首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermally metamorphosed Tertiary age coals from Tanjung Enim in South Sumatra Basin have been investigated by means of petrographic, mineralogical and chemical analyses. These coals were influenced by heat from an andesitic igneous intrusion. The original coal outside the metamorphosed zone is characterized by high moisture content (4.13–11.25 wt.%) and volatile matter content (> 40 wt.%, daf), as well as less than 80 wt.% (daf) carbon and low vitrinite reflectance (VRmax = 0.52–0.76%). Those coals are of subbituminous and high volatile bituminous rank. In contrast the thermally metamorphosed coals are of medium-volatile bituminous to meta-anthracite rank and characterized by low moisture content (only < 3 wt.%) and volatile matter content (< 24 wt.%, daf), as well as high carbon content (> 80 wt.%, daf) and vitrinite reflectance (VRmax = 1.87–6.20%). All the studied coals have a low mineral matter content, except for those which are highly metamorphosed, due to the formation of new minerals.The coalification path of each maceral shows that vitrinite, liptinite and inertinite reflectance converge in a transition zone at VRmax of around 1.5%. Significant decrease of volatile matter occurs in the zone between 0.5% and 2.0% VRmax. A sharp bend occurs at VRmax between 2.0% and 2.5%. Above 2.5%, the volatile matter decreases only very slightly. Between VRr = 0.5% and 2.0%, the carbon content of the coals is ascending drastically. Above 2.5% VRr, the carbon content becomes relatively stable (around 95 wt.%, daf).Vitrinite is the most abundant maceral in low rank coal (69.6–86.2 vol.%). Liptinite and inertinite are minor constituents. In the high rank coal, the thermally altered vitrinite composes 82.4–93.8 vol.%. Mosaic structures can be recognized as groundmasss and crack fillings. The most common minerals found are carbonates, pyrite or marcasite and clay minerals. The latter consist of kaolinite in low rank coal and illite and rectorite in high rank coal. Change of functional groups with rank increase is reflected most of all by the increase of the ratio of aromatic C–H to aliphatic C–H absorbances based on FTIR analysis. The Oxygen Index values of all studied coals are low (OI < 5 mg CO2/g TOC) and the high rank coals have a lower Hydrogen Index (< 130 mg HC/g TOC) than the low rank coals (about 300 mg HC/g TOC). Tmax increases with maturity (420–440 °C for low rank coals and 475–551 °C for high rank coals).Based on the above data, it was calculated that the temperature of contact metamorphism reached 700–750 °C in the most metamorphosed coal.  相似文献   

2.
The geology, petrography and chemical variation of the Pecket coal sequence, Magellan Region (52°57′S, 71°10′W), the only Chilean coal used for electricity generation on a large scale, has been studied in order to predict their combustion behaviour, especially in coal blends. The depositional environment of formation of the coal seams was a swamp rarely exposed to subaerial conditions and was associated with the development of the folded foreland of the Magellan basin during the Tertiary (Oligo–Miocene). The general tectonic regime of the collision of the Antarctic and South American plates is reflected by a system of joints with 40°N–50°W strike. The maceral composition of all six seams studied indicates high contents of vitrinite (>90%), minor content of liptinite (4.7%) and inertinite (<2%). Occurrence of tonstein horizons altered to kaolinite indicates a distal volcanism during peat accumulation. Coal rank varies between lignite and subbituminous (Ro=0.28–0.42%) with an average dry basis calorific value of 5450 kcal/kg, 17 wt.% moisture, 41 wt.% volatile matter, and sulphur content below 0.5 wt.%. The mineral matter (LTA) associated with the coal shows a dominance of kaolinite with quartz, smectite, and minor basanite. SiO2/Al2O3 and Fe2O3/CaO ratios of the ashes diminish towards the lower seams. With respect to the utilisation of Pecket coals in combustion, base/acid ratios (B/A) and silica ratios (SR) indicate potential fouling for seams 1, 2, 5, and 6i, with high fouling indexes (Rf) for seams 2 and 5. Pecket coal is excellent for blend combustion due to its low sulphur content.  相似文献   

3.
The main purpose of this study was to recognise the variability of petrographical structure of two coal seams occurring in the Cracow Sandstone Series (Upper Carboniferous/Pennsylvanian, Upper Westphalian), being exploited in the Siersza mine. This mine is located in the eastern part of the Upper Silesia Coal Basin (USCB). The chemical analyses and petrographical features allow the inclusion of these coals to the group of hard brown coals belonging to subbituminous class.Two coal seams (207 and 209/210) of a considerable thickness (7.44 and 6.54 m, respectively), representative of the Cracow Sandstone Series (CSS), were chosen for the petrographic studies. Dominant macroscopic constituents of both seams are banded bright coal and banded coal.The coal seams were sampled in 284 intervals using a channel profile sampling strategy. The microscopical examinations revealed the majority of macerals from the vitrinite group (55%), followed by inertinite (21%), liptinite (11%), and mineral matter (13%). Low values of the vitrinite reflectance (Ro=0.46%) confirm very low coalification of the coal in both seams. Facies analysis indicates that in the course of a mire development, in which the studied coal seams originated, wet forest swamp conditions dominated characterized by a high degree of flooding and gelification as well as by a prevalence of arborescent plants. In such conditions, lithotypes with a large content of bright coal were mainly formed. Petrographic and facies data point to the rheotrophic character of these peatbogs. Frequent changes of the conditions in the peatbog, as it is shown by the variability of petrographic structure of the studied profiles, as well as by lateral changes of the phytogenic sedimentary environment within the coal seams, indicate a strong influence of a river channel on the adjoining peatbogs. An accretion of clastic sediments within the wide river channel belts was balanced mainly by the peatbog growth on the areas outside channels. Frequency and rate of avulsion of the river channels influenced the size, continuity and variability of the peatbogs.  相似文献   

4.
The Late Miocene Muaraenim Formation in southern Sumatra contains thick coal sequences, mostly of low rank ranging from lignite to sub-bituminous, and it is believed that these thick low rank coals are the most prospective for the production of coal seam gas (CSG), otherwise known as coalbed methane (CBM), in Indonesia.As part of a major CSG exploration project, gas exploration drilling operations are being undertaken in Rambutan Gasfields in the Muaraenim Formation to characterize the CSG potential of the coals. The first stage of the project, which is described here, was designed to examine the gas reservoir properties with a focus on coal gas storage capacity and compositional properties. Some five CSG exploration boreholes were drilled in the Rambutan Gasfield, south of Palembang. The exploration boreholes were drilled to depths of ~ 1000 m into the Muaraenim Formation. Five major coal seams were intersected by these holes between the depths of 450 and 1000 m. The petrography of coal samples collected from these seams showed that they are vitrinite rich, with vitrinite contents of more than 75% (on a mineral and moisture free basis). Gas contents of up to 5.8 m3/t were measured for the coal samples. The gas desorbed from coal samples contain mainly methane (CH4) ranging from 80 to 93% and carbon dioxide (CO2) ranging from 6 to 19%. The composition of the gas released into the production borehole/well is, however, much richer in CH4 with about 94 to 98% CH4 and less than 5% CO2.The initial results of drilling and reservoir characterization studies indicate suitable gas recovery parameters for three of the five coal seams with a total thickness of more than 30 m.  相似文献   

5.
The petrographic and palynologic compositions of coal seams of the acler formation (Upper Carboniferous, Westphalian A) from northwestern and southeastern part of the Lower Silesian Coal Basin (LSCB) were examined. Coals studied are highly volatile bituminous coal, where Ro ranges from 0.91% to 1.09%. Seam 430 from the northwestern part of the basin contains high vitrinite percentage with rather low inertinite and liptinite contents, while percentage of mineral matter is variable. This petrographic composition is associated either with a predominance of Lycospora in miospore assemblage, or with a miospore assemblage of mixed character. The abundance of Lycospora reflects vegetation composed of the arborescent lycopsids while the mixed miospore assemblage is connected with diverse palaeoplant communities, namely, arborescent lycopsids, calamites and ferns. Seams 409 and 412/413 from the southeastern part of the LSCB are rich in inertinite and liptinite, while the vitrinite content is moderate. Their characteristic feature is the occurrence of a diagnostic crassisporinite (densosporinite). Amount of the mineral components in these coals is very low. Densosporites and related crassicingulate genera are main components of these miospore assemblages and were produced by herbaceous and/or sub-arborescent lycopsids. These petrographic and palynologic features were the basis for distinguishing three maceral–miospore associations: an arborescent lycopsid and mixed associations, occurring in the seam 430 and a herbaceous and/or sub-arborescent lycopsid association which was recorded in seams 409 and 412/413. The first two assemblages are interpreted as having been deposited in a planar rheotrophic mire, whereas the herbaceous and/or sub-arborescent lycopsid association is thought to have developed in an ombrotrophic, domed mire.  相似文献   

6.
The Carboniferous succession in the Donets Basin hosts about 130 seams, each with a thickness over 0.45 m. Nine economically important seams from the (south)western Donets Basin are studied using organic petrographical, inorganic geochemical, and organic geochemical techniques. The main aim of the study is the reconstruction of peat facies of Serpukhovian (Mississippian) and Moscovian (Middle Pennsylvanian) coals.Formation of major coal seams commenced during Serpukhovian times. Early Serpukhovian coal accumulated in a relatively narrow shore-zone and is rich in inertinite and liptinite. Very low ash yields, low to moderate sulphur contents, and upward increasing inertinite contents suggest coal deposition in raised mires.Moscovian coal has a significantly wider lateral extension and is generally rich in vitrinite. Coal properties vary widely in response to different peat facies. Low-sulphur, low-ash k7 coal was formed in a raised mire or in a low-lying mire without detrital input. l1 and l3 seams containing several fluvial partings were formed in low-lying mires. Both seams are more than 2 m thick. Seams m2 and m3 contain high-sulphur coal, a consequence of deposition in a peat with marine influence. In contrast, syngenetic sulphur content is low in the m51 upper seam, which was formed in a lacustrine setting. The late Moscovian n1 seam, up to 2.4 m thick, accumulated in a swamp with a vegetation rich in bryophytes and pteridophytes. The properties of the n1 seam are transitional between those of Serpukhovian and other Moscovian seams. Differences in maceral composition between Serpukhovian and Moscovian coals probably reflect changes in climate and vegetation type.Tuff layers are observed in the l1, l3, and m3 seams. The l3 and m3 seams contain abundant authigenic quartz. Trace element contents are high in many seams. As contents are especially high in seams c102, k7, l3 and m3. Ash in the l3 seam contains up to 8000 ppm As. Co is enriched near the base of several seams. Maxima up to 2400 ppm occur in the ash of the k7 and l3 seams. Cd contents in ash are frequently as high as 30 or 40 ppm.  相似文献   

7.
Small angle scattering techniques (SAXS and SANS) have been used to investigate the microstructural properties of the subbituminous coals (Rmax 0.42–0.45%) from the Huntly Coalfield, New Zealand. Samples were collected from the two thick (> 5 m) coal seams in the coalfield and have been analysed for methane and carbon dioxide sorption capacity, petrography, pore size distribution, specific surface area and porosity.Specific surface area (SSA) available for carbon dioxide adsorption, extrapolated to a probe size of 4 Å, ranged from 1.25 × 106 cm? 1 to 4.26 × 106 cm? 1 with total porosity varying from 16% to 25%. Porosity was found to be predominantly composed of microporosity, which contributed the majority of the available SSA. Although considerable variation was seen between samples, the results fit well with published rank trends.Gas holding capacity at the reservoir pressure (approximately 4 MPa) ranged from 2.63 to 4.18 m3/t for methane on a dry, ash-free basis (daf) and from 22.00 to 23.72 m3/t daf for carbon dioxide. The resulting ratio of CO2:CH4 ranged from 5.7 to 8.6, with an average of 6.7:1.Holding capacities for both methane and carbon dioxide on a dry ash free basis (daf) were found to be correlated with sample microporosity. However, holding capacities for the two gases on an as analysed (aa) basis (that is including mineral matter and moisture), showed no such correlation. Carbon dioxide (aa) does show a negative correlation with both specific surface area and microporosity. As the coals have low inorganic matter content, the reversal is thought to be related to moisture which is likely concentrated in the pore size range 12.5–125 Å. Methane holding capacity, both daf and aa, correlates with macroporosity, thus suggesting that the holding capacity of micropores is diminished by the presence of moisture in the pores.  相似文献   

8.
Thermally altered pods of coal of very high rank have been observed in a high-volatile-bituminous coal seam in the eastern side of Eagle Mountain, Elk Valley Coalfield, British Columbia. Rank changes have been measured over a strike distance of 7.5 m from 1.24% to 7.1% Ro max, corresponding to a rank gradient of 0.78% Rom−1.Petrologically, unaltered to extremely altered vitrinite showing nongranular (basic) anisotropy, mosaic-textured liptinite and pyrolytic carbon are the most abundant components. The limited presence of mosaic on vitrinite is an indication that the coal seam may have been weathered prior to being heat-affected.Evidence points to localized temperatures as high as 1,000°C, which could have been caused by a lightning strike. The eastern side of Eagle Mountain has experienced higher temperatures than the western side, and it appears that the heat ‘front’ and zone of alteration have an irregular pattern, pointing to saturation of parts of the coal seam by water.Four types of pyrolytic carbon having distinct morphology, anisotrophy and optical path with increasing temperature were observed. Reflectance of pyrolytic carbon falls within the zone of heat-affected coals, whereas the optical path of heat-affected Seam 15 samples is different from that of fresh coal with increasing rank.Finally, the reflectance of vitrinite in heat-affected coal is higher than the reflectance of vitrinite in carbonaceous shale in the Seam 15 section.  相似文献   

9.
The maceral and microlithotype composition of selected coals has been investigated with respect to the grinding properties, specifically Hardgrove grindability index (HGI), of the coals. The study expands upon previous investigations of HGI and coal petrology by adding the dimension of the amount and composition of the microlithotypes. Coal samples, both lithotypes and whole channels, were selected from restricted rank ranges based on vitrinite maximum reflectance: 0.75–0.80% Rmax, 0.85–0.90% Rmax and 0.95–1.00% Rmax. In this manner, the influence of petrographic composition can be isolated from the influence of rank. Previous investigations of high volatile bituminous coals demonstrated that, while rank is an important factor in coal grindability, the amount of liptinite and liptinite-rich microlithotypes is a more influential factor. In this study, we provide further quantitative evidence for the influence of microlithotypes on HGI and, ultimately, on pulverizer performance.  相似文献   

10.
The research work details the maceral organization of eleven coal seams intersected at a maximum depth of 446.45 m from Bhupalpalli area of the Mulug coal belt, in Warangal district of Godavari valley. Samples for petrographic study have been collected from ten coal seams intersected between 106 m and 299 m depth range from Bore-hole No. 618 which includes, IA and its underlying I, II, Index below II, IIIB, IIIA, III, IVA, IV and Index below IV respectively. However, the coal samples from the bottom most V seam were collected from Bore-hole No. 616 encountered between 445.65 m and 446.45 m. The study has revealed that V seam is marked by vitric type and seam IVA contains coal of fusic nature. The seams I, II, Index below II, IIIB, IIIA and IV, however, are represented by mixed type of coal. Whereas, the seams IA and III have the prevalence of vitric as well as mixed coal types. IA seam has witnessed alternate oxic and anoxic moor condition and also wet moor with intermittent moderate to high flooding. All the other seams have been deposited during alternate oxic and anoxic moor conditions. The coal seams of the study area have shown a wide range of variation in vitrinite reflectance (Ro mean %). The top of III, basal part of IV and the entire Index below IV have recorded high vitrinite reflectance (Ro mean %), which ranges between 0.66-0.67% thus they have reached high volatile bituminous B stage, all the other seams show lower reflectance and therefore have attained high volatile bituminous C rank.  相似文献   

11.
The Early Cretaceous coal deposits of the Khasyn coalfield are intruded by Palaeogene diabase dikes. The coal has vitrinite reflectance values of 2.0–2.5% Ro, and characteristics of normal anthracite at some distance from the dikes, but at direct contact with the dike two morphological coal varieties occur: coal inclusions in the diabase dike and dispersed carbonaceous matter within the dike rock. Both types of coaly matter have properties typical of anthracites: strong anisotropy, altered internal structure and high vitrinite reflectance values ranging from 3.8 to 5.5% Ro. The X-ray diffraction measurements of the interplanar spacing d(002) and the crystallite sizes Lc and La show rather similar values for coal inclusions in the dike and dispersed carbonaceous matter. The additional reflection at 3.37 Å, corresponding to semi-graphite admixture, occurs in the coal and carbonaceous matter inside the dike and is absent in the natural coal outside the dike.  相似文献   

12.
Accurate prediction of in-situ stress directions plays a key role in any Coal Bed Methane (CBM) exploration and exploitation project in order to estimate the production potential of the CBM reservoirs. Permeability is one of the most important factors for determination of CBM productivity. The coal seams in Jharia coalfield generally show low permeability in the range of 0.5 md to 3 md. To estimate the in-situ stress direction in the study area, an attempt has been made to undertake the cleat orientation mapping of four regional coal seams of two underground coal mines located at south-eastern part of Jharia coalfield, India. Cleat orientation mapping is critical to determine the maximum principal compressive horizontal stress (SH) direction for CBM exploration and exploitation, which in turn controls the direction of maximum gas or water flow though coal beds. From the field study it is found that the average face and butt cleat azimuths are towards N15°W and N75°E respectively. Average permeability of the four above-mentioned major coal seams has been calculated from well logs of nine CBM wells distributing over an area of 7.5 km2, adjacent to the underground mines. The cleat orientations are congruous with the regional lineament pattern and fits well with the average permeability contour map of the study area to infer the orientation of in-situ maximum horizontal stress. Goodness of fit for the exponential regressions between vertical stress and permeability for individual coal seams varies between 0.6 and 0.84. The cleat orientation is further validated from the previous fracture analysis using FMI well log in Parbatpur area located southern part of the Jharia coalfield. The major coal seams under the study area exhibit directional permeability, with the maximum permeability, oriented parallel to the direction of face cleat orientation.  相似文献   

13.
This study provides coal quality, petrological, palynological and geochemical (Rock Eval) data on Permian coal seams and associated shales and mudstones of the Karoo Supergroup of the Songwe-Kiwira Coalfield, Tanzania. The coal seams, which have a cumulative thickness of 6.80 m, occur in the shale–coal–sandstone facies of the Mchuchuma Formation of Artinskian to Kungurian(?) age.Coal quality data (calorific values, volatile matter contents) and vitrinite reflectances indicate high volatile C bituminous to high volatile A bituminous coals, having relatively high ash yields (22–49 wt.%) and highly variable sulphur contents (0.17–9.2 wt.%). They could be used to fuel small-scale power generation units thereby providing electricity to nearby towns and villages. Also, the coals could be used as a substitute for wood, which is becoming increasingly scarce. In rural Tanzania, charcoal is still the main energy source for cooking, and wood is used extensively in brick kilns and for making roofing tiles.Petrological analysis indicated that the coals are dominated by dull to banded dull lithotypes, with seams at the base of the Mchuchuma Formation enriched in inertinite macerals (up to 83 vol.%), whereas up-section vitrinite contents increase. Palynological analyses indicated that the assemblage in the lower Mchuchuma Formation (Scheuringipollenites assemblage) is dominated by trilete spores, whereas in the remainder of the section, non-taeniate disaccates dominate (Scheuringipollenites–Protohaploxypinus assemblage). Facies critical macerals suggest for most seams a marsh/wet forest swamp depositional setting, which is consistent with the palynological data.Rock Eval analyses indicate type II/III kerogen, with Tmax (°C) values ranging from 426 to 440, corresponding to the early stage of hydrocarbon generation. Thermal Alteration Indices (2 to 2+) and vitrinite reflectance levels (0.60–0.83 Ro (%) support the Rock Eval maturity assessment, and despite the predominance of terrestrial-derived organic matter, there is evidence of oil generation and expulsion in the form of cavity and fracture filling exsudatinite.  相似文献   

14.
The effect of coal composition, particularly the organic fraction, upon gas sorption has been investigated for Bowen Basin and Sydney Basin, Australia coals. Maceral composition influences on gas retention and release were investigated using isorank pairs of hand-picked bright and dull coal in the rank range of high volatile bituminous (0.78% Ro max) to anthracite (3.01% Ro max). Adsorption isotherm results of dry coals indicated that Langmuir volume (VL) for bright and dull coal types followed discrete, second-order polynomial trends with increasing rank. Bright coals had a minimum VL at 1.72% Ro max and dull coals had a minimum VL at 1.17% Ro max. At low rank, VL was greater in bright coal by about 10 cm3/g, but as rank increased, the bright and dull trends converged and crossed at 1.65% Ro max. At ranks higher than 1.65% Ro max, both bright and dull coals followed similar trends. These competing trends mean that the importance of maceral composition on VL varies according to rank. In high volatile bituminous coals, increases in vitrinite content are associated with increases in adsorption capacity. At ranks higher than medium to low volatile bituminous, changes in maceral composition may exert relatively little influence on adsorption capacity. The Langmuir pressure (PL) showed a strong relationship of decreasing PL with increasing rank, which was not related to coal type. It is suggested that the observed trend is related to a decrease in the heterogeneity of the pore surfaces, and subsequent increased coverage by the adsorbate, as coal rank increases. Desorption rate studies on crushed samples show that dull coals desorb more rapidly than bright coals and that desorption rate is also a function of rank. Coals of lower rank have higher effective diffusivities. Mineral matter was found to have no influence on desorption rate of these finely crushed samples. The evolution of the coal pore structure with changing rank is implicated in diffusion rate differences.  相似文献   

15.
运用电感耦合等离子体质谱和煤质分析等技术方法,对内蒙古胜利煤田0-1号钻孔揭露的早白垩世1、2和4号煤层(共20个煤分层,1个夹矸)进行了研究。结果显示,1、2号煤层的挥发分产率大于44%,透光率小于50%,煤类为褐煤;4号煤层挥发分产率42%,透光率53%,煤类为次烟煤(长焰煤);1、2号煤层灰分和硫含量较高,4号煤层灰分和硫含量较低。与世界煤微量元素含量平均值相比,1、2和4号煤层中Sb富集,V、Zr、Nb、Hf、W等元素轻微富集,其它微量元素的含量接近或低于世界煤含量的平均值。1、2和4号煤层中稀土元素和钇(REY)含量较低,根据上地壳标准值(La/Lu)N比值,所有煤分层均显示重稀土富集类型特征,而煤中泥岩夹矸则显示轻稀土富集类型特征。  相似文献   

16.
The quantitative maceral study of the Queen seam from Mailaram coalfield of Godavari valley has displayed alternate coal bands rich in vitrinite/liptinite or inertinite. The random vitrinite reflectance (Ro max. %) of these coals, from top part ranges from 0.50 to 0.64%. However, the bottom part of the seam has indicated lower reflectance, between 0.49 and 0.52%. Thus, the Queen seam, in general, has attained high volatile bituminous C rank. The study indicates that the depositional site has been a slowly sinking basin that witnessed alternate dry (oxidizing) and wet (reducing) spells. This subsequently caused fluctuation in water table of the basin and the formation of oxic and anaoxic moor condition, where accumulated vegetal resource transformed into mixed and fusic coal types in due course of time. Being high in liptinite and vitrinite contents and low mineral matter, the Queen seam of Mailaram coalfield has high economic potential.  相似文献   

17.
A detailed study of maceral composition and vitrinite reflectance of the coal deposits from Marki-Jhari-Jamni area, situated in the northwestern extremity of Wardha valley coalfield, Yeotmal district, Maharashtra has been carried out with special reference to their depositional set up. These coals have two distinct types of maceral organization, one having significantly high distribution of the vitrinite group of macerals (35–41%) and the other containing the dominance of inertinite (26–49%). Liptinite maceral group is recorded between 14 and 24%, barring a few coal bands having liptinite maceral group as high as 33–37%. The vitrinite reflectivity ranges from 0.38–0.43%. Thus, they have attained sub-bituminous C rank. Mineral matter in these coals varies between 15 and 22%. The present study suggests that the basin primarily experienced cold climate having intermittent brackish water influx with alternating dry oxidizing spells.  相似文献   

18.
对豫北煤田焦作、鹤壁和安阳矿区二1煤层的对比样(构造煤和原生结构煤)进行了显微镜和扫描电镜下观察、镜质组反射率测试、X射线衍射分析和化学分析等。研究结果表明,构造煤因发生了断裂构造地球化学作用,其化学成分、元素成分和煤分子结构与原生结构煤明显不同:构造煤的挥发分含量(%)比原生结构煤一般要小0.55~3.48,平均要小1.59;构造煤和原生结构煤相比,碳含量(%)平均增加了3.1,氢含量(%)平均  相似文献   

19.
The Jurassic coals of the Junggar and Turpan-Hami basins, Xinjiang, China, are characterized by abundant vitrinite. Microscopic analysis of Junggar coal samples indicates that they contain desmocollinite and hydrogen-rich vitrinite with a low reflectivity. The hydrocarbon-generating potential of various macerais follows the decreasing order of exinite > vitrinite > inertinite. However, desmocollinite is a principal maceral for hydrocarbon generation in this area because the content of vitrinite is higher than that of exinite. Data from simulating experiments and infrared spectra show that the hydrocarbon-generating process occurred primarily at the lower-mature stage in the Middle-Lower Jurassic coal measures. Generally, crude oil from the Qigu oilfield has a close similarity in hopanoid distribution to the vitrinite and exinite from the Jurassic strata with C23-C32 pentacyclic triterpanes and γ-lupane being present. The distribution of steranes is also similar. C29-sitostane is dominant and Q27 ergostane is subordinate. Only a trace amount of cholestane is present. All this suggests that the crude oil from the Qigu oilfield was derived from Jurassic coal measures.  相似文献   

20.
A detailed study of maceral composition and vitrinite reflectance of the coal deposits from Marki-Jhari-Jamni area, situated in the northwestern extremity of Wardha valley coalfield, Yeotmal district, Maharashtra has been carried out with special reference to their depositional set up. These coals have two distinct types of maceral organization, one having significantly high distribution of the vitrinite group of macerals (35–41%) and the other containing the dominance of inertinite (26–49%). Liptinite maceral group is recorded between 14 and 24%, barring a few coal bands having liptinite maceral group as high as 33–37%. The vitrinite reflectivity ranges from 0.38–0.43%. Thus, they have attained sub-bituminous C rank. Mineral matter in these coals varies between 15 and 22%. The present study suggests that the basin primarily experienced cold climate having intermittent brackish water influx with alternating dry oxidizing spells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号