首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Immunocytochemical methods were used to determine the comparative distribution of Shaker Kv1.4 and Shal Kv4.2 A-type voltage-gated K+ channels and AMPA-type GluR4 glutamate receptors in the goldfish retina. Kv1.4-immunoreactivity (IR) was restricted to a very narrow band of bright puncta and filamentous processes in the outer plexiform layer (OPL), whereas GluR4-IR was found in radial processes of Müller cells in addition to a narrow band in the OPL. Kv4.2-IR was most prominent over cell bodies of horizontal cell, amacrine cells and ganglion cells, with very weak labeling over the synaptic terminal of cone photoreceptors. Double label experiments revealed complete co-localization of Kv1.4-IR and GluR4-IR in the OPL and showed that the Kv1.4 puncta in the OPL appeared enclosed by the Kv4.2-IR cone terminals. Electron microscopical immunocytochemistry showed that Kv1.4-IR and GluR4-IR were restricted to the dendrites of OFF-bipolar cells that innervated cone photoreceptor terminals and thin processes that coursed between the rod and cone terminals in the OPL. These data are consistent with other studies demonstrating the selective clustering of A-type voltage-gated K+ channels and ionotropic glutamate receptors. However, they differ from mammalian preparations in which Shal-like Kv4.2 rather than Shaker-like Kv1.4 co-localize postsynaptically with glutamate receptors.  相似文献   

2.
We studied the localization of metabotropic glutamate receptors (mGluRs) in the goldfish outer plexiform layer by light-and electron-microscopical immunohistochemistry. The mGluR1α antibody labeled putative ON-type bipolar cell dendrites and horizontal cell processes in both rod spherules and cone triads. Immunolabeling for mGluR2/3 was absent in the rod synaptic complex but was found at horizontal cell dendrites directly opposing the cone synaptic ribbon. The mGluR5 antibody labeled Müller cell processes wrapping rod terminals and horizontal cell somata. The mGluR7 antibody labeled mainly horizontal cell dendrites invaginating rods and cones and some putative bipolar cell dendrites in the cone synaptic complex. The finding of abundant expression of various mGluRs in bipolar and horizontal cell dendrites suggests multiple sites of glutamatergic modulation in the outer retina. Financial support for this work was provided by Conselho Nacional de Pesquisa (CNPq), Brazil (grant 200915/98-3 to C.J.)  相似文献   

3.
The expression and distribution of AMPA, kainate and NMDA glutamate receptor subunits was studied in the goldfish retina. For the immunocytochemical localization of the AMPA receptor antisera against GluR2, GluR2/3 and GluR4 were used, and for in situ hybridization rat specific probes for GluR1 and GluR2 and goldfish specific probes for GluR3 and GluR4 were used. The localization of the low affinity kainate receptor and NMDA receptor was studied using antisera against GluR5-7 and NR1. All AMPA receptor subtypes were demonstrated to be present in the goldfish retina both by immunocytochemistry and in situ hybridization. In situ hybridization revealed expression of all AMPA receptors subunit at the inner border of the INL. Only GluR3 was also strongly expressed in the outer border of the INL. Some of the ganglion cells displayed a strong signal for GluR1, GluR3 and GluR4. GluR1-immunoreactivity was present in subsets of bipolar, amacrine, and ganglion cells. GluR2 and GluR2/3-immunoreactivity was mainly localized in the outer plexiform layer. GluR2 and GluR2/3-immunoreactivity are associated with the photoreceptor synaptic terminals. GluR4-immunoreactivity is present on Müller cells in the inner retina and on dendrites of bipolar cells in the OPL, whereas GluR5-7-immunoreactivity was prominently present on horizontal cell axon terminals. Finally, NR1-immunoreactivity was confined to amacrine cells, the inner plexiform layer and ganglion cells. This study shows that there is a strong heterogeneity of glutamate receptor subunit expression in the various layers of the retina. Of the AMPA receptor subunits GluR3 seems to be expressed the most widely in all layers with strong glutamatergic synaptic interactions whereas all the other subunits seem to have a more restricted expressed pattern.  相似文献   

4.
Summary 1. Glutamate is one of the main neurotransmitters in the retina. Its effects are mediated by a large number of ionotropic and metabotropic receptors. 2. The distribution of ionotropic AMPA receptor subunits GluR1–4, kainate receptor subunits GluR5–7 and KA2, as well as delta receptors 1–2 was studied in turtle retina. Indirect immunofluorescence was used to localize the different receptor subunits viewed using light microscopy. 3. Results show that all subunits, with excerption of GluR1 and GluR5, are widely distributed in the turtle retina. 4. They are mainly located in the both plexiform layers of the retina where punctate staining, a sign for synaptic localization, is observed. 5. The vast majority of the subunits possess specific pattern of staining that allow to suppose that they are involved in different retinal circuits. 6. It can be assumed that the GluR2/3 and GluR6/7 subunits are expressed on the dendrites of a subpopulation of bipolar cells that are immunopositive for α-isoform of protein kinase C (PKCα). The GluR2/3 and GluR6/7 subunits are most probably used by the same PKCα immunopositive bipolar cells in their synaptic contacts with the third-order retinal neurons, the amacrine and ganglion cells.  相似文献   

5.
Here we studied the ultrastructural organization of the outer retina of the European silver eel, a highly valued commercial fish species. The retina of the European eel has an organization very similar to most vertebrates. It contains both rod and cone photoreceptors. Rods are abundantly present and immunoreactive for rhodopsin. Cones are sparsely present and only show immunoreactivity for M-opsin and not for L-, S- or UV-cone opsins. As in all other vertebrate retinas, Müller cells span the width of the retina. OFF-bipolar cells express the ionotropic glutamate receptor GluR4 and ON-bipolar cells, as identified by their PKCα immunoreactivity, express the metabotropic receptor mGluR6. Both the ON- and the OFF-bipolar cell dendrites innervate the cone pedicle and rod spherule. Horizontal cells are surrounded by punctate Cx53.8 immunoreactivity indicating that the horizontal cells are strongly electrically coupled by gap-junctions. Connexin-hemichannels were found at the tips of the horizontal cell dendrites invaginating the photoreceptor synapse. Such hemichannels are implicated in the feedback pathway from horizontal cells to cones. Finally, horizontal cells are surrounded by tyrosine hydroxylase immunoreactivity, illustrating a strong dopaminergic input from interplexiform cells.  相似文献   

6.
The vanilloid receptor type 1 (TRPV1/VR1) is a non-specific calcium-permeable ionotropic cation channel expressed in the peripheral sensory system as well as in the central nervous system. An endogenous ligand for TRPV1 is arachidonoyl ethanolamide (anandamide), which also activates the metabotropic cannabinoid receptor 1 (CB1). Previous studies in this laboratory reported CB1 receptors and CB1-mediated effects on voltage-gated currents in goldfish cones and bipolar cells. In this study, we show TRPV1-like-immunoreactivity (TRPV1-L-IR) by immunoblot analysis of goldfish retina and rat brain homogenates with a guinea pig polyclonal antibody against the C-terminus of the rat TRPV1. Light-level immunocytochemistry showed restriction of the guinea pig-TRPV1 antibody to a very narrow band in the outer plexiform layer in goldfish and zebrafish retinas. However, no immunoreactivity was detected using rabbit-polyclonal antibodies against the C or N-termini of the rat TRPV1. Pre and post-embedding electron microscopy (EM) immunocytochemistry revealed that TRPV1-L-IR (using the guinea pig antibody) was restricted to synaptic ribbons of all cones and many rods, but never was observed at the synaptic ribbons of bipolar cells. While pre-embedded tissue showed diffuse label associated only with photoreceptor-synaptic ribbons, analysis of post-embedded tissue showed label tightly restricted to synaptic ribbons of all cones and many rods. Oblique sections showed that immunogold particles were confined to the outer electron dense region of the ribbons, with few or no gold particles in the ribbon core or associated with tethers or vesicles. Although TRPV1-L-IR described here, does not necessarily represent TRPV1 antigen associated with synaptic ribbons, these data provide an unequivocal label with which to study the functional dynamics of ribbon formation and degradation in teleost photoreceptors.  相似文献   

7.
The canonical flow of visual signals proceeds from outer to inner retina (photoreceptors→bipolar cells→ganglion cells). However, melanopsin-expressing ganglion cells are photosensitive and functional sustained light signaling to retinal dopaminergic interneurons persists in the absence of rods and cones. Here we show that the sustained-type light response of retinal dopamine neurons requires melanopsin and that the response is mediated by AMPA-type glutamate receptors, defining a retrograde retinal visual signaling pathway that fully reverses the usual flow of light signals in retinal circuits.  相似文献   

8.
The olfactory system is well suited for studies of glutamate receptor plasticity. The sensory neurons are glutamatergic, and they turn over throughout life, and the olfactory bulb neurons that process their inputs express many of the known glutamate receptor subunits. Neonatal naris occlusion alters olfactory bulb development and the expression of certain neuroactive substances and receptors, at least in part due to loss of the sensory inputs. We therefore postulated that neonatal naris occlusion might alter glutamate receptor expression during postnatal development. Single nares of newborn mice were occluded on postnatal days 1-2, and the distribution of glutamate receptor subunits was evaluated using immunoperoxidase methods. Light microscopic examination on postnatal day 6 failed to reveal adult-like staining of neuronal cell bodies in the olfactory bulbs. By day 12, cell bodies that were immunoreactive (-IR) for the GluR1 subunit were visible in the external plexiform layer (EPL) of both sides. By day 18, many of the GluR1-IR cell bodies could be identified as cell types that had previously been reported to express homomeric GluR1 receptors. Analysis of single, mid-dorsal sections from 18-25-day-old mice showed that the medial EPL of the occluded side had a significantly lower density of these cell bodies. The GluR1 staining of the adjacent mitral cell layer (MCL) was also heavier on the occluded side, but no gross differences in staining for other glutamate receptor subunits were observed. Neonatal naris occlusion therefore appears to provide a new model for studying expression of GluR1 receptors during the development of a discrete population of olfactory bulb neurons.  相似文献   

9.
10.
Cone pedicles, the synaptic terminals of cone photoreceptors, are connected in the macaque monkey retina to several hundred postsynaptic dendrites. Using light and electron microscopy, we found underneath each cone pedicle a laminated distribution of dendritic processes of bipolar and horizontal cells. Superimposed were three strata of glutamate receptor (GluR) aggregates, including a novel layer of glutamate receptors clustered at desmosome-like junctions. They are, most likely, postsynaptic densities on horizontal cell dendrites. GABA(A) and GABA(C) receptors are aggregated on bipolar cell dendrites in a narrow band underneath the cone pedicle. Glutamate released from cone pedicles and GABA released from horizontal cell dendrites act not only through direct synaptic contacts but also (more so) through diffusion to the appropriate receptors.  相似文献   

11.
The fine structure of the retinal photoreceptors has been studied by light and electron microscopy in the southern fiddler ray or guitarfish (Trygonorhina fasciata). The duplex retina of this species contains only rods and single cones in a ratio of about 40:1. No multiple receptors (double cones), no repeating pattern or mosaic of photoreceptors and no retinomotor movements of these photoreceptors were noted. The rods are cylindrical cells with inner and outer segments of the same diameter. Cones are shorter, stouter cells with a conical outer segment and a wider inner segment. Rod outer segment discs display several irregular incisures to give a scalloped outline to the discs while cone outer segment discs have only a single incisure. In all photoreceptors a non-motile cilium joins the inner and outer segments. The inner segment is the synthetic centre of photoreceptors and in this compartment is located an accumulation of mitochondria (the ellipsoid), profiles of both rough and smooth endoplasmic reticulum, prominent Golgi zones and frequent autophagic vacuoles. The nuclei of rods and cones have much the same chromatin pattern but cone nuclei are invariably located against or particularly through the external limiting membrane (ELM). Numerous Landolt's clubs which are ciliated dendrites of bipolar cells as well as Müller cell processes project through the ELM, which is composed of a series of zonulae adherentes between these cells and the photoreceptors. The synaptic region of both rods (spherules) and cones (pedicles) display both invaginated (ribbon) synapses and superficial (conventional) synapses with cones showing more sites than the rods.  相似文献   

12.
Du WD  Bao YD 《生理学报》1999,51(3):279-283
本文应用neo-Timm染色法,观察了鲫鱼视网膜内锌离子的分布情况以及明,暗适应条件下鲫鱼视网膜内锌离子分布的变化。结果发现,明适应条件下,外网层、部分光感受器、双极细胞、无长突细胞以及神经节细胞胞体锌离子着色明显,含锌光感受器和双极细胞的突起伸入外网层,暗适应条件下,外网层锌离子染色减弱或消失(P〈0.01)。外核层胞体锌离子染色阴性,少数散在分布的视锥细胞呈锌离子阳性,上述资料提示,明适应条件  相似文献   

13.
An electron microscopic examination of the parietal retinas of Anolis carolinensis and Iguana iguana demonstrated within each retina (1) two distinct populations of neurons, (2) two populations of glia, and (3) a population of photoreceptors which could not be subdivided. A small population of very electron-dense cells, in many respects similar to photoreceptors, was also found in the iguana. Correspondingly dark processes were found in the plexiform layer of each retina. Parietal photoreceptors generally resemble cones of the lateral eye. Glial cells were sub-classified on the basis of the location of their somata and the disposition of their processes. Neurons were identified by virtue of their cytology and their reception of axosomatic ribbon synapses from unidentified plexiform layer processes. Neuronal subtypes were located on opposite sides of the plexiform layer. Neurons distal to that layer were found to project the initial segments of their processes into the plexiform layer parallel to its long axis, while neurons central to the plexiform layer projected axons centrally and dendrites radially into the plexiform layer. The existence of at least two neuronal populations and of interphotoreceptor synapses suggests that photosensory processing within the parietal retina may be more complex than previously assumed.  相似文献   

14.
Loss of photoreceptors leads to significant remodeling in inner retina of rd1 mouse, a widely used model of retinal degeneration. Several morphological and physiological alterations occur in the second- and third-order retinal neurons. Synaptic activity in the excitatory bipolar cells and the predominantly inhibitory amacrine cells is enhanced. Retinal ganglion cells (RGCs) exhibit hyperactivity and aberrant spiking pattern, which adversely affects the quality of signals they can carry to the brain. To further understand the pathophysiology of retinal degeneration, and how it may lead to aberrant spiking in RGCs, we asked how loss of photoreceptors affects some of the neurotransmitter receptors in rd1 mouse. Using Western blotting, we measured the levels of several neurotransmitter receptors in adult rd1 mouse retina. We found significantly higher levels of AMPA, glycine and GABAa receptors, but lower levels of GABAc receptors in rd1 mouse than in wild-type. Since GABAa receptor is expressed in several retinal layers, we employed quantitative immunohistochemistry to measure GABAa receptor levels in specific retinal layers. We found that the levels of GABAa receptors in inner plexiform layer of wild-type and rd1 mice were similar, whereas those in outer plexiform layer and inner nuclear layer combined were higher in rd1 mouse. Specifically, we found that the number of GABAa-immunoreactive somas in the inner nuclear layer of rd1 mouse retina was significantly higher than in wild-type. These findings provide further insights into neurochemical remodeling in the inner retina of rd1 mouse, and how it might lead to oscillatory activity in RGCs.  相似文献   

15.
Summary The long and short photoreceptors in the lamprey retina possess similar cone-like outer segments where many disks are infoldings of the outer plasmic membrane. Following the treatment by the Hartwig's (1967) method, outer segments of the long receptors are stained red, and those of the short receptor are stained blue, like the cones and rods in higher vertebrates, resp. (Fig. 1). Microspectrophotometry has shown that the short cells contain P5171 whereas the long receptors possess P5551 (Fig. 3). Spectral sensitivity of the dark-adapted retina measured by electroretinographic b-wave and aspartate-isolated receptor potential, corresponds to P517 (Figs. 5, 8). Judging from the receptor potential, the short receptors do not saturate at high illuminances and contribute to the retinal function in photopic conditions as well (Fig. 7). Photopic ERG is of a typical cone-dominant shape (Fig. 4).It is concluded that the long photoreceptors of the lamprey retina are cones whereas the short cells should be regarded as a peculiar kind of rods which possess cone ultrastructure and can operate in scotopic as well as in photopic conditions.Abbreviation LRP late receptor potential  相似文献   

16.
Endothelin receptors in light-induced retinal degeneration   总被引:1,自引:0,他引:1  
Excessive light exposure leads to retinal degeneration in albino animals and exacerbates the rate of photoreceptor apoptosis in several retinal diseases. In previous studies we have described the presence of endothelin-1 (ET-1) and its receptors (ET-A and ET-B) in different sites of the mouse retina, including the retinal pigment epithelium, the outer plexiform layer (OPL), astrocytes, the ganglion cell layer (GCL), and vascular endothelia. After light-induced degeneration of photoreceptors, endothelinergic structures disappear from the OPL, but ET-1 and ET-B immunoreactivities increase in astrocytes. Here, we present novel observations about the course of light-induced retinal degeneration in BALB-c mice exposed to 1500 lux during 4 days with or without treatment with tezosentan, a mixed endothelinergic antagonist. Retinal whole mounts were immunostained with anticleaved caspase-3 (CC-3) serum to identify apoptotic photoreceptor cells within the outer nuclear layer (ONL). Glial activation was measured as glial fibrillary acidic protein (GFAP) immunoreactivity in retinal whole mounts and in Western blots from retinal extracts. Tezosentan treatment significantly reduced both the number of CC3-immunoreactive cells and GFAP levels, suggesting that inhibition of endothelinergic receptors could play a role in photoreceptor survival. Using confocal double immunofluorescence, we have observed that ET-A seems to be localized in bipolar cell dendrites, whereas ET-B is localized in horizontal cells. Our observations suggest the existence of an endothelinergic mechanism modulating synaptic transmission in the OPL. This mechanism could perhaps explain the effects of tezosentan treatment on photoreceptor survival.  相似文献   

17.
The present study sought to characterize the expression and distribution of complex glycoconjugates in the rat retina by lectin histochemistry, using a panel of 21 different lectins with different carbohydrate specificities. Paraffin sections of Carnoy-fixed Sprague-Dawley rat eyes were stained with various biotinylated lectins, followed by the streptavidin-peroxidase and glucose oxidase-diaminobenzidine-nickel staining procedures. The results showed that the retinal pigment epithelium was stained intensely with LCA, Jacalin, WFA, S-WGA, PWA, DSA, UEA-I, LTA and PHA-E, suggesting that this epithelium contained glycoconjugates with alpha-Man, alpha-Glc, alpha-Gal/GalNAc, beta-GalNAc, alpha-Fuc, NeuAc and other oligosaccharide residues. The outer and inner segments of the photoreceptor layer showed different lectin binding affinities. The outer segments reacted with S-WGA and GS-II, whereas the inner segments reacted with UEA-II, UEA-I, LTA and MAA, suggesting that the inner segments contained glycoconjugates rich in alpha-Fuc and NeuAc(alpha2,3)Gal residues. PNA labelled specifically the cones and could be used as a specific marker for these photoreceptors. RCA-I, WFA, S-WGA, DSA, MAA and PHA-E reacted with both the outer and inner plexiform layers. On the other hand, UEA-I and LTA specifically labelled the outer plexiform layer, while PNA labelled the inner plexiform layer. The retinal microglial cells were labelled specifically by GS-I-B4 and SNA. Interestingly, we also observed that WFA bound specifically to Müller cells and could be used as a novel marker for this retinal glial cell. The capillaries and larger vessels in the retina and choriocapillaris reacted intensely with GS-I-B4, RCA-I, S-WGA, PWA, DSA and PHA-E. No significant differences in lectin binding were observed in the microvessels at these two sites. In summary, the present study demonstrated the expression patterns of glycoconjugates in the rat retina and that certain lectins could be used as histochemical markers for specific structural and cellular components of the rat retina.  相似文献   

18.
Summary The localisation of GABA immunoreactive neurones in retinas of a variety of animals was examined. Immunoreactivity was associated with specific populations of amacrine neurones in all species examined, viz. rat, rabbit, goldfish, frog, pigeon and guinea-pig. All species, with the exception of the frog, possessed immunoreactive perikarya in their retinal ganglion cell layers. These perikarya are probably displaced amacrine cells because GABA immunoreactivity was absent from the optic nerves and destruction of the rat optic nerve did not result in degeneration of these cells. GABA immunoreactivity was also associated with the outer plexiform layers of all the retinas studied; these processes are derived from GABA-positive horizontal cells in rat, rabbit, frog, pigeon and goldfish retinas, from bipolar-like cells in the frog, and probably from interplexiform cells in the guinea-pig retina.The development of GABA-positive neurones in the rabbit retina was also analysed. Immunoreactivity was clearly associated with subpopulations of amacrine and horizontal cells on the second postnatal day. The immunoreactivity at this stage is strong, and fairly well developed processes are apparent. The intensity of the immunoreactivity increases with development in the case of the amacrine cells. The immunoreactive neurones appear fully developed at about the 8th postnatal day, although the immunoreactivity in the inner plexiform layer becomes more dispersed as development proceeds. The immunoreactive horizontal cells become less apparent as development proceeds, but they can still be seen in the adult retina.The GABA immunoreactive cells in rabbit retinas can be maintained in culture. Cultures of retinal cells derived from 2-day-old animals can be maintained for up to 20 days and show the presence of GABA-positive cells at all stages. In one-day-old cultures the GABA immunoreactive cells lacked processes but within three days had clearly defined processes. After maintenance for 10 days a meshwork of GABA-positive fibres could also be seen in the cultures.  相似文献   

19.
The present study sought to characterize the expression and distribution of complex glycoconjugates in the rat retina by lectin histochemistry, using a panel of 21 different lectins with different carbohydrate specificities. Paraffin sections of Carnoy-fixed Sprague–Dawley rat eyes were stained with various biotinylated lectins, followed by the streptavidin-peroxidase and glucose oxidase–diaminobenzidine–nickel staining procedures. The results showed that the retinal pigment epithelium was stained intensely with LCA, Jacalin, WFA, S-WGA, PWA, DSA, UEA-I, LTA and PHA-E, suggesting that this epithelium contained glycoconjugates with α-Man, α-Glc, α-Gal/GalNAc, β-GalNAc, α-Fuc, NeuAc and other oligosaccharide residues. The outer and inner segments of the photoreceptor layer showed different lectin binding affinities. The outer segments reacted with S-WGA and GS-II, whereas the inner segments reacted with UEA-II, UEA-I, LTA and MAA, suggesting that the inner segments contained glycoconjugates rich in α-Fuc and NeuAc(α2,3)Gal residues. PNA labelled specifically the cones and could be used as a specific marker for these photoreceptors. RCA-I, WFA, S-WGA, DSA, MAA and PHA-E reacted with both the outer and inner plexiform layers. On the other hand, UEA-I and LTA specifically labelled the outer plexiform layer, while PNA labelled the inner plexiform layer. The retinal microglial cells were labelled specifically by GS-I-B4 and SNA. Interestingly, we also observed that WFA bound specifically to Müller cells and could be used as a novel marker for this retinal glial cell. The capillaries and larger vessels in the retina and choriocapillaris reacted intensely with GS-I-B4, RCA-I, S-WGA, PWA, DSA and PHA-E. No significant differences in lectin binding were observed in the microvessels at these two sites. In summary, the present study demonstrated the expression patterns of glycoconjugates in the rat retina and that certain lectins could be used as histochemical markers for specific structural and cellular components of the rat retina.  相似文献   

20.
Summary The distribution of neuropeptide Y (NPY)-like immunoreactivity in rat, rabbit, chick, frog and goldfish retinas was investigated by immunohistochemistry. Positive results were observed only in the frog and goldfish retinas. NPY immunoreactivity was associated with a small population of amacrine cell bodies in the inner nuclear layer and cell processes in the inner plexiform layer of both retinas. In the frog retina, three distinct layers containing immunoreactivity were observed in the inner plexiform layer. In contrast, the immunoreactivity in the same area of the goldfish retina was more or less separated into two layers. Convincing evidence could not be found for the co-existence of NPY-like material with other putative transmitter-like substances in the two retinas.Radioimmunoassay revealed the presence of small amounts of NPY-like immunoreactivity in the rabbit retina; the goldfish and frog retinas contained significantly more immunoreactive material. High performance liquid chromatography of the immunoreactive material in frog and goldfish retinas showed each retina containing different molecular forms of NPY-like proteins, neither of which resembled porcine NPY or PYY.The endogenous NPY-like material of the frog retina can be released by potassium depolarisation in a calciumdependent way. In view of all these data an NPY-like protein must now be considered a potential retinal transmitter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号