首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ni-based self-lubricating composites with multiple-lubricants addition were prepared by a powder metallurgy technique, and the effect of multiple-lubricants on tribological properties was investigated from room temperature to 700?°C. The synergetic effects of graphite, MoS2, and metallic silver lubricants on the tribological characteristics of composites were analyzed. XRD analysis showed that new Cr x S y and Mo2C phase were formed in the composites containing graphite, MoS2 and metallic Ag lubricants during the sintering process. The average friction coefficients (0.69?C0.22) and wear rates (11.90?C0.09?×?10?5?mm3?N?1?m?1) were obtained when rubbing against Inconel 718 alloy from room temperature to 700?°C due to synergetic lubricating action of multiple-lubricants. A smooth lubricating was gradually generated on the worn surface, and the improving of tribological properties was attributed to the formation of lubricious glaze film on the worn surface and their partially transferred to the counterface. The graphite played the main role of lubrication at room temperature, while molybdate phase and graphite were responsible for low friction coefficients and wear rates at mid/high temperatures. The synergetic lubricating effect of molybdate (produced in the rubbing process at high temperatures) iron oxide (transfer from disk material to the pin) and remaining graphite multiple-lubricants play an important lubricating role during friction tests at a wide temperature range.  相似文献   

2.
The Ni-based self-lubricating composites with addition of 10 and 20?wt% Ag2MoO4 were fabricated by powder metallurgy technique, and the effect of Ag2MoO4 on tribological properties was investigated from room temperature to 700?°C. The tribo-chemical reaction films formed on rubbing surface and their effects on the tribological properties of composites at different temperatures were addressed according to the surface characterization by SEM and Micro-Raman. The results show that the Ag2MoO4 decomposed into Ag and Mo during the high-temperature fabrication process. The friction coefficient and wear rate of the composites decrease with the increasing of temperature and Ag2MoO4 contents and the composites with addition of 20?wt% Ag2MoO4 exhibits the lowest friction coefficient (0.26) and wear rate (1.02?×?10?5?mm3?N?1?m?1) at 700?°C. The composition of the tribo-layers on the worn surfaces of the composites is varied at different temperatures. It is proposed that the improving of tribological properties of the composites at high temperatures are attributed to the synergistic lubricating effect of silver molybdate (reproduced in the rubbing process at high temperatures) and Fe oxide (transfer from disk material to the pin) formed on the worn surface.  相似文献   

3.
Studies to explore the nature of friction, and in particular thermally activated friction in macroscopic tribology, have lead to a series of experiments on thin coatings of molybdenum disulfide. Coatings of predominately molybdenum disulfide were selected for these experiments; five different coatings were used: MoS2/Ni, MoS2/Ti, MoS2/Sb2O3, MoS2/C/Sb2O3, and MoS2/Au/Sb2O3. The temperatures were varied over a range from −80 °C to 180 °C. The friction coefficients tended to increase with decreasing temperature. Activation energies were estimated to be between 2 and 10 kJ/mol from data fitting with an Arrhenius function. Subsequent room temperature wear rate measurements of these films under dry nitrogen conditions at ambient temperature demonstrated that the steady-state wear behavior of these coatings varied dramatically over a range of K = 7 × 10−6 to 2 × 10−8 mm3/(Nm). It was further shown that an inverse relationship between wear rate and the sensitivity of friction coefficient with temperature exists. The highest wear-rate coatings showed nearly athermal friction behavior, while the most wear resistant coatings showed thermally activated behavior. Finally, it is hypothesized that thermally activated behavior in macroscopic tribology is reserved for systems with stable interfaces and ultra-low wear, and athermal behavior is characteristic to systems experiencing gross wear.  相似文献   

4.
In this paper, we reported the tribological behavior of Ti3AlC2 disk sliding against SiC ball from room temperature (RT) to 1,000 °C. The tribological properties are highly dependent of testing temperature. At RT, the coefficient of friction (CoF) is as low as 0.34 in the steady state, but the wear rate is relative high (4.26 × 10?4 mm3/Nm). At 200 and 400 °C, the CoF is as high as 1.21, and the wear rates are very high, about on the order of 10?3 mm3/Nm. From 600 to 1,000 °C, however, Ti3AlC2 exhibits quite low wear rate on the order of 10?6 mm3/Nm and relative moderate CoF, 0.60–0.80. The compacted continuous oxide layer at 600 °C and above might be responsible for the outstanding wear resistance.  相似文献   

5.
The Ni3Al matrix composites with addition of 10, 15, and 20 wt% BaMoO4 were fabricated by powder metallurgy technique, and the tribological behaviors were studied from room temperature to 800 °C. It was found that BaAl2O4 formed during the fabrication process. The Ni3Al composites showed poor tribological property below 400 °C, with high friction coefficients (above 0.6) and wear rates (above 10−4 mm3/Nm). However, the composites exhibited excellent self-lubricating and anti-wear properties at higher temperatures, and the composite with addition of 15 wt% BaMoO4 had the lowest wear rate (1.10 × 10−5 mm3/Nm) and friction coefficient (0.26). In addition, the results also indicated that BaAl2O4 for the Ni3Al composites did not exhibit lubricating property from room temperature to 800 °C.  相似文献   

6.
An adaptive NiMoAl–Ag composite coating was deposited by high-velocity oxy fuel spraying, and its tribological properties from 20 to 800 °C under unlubricated conditions were evaluated using a CSM high-temperature tribometer. Scanning electron microscopy, X-ray diffraction and Raman spectroscopy were used to characterize the coating and corresponding wear tracks to determine the lubrication mechanisms. The results showed that the friction coefficient of the NiMoAl–Ag composite coating was around 0.3 from 20 to 600 °C and reached the lowest value of 0.09 at 800 °C. Meanwhile, wear rates of the coating were maintained on the order of 10?5 mm3/N m at the test temperatures except for 400 and 600 °C. Characterization of the NiMoAl–Ag coating revealed that silver provided lubrication below 400 °C. Ag2Mo2O7 and Ag2MoO4, which were formed through tribochemical reactions, acted as high-temperature lubricants above 400 °C. It was especially proposed that silver in a nearly molten state was effective in reducing the friction of the NiMoAl–Ag coating at 800 °C. Moreover, a comprehensive lubrication mechanism model of an NiMoAl–Ag composite coating at 800 °C was established to explain the extremely low friction coefficient and wear rate of the coating.  相似文献   

7.
TiAl matrix self-lubricating composites (TMC) with various weight percentages of Ti3SiC2 and MoS2 lubricants were prepared by spark plasma sintering (SPS). The dry sliding tribological behaviors of TMC against an Si3N4 ceramic ball at room temperature were investigated through the determination of friction coefficients and wear rates and the analysis of the morphologies and compositions of wear debris, worn surfaces of TMC, and the Si3N4 ceramic ball. The results indicated that TMC with 10 wt% (Ti3SiC2-MoS2) lubricants had good tribological properties due to the unique stratification subsurface microstructure of the worn surface. The friction coefficient was about 0.57, and the wear rate was 4.22 × 10?4 mm3 (Nm)?1. The main wear mechanisms of TMC with 10 wt% (Ti3SiC2-MoS2) lubricants were abrasive wear, oxidation wear, and delamination of the friction layer. However, the main wear mechanisms of TMC without Ti3SiC2 and MoS2 lubricants were abrasive wear and oxidation wear. The continuous friction layer was not formed on the worn surfaces. The self-lubricating friction layer on the frictional surface, different phase compositions and hardness, as well as density of TMC contributed to the change in the friction coefficient and wear rate.  相似文献   

8.
The tribological behavior of self-mated Ti3SiC2 is investigated from ambient temperature to 800?°C at a sliding speed of 0.01?m/s in air. The results show that at the temperatures lower than 300?°C, friction coefficient and wear rates are as high as 0.95 and 10?3?mm3/N?m, respectively. With the temperature increasing to 600?°C, both the friction coefficient and wear rates show consecutive decrease. At 700 and 800?°C, friction coefficient and wear rates are 0.5 and 10?6 mm3/N?m, respectively. According to the wear mechanism, the tribological behavior of Ti3SiC2 can be divided into three regimes: mechanical wear-dominated regime from ambient temperature to 300?°C characterized by pullout of grains; mixed wear regime (mechanical wear and oxidation wear) from 400 to 600?°C; and tribo-oxidation-dominated wear regime above 700?°C. The tribo-oxides on the worn surfaces involve oxides of Si and Ti. And, species transformation occurs to these two oxides with the increasing temperature. In the competition oxidation of elements Ti and Si, Si is preferably oxidized because of its high active position in the crystal structure. Additionally, plastic flow is another notable characteristic for the tribological behavior of self-mated Ti3SiC2.  相似文献   

9.
The friction and wear properties of phosphor bronze and nanocrystalline nickel coatings were evaluated using a reciprocating ball-on-plates UMT-2MT sliding tester lubricated with ionic liquid and poly-alpha-olefin containing molybdenum dialkyl dithiocarbamate, respectively. The morphologies of the worn surfaces for the phosphor bronze and nanocrystalline nickel coatings were observed using a scanning electron microscope. The chemical states of several typical elements on the worn surfaces were examined by means of X-ray photoelectron spectroscopy. Results show that the phosphor bronze and nanocrystalline nickel coatings exhibited quite different tribological behaviors under different lubricants. Phosphor bronze plate shows higher friction coefficient (0.14) and wear rate (3.2 × 10−5 mm3/Nm) than nanocrystalline nickel coatings (average friction coefficient is 0.097, wear rate is 1.75 × 10−6 mm3/Nm) under poly-alpha-olefin containing molybdenum dialkyl dithiocarbamate lubricated conditions. The excellent tribological performance of nanocrystalline nickel coatings under above lubricant can be attributed to the formation of MoS2 and MoO3 on the sliding surface. a quite a number of C, O and F products on worn surface of phosphor bronze than NC nickel coatings can improve anti-wear properties while using ionic liquid as lubricant.  相似文献   

10.
Roll/slide friction tests were carried out at a temperature of 750°C in a vacuum. Disc specimens were made of Si3N4 with or without a sputtered MoS2 film. A pin specimen was rubbed against one disc to supply a lubricating transfer film. With a pin made of an MoS2‐based composite, the friction coefficient was around 0.3 and almost no wear of the discs was observed after 24 h of operation at a load of 50 N, a rotating speed of 0.5 m/s, and a slip ratio of 10%. Transferred patchy MoS2 films were observed on the friction track. With a pin made of Ni‐based composite containing BN and graphite, the friction coefficient increased from 0.2 to 0.7 over a test time of about 8 h and severe disc wear was found. In an additional test using Si3N4 discs with a sputtered MoS2 film without a pin, the friction coefficient was about 0.3, and no wear of the discs was found after 24 h of operation. The appearance of the friction track was similar to that in the test using the MoS2‐based composite pin. It seems that the sputtered MoS2 film wore, but wear particles reattached on the friction path to develop an effective lubricating film. These results demonstrate the effectiveness of transfer film lubrication for long‐term operation in a high‐temperature vacuum, and the superior ability of MoS2 to develop an effective transfer film.  相似文献   

11.
Jin  Ying  Kato  Koji  Umehara  Noritsugu 《Tribology Letters》1999,6(1):15-21
Ten kinds of self-lubricating composites with different amounts of sintering aids and solid lubricants in Al2O3 matrix were fabricated by hot-pressed sintering. Their friction and wear behaviours in unlubricated sliding against Al2O3 were tested by using a pin-on-disk wear tester at 650°C. It was shown that the amount of sintering aids strongly affected friction coefficient and wear rate of the Al2O3–20Ag20CaF2 composite, the appropriate amount of sintering aids was 10 wt% for beneficial effect on the reduction of wear at 650°C. Also it was shown that the addition of equal quantities of Ag and CaF2 in Al2O3 matrix can promote the formation of the well-covered lubricating film, and effectively reduce the friction and wear. The composite with 40 wt% of lubricants (20 wt% Ag, 20 wt% CaF2) presented an optimum tribological behavior at 650°C (friction coefficient μ is about 0.3, wear rates are about 4 x 10-6 mm3/N,m and 5 x 10-7 mm3/N,m for the disk and pin, respectively). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
The friction and wear behavior of TiAl matrix self-lubricating composites (TMSCs) with MoO3 tabular crystals (MTCs) sliding against a GCr15 steel ball is tested using a constant speed of 0.2 m/s at room temperature under different loads from 6.65 to 16.65 N. The result reveals that TMSCs show a consistently lower friction coefficient in a certain range from 0.2 to 0.6 and less wear rate from 0.29 × 10?4 mm3 N?1 m?1 to 0.49 × 10?4 mm3 N?1 m?1 compared to TiAl-based alloy. Moreover, the friction coefficient and wear rate of TMSCs decrease with an increase in test load. MTCs in the deformed layer will be refined to produce interfacial shear slip and reduce the shear stress because of the weak binding force of MTCs in the sliding process, which can facilitate the formation of a deformed layer and protect the deformed layer from spalling failure. In addition, MTCs on the worn surface of TMSCs can reduce the shear stress directly. Hence, MTCs can promote antiwear of the deformed layer and reduce the friction on the worn surface of TMSCs. MTCs can play a better role in antiwear and antifriction when the test load is higher.  相似文献   

13.
The tribological properties of NiCr-40 wt% Al2O3 (NC40A) cermet-based composites containing SrSO4 and other lubricant (graphite, MoS2 and Ag) against alumina ball were evaluated to identify their self-lubrication mechanisms from room temperature to 800 °C. The composites demonstrated distinct improvements in effectively reducing friction and wear, as compared to NC40A cermet. The best results were observed for NC40A–10SrSO4–10Ag composite, which exhibited satisfactory reproducibility of friction coefficient over a wide temperature range (200–800 °C) through high temperature cyclic friction tests due to the formation of synergistic lubricating films SrAl4O7, NiCr2O4 and Ag on the contact surface.  相似文献   

14.
The current work aimed to determine the effect of p-toluene sulfonic acid (PTSA) in phenolic-based friction materials on mechanical and tribological properties. This study involved the use of phenolic resin as the binder, PTSA as the hardener, treated coconut coir whiskers as the reinforcing fiber, graphite particulates as dry lubricant, and granite fines as fillers. Synthesis was carried out by hot and cold setting techniques. In addition to hot set linings (HSLs) and cold set linings (CSLs), a lining without PTSA was fabricated for comparison. To analyze the mechanical response of the different compositions, tensile tests, compression tests, micro-Vicker's hardness tests, and density measurements were performed. Evaluation of the friction coefficients along with the wear rate was carried out using two-body sliding wear tests. The wear tests were carried out at loads of 5–15 N and speeds of 400–600 rpm. CSLs showed a coefficient of friction of 0.29 and average wear rate of 2.67 × 10?6 mm3/Nm and HSLs showed a coefficient of friction of 0.48 and average wear rate of 2.24 × 10?6 mm3/Nm. Optical microscopy and scanning electron microscopy (SEM) were used to study the microstructure of the friction linings and the wear morphology of the different linings was analyzed by SEM along with energy-dispersive spectroscopy (EDS) analysis.  相似文献   

15.
Four micro-holes were made using micro-EDM on rake face of the cemented carbide (WC/TiC/Co) tools. MoS2, CaF2, and graphite solid lubricants were respectively embedded into the four micro-holes to form self-lubricated tools (SLT-1, SLT-2, and SLT-3). Dry machining tests on hardened steel were carried out with these self-lubricated tools and conventional tools (SLT-4). The cutting forces, average friction coefficient between tool and chip, and tool wear were measured and compared. It was shown that the cutting forces and tool wear of self-lubricated tools were clearly reduced compared with those of the SLT-4 conventional tool. The SLT-1 self-lubricated tool embedded with MoS2 just exhibited lower friction coefficient between tool and chip in cutting speed of less than 100?m/min; the SLT-2 self-lubricated tool embedded with CaF2 possessed lower friction coefficient in cutting speed of more than 100?m/min; and the SLT-3 self-lubricated tool embedded with graphite accomplished good lubricating behaviors steadily under the test conditions. It is indicated that cemented carbide inserts with four micro-holes on rake face embedded with appropriate solid lubricants on rake face is an effective way to reduce cutting forces and rake wear.  相似文献   

16.
It is shown that the coefficient of friction of polycrystalline graphite materials is governed by the crystallite size and adsorption heat of the molecules making up the lubricating layer. In the absence of a lubricating layer in the actual contact zones (in vacuum, dried gases, and in air at temperatures above 200°C), graphite loses its lubricity. To maintain low friction within 800°C, ultraphosphates are introduced into graphite pores; in heating, they release vapors of phosphoric anhydride to form a lubricating film. At 300°C, chalcogens MoS2, WS2, and MoSe2 release S and Se vapors that are adsorbed in contact and create a lubricating film. The capacity to release vapors is governed by the presence of solid solutions of chalcogens in addition to stoichiometric compounds.  相似文献   

17.
The effects of transfer from solid lubricant sticks of unfilled, glass-filled, and bronze-filled PTFE on the room-temperature wear and friction of trailing primary contacts of aluminum (6061 T6) rods in repetitive intermittent contacts were investigated in a ring-on-rod configuration. The materials of the ring countersurfaces upon which the solid lubricants transferred and against which the trailing aluminum rods wore included steel, aluminum, copper, and an oxide dispersion-strengthened copper alloy. This sliding of the unlubricated copper ring countersurfaces against the aluminum led to the roughening of the copper as large (> 1 mm) aluminum particles embedded themselves upon the countersurface, with consequent transitions in the aluminum wear rate and the coefficient of friction to values exceeding 6 × 10? 3 mm3/Nm and 0.6, respectively, after an incubation period of several initial contacts of lower wear rate and friction. The other ring countersurface materials resulted in similarly high aluminum rod wear rate and coefficient of friction, more nearly from the onset of sliding. The application of unfilled PTFE solid lubricant transfer reduced the aluminum's gouging of the copper countersurfaces and correspondingly reduced the aluminum rod wear rate and the coefficient of friction against the copper, as well as against all other countersurface materials, towards 2 × 10?3 mm3/Nm and 0.3 or less, respectively. Glass- and bronze-filled PTFE transfer lubricants provided reductions in the wear rate of the aluminum rod comparable to or in some cases better than the unfilled PTFE, though the unfilled PTFE transfer lubricant in several cases provided better friction reduction.  相似文献   

18.
This article provides an in-depth investigation into the formation of the mechanical mixed layer (MML) and its role in Cu-15Ni-8Sn/graphite composites. Wear tests were conducted at room temperature using a ring–block configuration with an applied load of 50 N and sliding speed of 0.42 m/s. Scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS) were performed to analyze the worn surfaces and subsurfaces. Results indicated that high graphite content contributed to the formation of a protective MML. When the MML formed on the tribosurface as the graphite content increased, both the friction coefficient and wear rate greatly decreased. The friction coefficient with a stable value of 0.075 and wear rate of 6.10 × 10?16 (m3/N· m) were the lowest when an apparent tribolayer appeared at the graphite content of 38 vol%. The characteristics of the MML and its influence on wear mechanisms of the composites are discussed. The MML existing on the worn surface protected the materials from severe adhesion and abrasion and the predominant wear mechanisms changed to delamination, which resulted in the drastic changes in wear resistance and friction coefficient.  相似文献   

19.
The focus of this study was the development of a new lubricating grease, using surface-modified attapulgite clay as thickener and synthetic oil (PAO 40) as the base oil. The tribological sensitivity of the new grease was investigated by studying the effect of adding three solid additives [KB3O5, MoS2, graphite and a graphite/MoS2 mixture (mass ratio 3:2)]. Its tribological behavior was compared with that of traditional bentone grease by adding MoS2. The dropping point and the cone penetration of the new grease were also investigated and analyzed. The wear scar diameter of the base grease was measured on an MRS-1 J (G) four-ball tester, and the tribological sensitivity of solid lubricating additives to attapulgite clay base grease was evaluated using an Optimol SRV reciprocating friction and wear tester. The addition of MoS2 and the graphite/MoS2 mixture to the new lubricating grease improved its friction-reducing ability, while the addition of KB3O5 improved its antiwear ability. The additives MoS2 and the graphite/MoS2 mixture also increased the load-carrying capacity of the base grease. The attapulgite clay grease containing MoS2 had a better friction-reducing ability than the traditional bentone grease containing MoS2.  相似文献   

20.
A. Iwabuchi  T. Kayaba  K. Kato 《Wear》1983,91(3):289-305
Oxidative wear is significant in fretting wear when sufficient oxygen is supplied. In vacuum, however, oxide does not form readily. In this paper friction and wear behaviours were studied at various atmospheric pressures in order to clarify the effect of ambient pressure on them.Experiments were conducted with 0.45% C steel at ambient pressures from 1.0 × 105 to 1.3 × 10?3 Pa. The load was 14 N, the peak-to-peak slip amplitudes were 35 and 110 μm and the frequency was usually 8.3 Hz.Friction behaviours are characterized into three types according to the ambient pressure: 1.0 × 105 ? 10 Pa, 10 ? 10?1 Pa and below 10?1 Pa. The coefficient of friction increases with a decrease in ambient pressure below 1 Pa. The critical pressure in fretting is found to be 10 Pa, above which the oxidation rate is independent of the ambient pressure and α-Fe2O3 is formed. Wear decreases with ambient pressure below the critical pressure where Fe3O4 is formed. Adhesive transfer of metallic debris occurs below 10?1 Pa.The relationship between the coefficient of friction and oxide thickness is obtained analytically, and the effect of frequency on the oxidation rate is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号