SO2, 1000 ppmv NO and N2 as remainder. In a second step, when the SO2 concentration in the flue gas is low, NO is reduced to N2 and steam at the following experimental conditions: 150 °C, space velocity of 900 h−1, 6% O2, 10% H2O, 0-500 ppmv SO2, 1000 ppmv NO, 1000 ppmv NH3 and N2 as remainder.It has been shown that the presence of NO has no effect on SO2 abatement during the first step of combined SO2/NO removal system and that low SO2 inlet concentration has a negligible effect on NO reduction in the second step. Moreover, this char can be thermally regenerated after use for various cycles without loss of activity. On the other hand, this regenerated char shows the highest NO removal activity (compared to parent chars, either carbonized or steam activated) which can be attributed to the activating effect of the sulfuric acid formed during the first step of the combined SO2/NO removal system.  相似文献   

5.
Paolo Davini 《Carbon》2003,41(2):277-284
By pyrolysis of a polyacrylonitrile textile by-product, subsequent activation by CO2 and treatment (at high temperature) with a N2 flow containing a low percentage of O2 or of NH3, three carbonaceous matrices are obtained having a high surface area and surface sites with basic characteristics. The SO2 sorption properties of these carbon samples (in the temperature range between 100 and 160 °C) from gaseous mixtures having a similar composition to flue gases, seems to be promoted by nitrogen bonded to carbon. The SO2 adsorbed by the carbons can be divided, by suitable extraction with distilled water, into: (i) desorbable, such as SO2 or H2SO3, (ii) desorbable, such as SO3 or H2SO4, (iii) non-desorbable. Following 10 SO2 adsorption and desorption cycles, the surface area values of the activated carbons remain practically constant, while both the content of the acidic surface sites and the amount of non-desorbable SO2 increase; this results in the decrease in the SO2 carbon sorption property seeming to be even more marked for the carbon sample containing nitrogen.  相似文献   

6.
A new method to prepare plate-shaped Fe2O3 nanoparticles was investigated and their magnetic properties were characterised. First, Fe2O3 nanoparticles of ~ 6 nm in diameter were synthesised by mechanochemical processing, involving the solid-state exchange reaction Fe2(SO4)3 + 3 Na2CO3 → Fe2(CO3)3 + 3 Na2SO4 → Fe2O3 + 3 Na2SO4 +  3 CO2 (g) effected by high-energy ball milling and subsequent heat treatment at 400 °C. Next, nano-platelets were grown from the nanoparticles by further heat treatment in a salt matrix at 700 °C. Removal of the salt and by-product phases after heat treatment led to well-dispersed platy haematite particles of 20-200 nm in diameter with aspect ratio of 4-10. The hematite nano-platelets were weakly ferromagnetic with coercivity of ~ 160 Oe and remanent magnetisation of 0.2 emu/g.  相似文献   

7.
B.R. Stanmore  J.-F. Brilhac 《Fuel》2008,87(2):131-146
The reactions reviewed here concern those between elemental carbon and NO2, N2O and NO, sometimes in the presence of oxygen. The section on NO includes only updates to recent reviews. Soots, activated carbons and carbon blacks are more reactive than graphite. The magnitudes of the reaction rates are found to be: NO2 > N2O ≈ NO ≈ O2. The presence of a soluble organic fraction (SOF) in soot is found to influence some reactions, and all three reactions suffer from inhibition by surface products. The mechanisms proposed for the surface adsorbates are summarised. All authors found that two types of active site were present; one forming weak bonds (physisorption), and the other undergoing chemisorption to form groupings such as -C-ONO, -C-ONO2 or -C-NO2. The latter decompose to give oxides of carbon, and are sometimes called redox reactions. The adsorbates appear to be the same for all NOx species. Some elemental nitrogen adsorption takes place, and can involve incorporation into the C skeleton. The attack of NO on carbon proceeds via NO2, so that catalysts that facilitate this oxidation are effective. Gaseous SO2 and H2O assist in the process by forming acids which are good oxidants. The change in activation energy with temperature found experimentally for NO and N2O may be due to the form of nitrogen on the edge carbon atoms.  相似文献   

8.
Bin Wen 《Fuel》2002,81(14):1841-1846
The NO SCR (selective catalytic reduction) activity with H2 in the presence of excess O2 was investigated over Pd/MFI catalyst prepared by sublimation method. With GHSV=90?000 h−1, a very high steady-state conversion of NO to N2 (70%) is achieved at 100 °C. Significant reorganizations take place inside the catalyst upon its first contact with all reactants and products at the reaction temperature. Pd0, which has a significant role in the NO-H2-O2 reaction, is possibly the active site for NO reduction. The formation of Pd-β hydride deactivates the catalyst for NO reduction. Throughout the entire NO-H2-O2 reaction, no N2O or NO2 is formed; N2 is the only N-containing product. The presence of O2 inhibits the formation of undesirable NH3. The rate of the NO+H2 reaction is fast or comparable to that of the H2+O2 reaction. The oxidation of Pd0 and subsequent agglomeration of PdO are responsible for the decreased NO reduction activity at high temperature.  相似文献   

9.
CoTMPP-TiO2NT/BP composites have been synthesized by preparing CoTMPP and depositing CoTMPP on carbon-supported titania nanotube (TiO2NT/BP) using microwave irradiation method at the same time, followed by heat-treatment from 300 to 900 °C in N2 atmosphere. The catalytic activity for oxygen reduction was evaluated by rotating disc electrode technique in half cells with 0.5 M H2SO4. The number of electrons exchanged during ORR and the percentage of peroxide (%H2O2) produced by the reaction were evaluated for catalysts by rotating ring disk electrode (RRDE) measurements. The influences of TiO2NT doping, the heat-treating temperature and the different ratios of BP:TiO2NT on the activity of electrocatalysts for oxygen reduction were investigated. The stability of the CoTMPP-TiO2NT/BP electrocatalysts was studied with potentialstatic-polarization measurements in 0.5 M H2SO4 + 0.5 M CH3OH. CoTMPP-TiO2NT/BP composites show higher catalytic activity and better stability than CoTMPP/BP. The mechanism for the enhanced catalytic activity of CoTMPP-TiO2NT/BP is discussed.  相似文献   

10.
Modified activated carbons for catalytic wet air oxidation of phenol   总被引:1,自引:0,他引:1  
《Carbon》2005,43(10):2134-2145
This study aims at testing several activated carbons for the catalytic wet air oxidation (CWAO) of phenol solutions. Two commercial activated carbons were used both as received and modified by treatment with either HNO3, (NH4)2S2O8, or H2O2 and by demineralisation with HCl. The activated carbons were characterised by measuring their surface area, distribution of surface functional groups and phenol adsorption capacity. The parent and treated activated carbons were then checked for CWAO using a trickle bed at 140 °C and 2 bar of oxygen partial pressure. The treatments increase the acidic sites, mostly creating lactones and carboxyls though some phenolic and carbonyl groups were also generated. Only (NH4)2S2O8 treatment yields a significant decrease in surface area. CWAO tests show that catalytic activity mainly depends on the origin of the activated carbon. The modifications generally had a low impact on phenol conversion, which correlates somewhat with the increase in the acidity of the carbons. Characterisation of the used activated carbon evidences that chemisorbed phenolic polymers formed through oxidative coupling and oxygen radicals play a major role in the CWAO over activated carbon.  相似文献   

11.
The interaction of graphite with plasmas of pure gases (O2, N2 or H2O), air or mixtures of gases containing NO has been studied by XPS “in situ” analysis. Depending on the type of plasma, different species of nitrogen, oxygen and carbon have been detected on the surface of graphite. The nitrogen containing species have been attributed to pyridinic, pyrrol, quartenary and oxidized groups adsorbed on the surface. The evolution with the treatment time of the relative intensity of the different nitrogen bands for Ar + NO, N2 + NO, air or N2 plasmas has served to propose a model accounting for the reactions of graphite with plasmas of NO containing gases. The model explains why carbon materials (in the form of graphite, soot particles, etc.) can be very effective for the removal of the NO present in exhaust combustion gases excited by a plasma. The analysis of the C1s and O1s photoemission peaks reveals the formation of C/O adsorbed species up to a maximum concentration on the surface of around 10% atomic oxygen. A general evolution is the progressive formation of C/O species where the carbon is sp3 hybridized. This tendency is enhanced when graphite is treated with the plasma of water.  相似文献   

12.
Zhicheng Tang 《Carbon》2007,45(1):41-46
Vulcan XC-72 carbon black for use as a catalyst support was treated in three different plasma atmospheres, H2, Ar and O2. The results showed that the microstructure and surface functional groups were significantly changed after plasma treatment. Pt/C catalysts were prepared by chemical reduction of H2PtCl6 with HCHO and those with untreated and plasma treated carbon black supports were characterized and tested for methanol electrooxidation. TEM showed that the platinum nanoparticles on H2 and Ar plasma treated carbon were uniform and well distributed. Those on untreated carbon were uniform in most regions but coalesced in others. On O2 plasma treated carbon agglomeration of the platinum nanoparticles was significant. XRD showed that the catalysts were composed of face-centered cubic Pt nanoparticles and XPS showed that they were metallic with no oxides present. Cyclic voltammetry and chronoamperometry were used to study methanol electrooxidation on the Pt/C catalysts in a solution of 0.5 M H2SO4 + 0.5 M CH3OH, and showed that the catalytic activity those using H2 and Ar plasma treated carbon was higher than for the untreated one. Catalysts supported by O2 plasma treated carbon showed no catalytic activity. The treatment atmosphere of carbon therefore had a large effect on the catalyst performance, with the H2 plasma being the best.  相似文献   

13.
Gas effects on NO reduction by NH3 over sulfated CaO have been investigated in the presence of O2 at 700–850 °C. CO2 and SO2 have reversible negative effects on the catalytic activity of sulfated CaO. Although H2O alone has no obvious effect, it can depress the negative effects of CO2 and SO2. In the flue gas with CO2, SO2 and H2O co-existing, the sulfated CaO still catalyzed the NO reduction by NH3. The in situ DRTFTS of H2O adsorption over sulfated CaO indicated that H2O generated Br?nsted acid sites at high temperature, suggesting that CO2 and SO2 competed for only the molecularly adsorbed NH3 over Lewis acid sites with NO, without influencing the ammonia ions adsorbed over Br?nsted acid sites. Lewis acid sites shifting to Br?nsted acid sites by H2O adsorption at high temperature may explain the depression of the negative effect on NO reduction by CO2 and SO2.  相似文献   

14.
A gasoline distillate from the Fischer-Tropsch synthesis (so-called as F-T gasoline) was collected in a cold trap set in a gas-flowed slurry reaction system. The F-T gasoline contained 92.8 wt.% n-alkanes (ranged from n-C4H10 to n-C14H30), 2.4 wt.% 1-alkenes, and 4.8 wt.% iso-alkanes. By the hydroisomerization-cracking in an atmospheric flowed fixed-bed reactor over the catalysts containing Pt and heteropoly compound Cs2.5H0.5PW12O40 (abbreviated as Cs2.5), the F-T gasoline was converted to gasoline distillated mixed alkanes with a high iso/n ratio. A mechanical mixture of Pt/Al2O3 and Cs2.5 (noted as Pt/Al2O3 + Cs2.5) showed the highest catalytic performance among various catalysts. The product over Pt/Al2O3 + Cs2.5 after 5 h on-steam at 523 K contained 94.4% C5-C9 (gasoline components) with a high iso/n ratio of 8.45. The co-grinding time of Pt/Al2O3 and Cs2.5 influenced the catalytic performance when the time was shorter than 10 min but gave little influence on the catalytic performance when the time was longer than 10 min. Because the iso/n ratio of products over Pt/Al2O3 + Cs2.5 increased by adding Pt in Cs2.5 and decreased with increasing H2/feedstock, the reaction proceeded through a bifunctional mechanism in which Pt sites achieved a hydrogenation/dehydrogenation function and acid sites achieved an isomerization/cracking function. The balance of Pt and solid acids was important to obtain a high catalytic performance in the hydroisomerization-cracking of F-T gasoline. Because Cs2.5 possessed moderate acidic strength and uniformly distributed acidic sites, Pt/Al2O3 + Cs2.5 showed a higher catalytic stability than that over Pt/Al2O3 + SO4/ZO2 and showed a higher catalytic activity than that over Pt/Al2O3 + H-ZSM-5.  相似文献   

15.
The reduction of NO to N2/N2O in the presence of excess O2 has been successfully achieved at 70 °C using an electrochemical cell of the type, 0.1% NO, 0–10% O2, Pt | NAFION | Pt, H2O. An H+-conducting solid polymer electrolyte (SPE) plays a key role in evolving hydrogen on the Pt cathode, where the catalytic NO–H2 takes place. It was revealed that the competitive H2–O2 reaction is suppressed because the Pt surface was covered with stable nitrate (NO3) species, which blocks oxygen adsorption hereon. The inhibition of H2–O2 reaction becomes most efficient at 100 °C in agreement with the optimal operation temperature range of SPE. The reduction efficiency of NO in an excess O2 could be improved by packing 1 wt% Pt/ZSM-5 catalyst in the cathode room. The combination between the SPE cell and Pt catalysts can broadly be applied to novel low-temperature deNOx processes in a strongly oxidizing atmosphere.  相似文献   

16.
Activated carbons were obtained by carbonization of orange skin waste and partial gasification with CO2. The orange skin contains a significant amount of inorganic matter mainly potassium, calcium and phosphorus. CO2 gasification is catalyzed by potassium and calcium, resulting in carbons with a microporous structure. Thermal treatment up to 900 °C applied to orange skin-derived activated carbons yields carbons with a highly developed porous structure, and a significant contribution of mesopores, due to the activation effect of potassium compounds. This porous structure is initially blocked by the inorganic matter that is removed by a subsequent acid wash, opening the porous structure of the final carbon; an activated carbon with a very wide porous structure and a specific surface area of around 1200 m2/g was obtained. The activated carbon with high potassium content shows relatively high NO adsorption capacities in the presence of oxygen at 120 °C, probably due to the catalytic effect of potassium on the oxidation of NO. The breakthrough times of the NO adsorption in the presence of oxygen at 120 °C were predicted by the Bohart and Adams model with a relevant agreement between the calculated and the experimental times.  相似文献   

17.
Li Li 《Carbon》2006,44(14):2973-2983
Characteristics of nanosized Pt electro-catalyst deposited on carbon nanotubes (CNTs) were studied with CO-stripping voltammogram and chronoamperometry measurements. The CNTs were pretreated by oxidation in HNO3, mixed HNO3 + H2SO4 and H2SO4 + K2Cr2O7 solution, respectively, to enable surface modification. Well-homogenized Pt particles (average size: ≈3 nm) were loaded onto the pretreated CNT samples by a modified colloidal method. TEM, BET, FTIR and XRD techniques were used to characterize the physicochemical properties of the pretreated CNT samples. In the electro-oxidation of CO, all the Pt/CNT samples showed lower on-set as well as peak potentials than the conventional Pt/XC-72 electro-catalyst, indicating that the Pt/CNT samples were more resistant to CO poisoning and could be superior anode electro-catalyst for the proton exchange membrane fuel cells (PEMFCs). Moreover, we found that the pretreatment of CNTs in mixed HNO3 + H2SO4 solution was very beneficial for the performance enhancement of Pt/CNT electro-catalyst; the catalyst obtained as such gave the lowest peak potential and the highest catalytic activity for the electro-oxidation of CO. Larger amount of oxygen-containing functional groups, higher percentage of mesopores, and higher graphitic crystallinity of the pretreated CNTs were considered crucial for the performance enhancement, e.g., by strengthening the interaction between Pt nanoparticles and the CNT support and enhancing the mass diffusion in the electro-chemical reaction.  相似文献   

18.
The O2/CO2 coal combustion technology is an innovative combustion technology that can control CO2, SO2 and NOx emissions simultaneously. Calcination and sintering characteristics of limestone under O2/CO2 atmosphere were investigated in this paper. The pore size, the specific pore volume and the specific surface area of CaO calcined were measured by N2 adsorption method. The grain size of CaO calcined was determined by XRD analysis. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere are less than that of CaO calcined in air at the same temperature. And the pore diameter of CaO calcined in O2/CO2 atmosphere is larger than that in air. The specific pore volume and the specific surface area of CaO calcined in O2/CO2 atmosphere increase initially with temperature, and then decline as temperature exceeds 1000 °C. The peaks of the specific pore volume and the specific surface area appear at 1000 °C. The specific surface area decreases with increase in the grain size of CaO calcined. The correlations of the grain size with the specific surface area and the specific pore volume can be expressed as L = 744.67 + 464.64 lg(1 / S) and L = − 608.5 + 1342.42 lg(1 / ε), respectively. Sintering has influence on the pore structure of CaO calcined by means of influencing the grain size of CaO.  相似文献   

19.
Accelerated deactivation of 15 wt.% Co/Al2O3 catalyst in Fischer–Tropsch synthesis (FTS) in a single-bed and a dual-bed reactor is reported. Water was found to have a remarkable effect on the deactivation of Co/Al2O3 catalyst during FTS. Synthesis at higher temperatures and lower space velocities resulted in higher values of PH2O/(PCO + PH2) and PH2O/PCO and higher catalyst deactivation rates. Water-induced back-oxidation of cobalt, cobalt–alumina interactions, irreducible cobalt aluminates formation and refractory coke formation are the main sources of deactivation. When the water to carbon monoxide plus hydrogen ratio PH2O/(PCO + PH2) is greater than about 0.55 or water to carbon monoxide ratio PH2O/PCO is greater than about 1.5, it is not uncommon to find rapid catalyst deactivation. Separation of water and heavy hydrocarbons between the two catalytic beds of the dual-bed reactor, resulted in 62% lower catalyst deactivation rate than that of the single-bed reactor. The amount of refractory coke formation on the catalysts of the dual-bed reactor is 34% lower than that of the single-bed reactor. It was revealed that activity recovery of the used catalysts of the dual-bed is higher than that of the single-bed reactor.  相似文献   

20.
X.L. Hao  X.W. Zhang 《Carbon》2009,47(1):153-161
Activated carbons (ACs) with different textural and surface chemistry properties obtained by HNO3 oxidation, N2-thermal treatment, and aqueous non-thermal plasma treatment were studied to analyze their behaviors in degradation of toxic organic pollutant parachlorophenol (4-CP) by the pulsed discharge plasma process in aqueous solution. N2-heated AC in the 50-110 μm diameter range with a dosage of 0.5 g l−1 under any solution pH had a remarkable promoting effect on 4-CP degradation, as well as an obvious enhancement in energy efficiency for 4-CP removal. Chemical and physical actions induced by pulsed discharge non-thermal plasma (PDP) pose little negative impact on catalytic ability of plasma-treated AC. From mathematical modeling on synergic degradation of 4-CP on AC surface, N2-heated AC had a strong adsorption ability of 4-CP, including high catalytic activities for H2O2 and O3 decompositions on AC surface, resulting in more amounts of highly reactive species formed, especially ·OH radical. This would enhance degradation rate and PDP energy efficiency for 4-CP removal, and simultaneously, the AC as catalyst in PDP process was regenerated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号