首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
This article concerns the in situ compatibilization of immiscible isotatic polypropylene/styrene–butadiene–styrene triblock copolymer blends (i‐PP/SBS) by use of a reactive mixture. For this purpose, maleated PP (PP–MAH) and SBS (SBS–MAH) were used as functionalized polymers and 4,4′‐diaminediphenylmethane was used as a coupling agent between maleated polymers, resulting in a graft copolymer. Binary blends of i‐PP/SBS, nonreactive ternary blends of i‐PP/PP–MAH/SBS, and reactive ternary blends of i‐PP/PP–MAH/SBS–MAH with varying diamine/anhydride molar ratios were prepared. The mechanical properties of the blends were determined by tensile and impact‐resistance tests. The optimum improvement in the mechanical properties was found when the diamine/anhydride molar ratio in the ternary reactive blends was 0.5/1. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 516–522, 2003  相似文献   

2.
We prepared some blends of polypropylene (PP) and ethylene vinyl alcohol (EVOH) with and without a compatibilizer. As a new compatibilizer, we synthesized polypropylene grafted with itaconic acid (PP‐g‐IA) using Brabender mixing system. We investigated the morphological, thermal, rheological, and mechanical properties of a compatibilized blends (PP/EVOH/PP‐g‐IA) and not compatibilized blends (PP/EVOH). Our experiments showed that carboxylic acid groups in PP‐g‐IA and hydroxyl group in EVOH formed strong in situ hydrogen bond in the compatibilized blends, resulting in better morphological and mechanical properties of the compatibilized blends than those of not compatibilized blends. POLYM. ENG. SCI., 56:1240–1247, 2016. © 2016 Society of Plastics Engineers  相似文献   

3.
This article concerns the in situ compatibilization of immiscible isotactic polypropylene/butadiene‐styrene‐butadiene triblock copolymer blends (i‐PP/SBS) by means of a reactive mixture. For this purpose, maleated PP (PP‐MAH) and SBS (SBS‐MAH) were used as functionalized polymers and 4,4′‐diaminediphenylmethane was used as a coupling agent between maleated polymers, resulting in a graft copolymer. Binary blends i‐PP/SBS, nonreactive ternary blends i‐PP/PP‐MAH/SBS, and reactive ternary blends i‐PP/PP‐MAH/SBS‐MAH with varying diamine and anhydride molar ratios were prepared. Torque measurements suggest a graft copolymerization during the melt blending for ternary reactive blends, but the extension of the grafting does not vary with the diamine and anhydride molar ratio, but with the elastomer concentration. The morphology of the blends was investigated by scanning electron microscopy. The morphology of binary and ternary nonreactive blends is similar, exhibiting elastomer domains disperse in the i‐PP matrix, whose sizes increase with elastomer concentration. On the other hand, the elastomer domain size in the ternary reactive blends is practically independent of the blends composition and of the diamine and anhydride molar ratio. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 847–855, 2002  相似文献   

4.
Dynamic vulcanization was successfully applied to epoxy resin reinforced polypropylene (PP)/ethylene‐octene copolymer (POE) blends, and the effects of different compatibilizers on the morphology and properties of dynamically cured PP/POE/epoxy blends were studied. The results show that dynamically cured PP/POE/epoxy blends compatibilized with maleic anhydride‐grafted polypropylene (MAH‐g‐PP) have a three‐phase structure consisting of POE and epoxy particles dispersed in the PP continuous phase, and these blends had improved tensile strength and flexural modulus. While using maleic anhydride‐grafted POE (MAH‐g‐POE) as a compatibilizer, the structure of the core‐shell complex phase and the PP continuous phase showed that epoxy particles could be embedded in MAH‐g‐POE in the blends, and gave rise to an increase in impact strength, while retaining a certain strength and modulus. DSC analysis showed that the epoxy particles in the blends compatibilized with MAH‐g‐PP were more efficient nucleating agents for PP than they were in the blends compatibilized with MAH‐g‐POE. WAXD analysis shows that compatibilization do not disturb the crystalline structure of PP in the blends. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

5.
The thermal and mechanical properties and the morphologies of blends of poly(propylene) (PP) and an ethylene–(vinyl alcohol) copolymer (EVOH) and of blends of PP/EVOH/ethylene–(methacrylic acid)–Zn2+ ionomer were studied to establish the influence of the ionomer addition on the compatibilization of PP/EVOH blends and on their properties. The oxygen transmission rate (O2TR) values of the blends were measured as well. PP and EVOH are initially incompatible as was determined by tensile tests and scanning electronic microscopy. Addition of the ionomer Zn2+ led to good compatibility and mechanical behaviour was improved in all blends. The mechanical properties on extruded films were studied for 90/10 and 80/20 w/w PP/EVOH blends compatibilized with 10 % of ionomer Zn2+. These experiments have shown that the tensile properties are better than in the injection‐moulded samples. The stretching during the extrusion improved the compatibility of the blends, diminishing the size of EVOH domains and enhancing their distribution in the PP matrix. As was to be expected, the EVOH improved the oxygen permeation of the films, even in compatibilized blends. Copyright © 2004 Society of Chemical Industry  相似文献   

6.
The effect of a sodium ionomer (ion.Na+) on the compatibility of polypropylene (PP)/high‐barrier ethylene–vinyl alcohol copolymer (EVOH) blends was studied in terms of the thermal, mechanical, and optical properties and morphology. The rheological behavior, tensile tests, and morphology of the binary blends showed that the miscibility of EVOH with PP was very poor. The miscibility of the polymers improved with the ionomer addition. In general, the ion.Na+ concentration did not alter the thermal behavior of the blends, but it did improve the ductility of the injection‐molded specimens. Scanning electron micrographs displayed better adhesion between the PP and EVOH phases in the samples with the ionomer. The mechanical improvement was better in the film samples than in the injection‐molded samples. A 90/10 (w/w) PP/EVOH film with 5% ion.Na+ and an 80/20 (w/w) PP/EVOH film with 10% ion.Na+ presented better global properties than the other blends studied. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1763–1770, 2004  相似文献   

7.
A series of thermoplastic elastomers (TPEs) were prepared from a binary blend of ethylene propylene diene rubber (EPDM) and isotactic polypropylene (iPP) using different types of phase modifiers. The influence of sulphonated EPDM, maleated EPDM, styrene‐ethylene‐co‐butylene‐styrene block copolymer, maleated PP, and acrylated PP as phase modifiers showed improved physico‐mechanical properties (like maximum stress, elongation at break, moduli, and tension set). Scanning electron and atomic force microscopy studies revealed better morphologies obtained with these phase modified EPDM‐iPP blends. The dependence of the phase modifier type and concentration was optimized with respect to the improvement in physical properties and morphology of the blends. Physical properties, dynamic mechanical properties, and morphology of these blends were explained with the help of interaction parameter, melt viscosity, and crystallinity of the blends. Theoretical modeling showed that Kerner, Ishai‐Cohen, and Paul models predicted the right morphology–property correlation for the prepared TPEs. POLYM. ENG. SCI., 2008. © 2008 Society of Plastics Engineers.  相似文献   

8.
In this work, five ternary blends based on 70% by weight (wt %) of polypropylene (PP) with 30% wt of polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene)(SEBS) dispersed phase consists of 15 wt % PC and 15 wt % reactive (maleic anhydride grafted) and nonreactive SEBS mixtures at various ratios were prepared in a co‐rotating twin screw extruder. scanning electron microscopy (SEM) micrographs showed that the blends containing only nonreactive SEBS exhibited a fine dispersion of core‐shell particles. With decreasing the SEBS/SEBS‐g‐Maleic Anhydride (MAH) weight ratio, the morphology changed from the core‐shell particles to a mixed of core‐shell, rod‐like and individual particles. This variation in phase morphology affected the thermal and mechanical properties of the blends. DSC results showed that the blends containing only nonreactive SEBS exhibited a minimum in degree of crystallinity due to the homogeneous nucleation of core‐shell particles. Mechanical testing showed that in the SEBS/SEBS‐g‐MAH weight ratio of 50/50, the modulus and impact strength increased compared with the PP matrix while the yield stress had minimum difference with that of PP matrix. These effects could be attributed to the formation of those especial microstructures revealed by the SEM studies. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
Blends of polyethylene terephthalate (PET) and polypropylene (PP) at compositions 20/80 and 80/20 were modified with three different styrene–ethylene/butyl–ene-styrene (SEBS) triblock copolymers with the aim of improving the compatibility and in particular the toughness of the blends. The compatibilizers involved an unfunctionalized SEBS and two functionalized grades containing either maleic anhydride (SEBS-g-MAH) or glycidyl methacrylate (SEBS-g-GMA) grafted to the midblock. The effects of the compatibilizers were evaluated by studies on morphology and mechanical, thermal and rheological properties of the blends. The additon of 5 wt % of a SEBS copolymer was found to stabilize the blend morphology and to improve the impact strength. The effect was, however, far more pronounced with the functionalized copolymers. Particularly high toughness combined with rather high stiffness was achieved with SEBS-g-GMA for the PET-rich composition. Addition of the functionalized SEBS copolymers resulted in a finer dispersion of the minor phase and clearly improved interfacial adhesion. Shifts in the glass transition temperature of the PET phase and increase in the melt viscosity of the compatibilized blends indicated enhanced interactions between the discrete PET and PP phases induced by the functionalized compatibilizer, in particular SEBS-g-GMA. © 1997 John Wiley & Sons, Inc. J Appl Polym Sci 65:241–249, 1997  相似文献   

10.
In this article, the dynamic vulcanization process was applied to polypropylene (PP)/Novolac blends compatibilized with maleic anhydride‐grafted PP (MAH‐g‐PP). The influences of dynamic cure, content of MAH‐g‐PP, Novolac, and curing agent on mechanical properties of the PP/Novolac blends were investigated. The results showed that the dynamically cured PP/MAH‐g‐PP/Novolac blend had the best mechanical properties among all PP/Novolac blends. The dynamic cure of Novolac improved the modulus and stiffness of the PP/Novolac blends. The addition of MAH‐g‐PP into dynamically cured PP/Novolac blend further enhanced the mechanical properties. With increasing Novolac content, tensile strength, flexural modulus, and flexural strength increased significantly, while the elongation at break dramatically deceased. Those blends with hexamethylenetetramine (HMTA) as a curing agent had good mechanical properties at HMTA content of 10 wt %. Scanning electron microscopy (SEM) analysis showed that dynamically cured PP/MAH‐g‐PP/Novolac blends had finer domains than the PP/MAH‐g‐PP/Novolac blends. Thermogravimetric analysis (TGA) results indicated that the incorporation of Novolac into PP could improve the thermal stability of PP. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

11.
The β‐nucleating activity and toughening effect of acrylonitrile–butadiene–styrene (ABS) graft copolymer on isotactic polypropylene (iPP) and the compatibilizing role of maleic anhydride grafted polypropylene (PP‐g‐MAH) on the iPP/ABS blends were investigated. The results show that ABS can induce the formation of β‐crystal in iPP, and its β‐nucleating efficiency depends on its concentration and dispersibility. The relative content of β‐crystal form is up to 36.19% with the addition of 2% ABS. The tensile and impact properties of the iPP were dramatically enhanced by introducing ABS. The incorporation of PP‐g‐MAH into the iPP/ABS blends inhibits the formation of β‐crystal. The crystallization peaks of the blends shift toward higher temperature, due to the heterogeneous nucleation effect of PP‐g‐MAH on iPP. The toughness of iPP/ABS blends improved due to favorable interfacial interaction resulting from the compatibilization of PP‐g‐MAH is significantly better than the β‐crystal toughening effect induced by ABS. POLYM. ENG. SCI., 59:E317–E326, 2019. © 2019 Society of Plastics Engineers  相似文献   

12.
An investigation of the gasoline permeation resistance of the as-blow-molded polypropylene, polypropylene/ethylene vinyl alcohol (PP/EVOH), polypropylene/modified polyamide (PP/MPA) and polypropylene/blends of modified polyamide and ethylene vinyl alcohol (PP/MPAEVOH) bottles is reported. The gasoline permeation resistance improves slightly after blending EVOH barrier resins in PP matrices during blow-molding, wherein only broken and less demarcated EVOH laminas were found on the fracture surfaces of the PP/EVOH bottle. In contrast, much better permeation resistance and more clearly defined MPA and MPAEVOH laminas were found for PP/MPA and PP/MPAEVOH bottles, respectively. The gasoline barrier properties and MPAEVOH laminar structures of PP/MPAEVOH bottles improve and become more demarcated, respectively, as the MPA contents present in MPAEVOH resin increase. In fact, by using the proper composition, the gasoline permeation rate of PP/MPAEVOH bottle is about 113 and 11 times slower than that of the as-blow-molded PP and PP/MPA bottles, respectively. In order to understand these interesting gasoline barrier and morphological properties descried above, the melt shear viscosities, thermal properties, wide-angle X-ray diffraction patterns and Fourier-transform infrared spectra of the base resins used in these bottle specimens were investigated.  相似文献   

13.
The effects of the compatibilization on the toughening of polypropylene (PP) by melt blending with styrene/ethylene‐butylene/styrene triblock copolymer (SEBS) in a twin‐screw extruder were investigated. The compatibilizers used were an SEBS functionalized with maleic anhydride, a PP functionalized with acrylic acid, and a bifunctional compound, p‐phenylenediamine (PPD). The effects of the compatibilization were evaluated through the mechanical properties and by the determination of the phase morphology of the blends by scanning electron microscopy. Reactive compatibilized blends show up to a 30‐fold increase in impact strength compared to neat PP, which was likely to have been due to the reaction of the bifunctional compound (PPD) with the acid acrylic and maleic anhydride groups, which rendered both morphological and mechanical stability to these blends. The addition of the PPD to the blends significantly changed their phase morphologies, leading to larger dispersed particles' average diameters, probably due to the morphological stabilization at the initial processing steps during extrusion, with the occurrence of the chemical reactions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1081–1094, 2003  相似文献   

14.
Polypropylene (PP)/polystyrene (PS) blends modified with reactive monomers, such as maleic anhydride (MAH) and styrene (St), and in situ formed PP/PS blends were prepared by melting extrusion. The crystallization and melting behavior and the dynamic mechanical properties of the PP/PS blends, including the structure of the grafted copolymer, were investigated with differential scanning calorimetry, dynamic mechanical analysis, and Fourier transform infrared. The results indicated that the addition of MAH hardly influenced the crystallization temperature of PP in the blends, but the addition of MAH and St increased the crystallization temperature of PP in its blends. The blends showed no remarkable variety for the melting temperature, but the shapes of the melting peaks were influenced by the addition of the reactive monomers. In addition, a significant increase in the storage and loss moduli of all the modified PP/PS blends was observed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 2038–2045, 2005  相似文献   

15.
In this study, poly(acrylonitrile–butadiene–styrene)/polypropylene (ABS/PP) blends with various compositions were prepared by melt intercalation in a twin‐screw extruder. Modifications of the above blends were performed by using organically modified montmorillonite (OMMT, Cloisite 30B) reinforcement as well as two types of compatibilizers, namely polypropylene grafted with maleic anhydride (PP‐g‐MAH) and ABS grafted with maleic anhydride (ABS‐g‐MAH). Increasing the PP content in ABS matrix seems to increase the melt flow and thermal stability of their blends, whereas a deterioration of the tensile properties was recorded. On the other hand, the addition of ABS to PP promotes the formation of the β‐crystalline phase, which became maximum at 30 wt% ABS concentration, and increases the crystallization temperature (Tc) of PP. A tendency for increase of Tc was also recorded by incorporation of the above compatibilizers, whereas the glass transition temperature (Tg) of PP and SAN phase in ABS was reduced. Regarding the Young's modulus, the greatest improvement was observed in pure ABS/PP blends containing organically modified nanoclay. However, in reinforced pure PP, the use of compatibilizers is recommended in order to improve the elastic modulus. The addition of OMMT to noncompatibilized and compatibilized ABS/PP blends significantly improves their storage modulus. POLYM. ENG. SCI., 56:458–468, 2016. © 2016 Society of Plastics Engineers  相似文献   

16.
Blending polypropylene (PP) with biodegradable poly(3‐hydroxybutyrate) (PHB) can be a nice alternative to minimize the disposal problem of PP and the intrinsic brittleness that restricts PHB applications. However, to achieve acceptable engineering properties, the blend needs to be compatibilized because of the immiscibility between PP and PHB. In this work, PP/PHB blends were prepared with different types of copolymers as possible compatibilizers: poly(propylene‐g‐maleic anhydride) (PP–MAH), poly (ethylene‐co‐methyl acrylate) [P(E–MA)], poly(ethylene‐co‐glycidyl methacrylate) [P(E–GMA)], and poly(ethylene‐co‐methyl acrylate‐co‐glycidyl methacrylate) [P(E–MA–GMA)]. The effect of each copolymer on the morphology and mechanical properties of the blends was investigated. The results show that the compatibilizers efficiency decreased in this order: P(E–MA–GMA) > P(E–MA) > P(E–GMA) > PP–MAH; we explained this by taking into consideration the affinity degree of the compatibilizers with the PP matrix, the compatibilizers properties, and their ability to provide physical and/or reactive compatibilization with PHB. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

17.
In this article, a model study was conducted on the effect of combining cellulose on the properties of virgin and/or recycled commingled plastics with a simulated waste‐plastics fraction composed of high‐density polyethylene (HDPE), polypropylene (PP), polystyrene (PS), and poly(vinyl chloride) (PVC) (PE/PP/PS/PVC = 7/1/1/1 by weight ratio). The compatibilizing effect of maleic anhydride‐grafted styrene–ethylene/butylene–styrene block copolymer (SEBS‐g‐MAH) for the cellulose‐reinforced commingled blends was also investigated. Commingled blends were prepared in a table kneader internal mixer. Mechanical properties were measured by using a universal testing machine. Thermal stability was measured by a thermogravimetric analyzer. It was found that the addition of more than 12.5% cellulose into the commingled blends was effective to enhance the mechanical properties of the virgin and recycled blends. The thermal stability as well as the mechanical properties of the commingled blends were much improved by the reactive blending of cellulose with the commingled blends by peroxide and maleic anhydride. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1531–1538, 1999  相似文献   

18.
In this work, ternary polymer blends based on polypropylene (PP)/polycarbonate (PC)/poly(styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene) (SEBS) triblock copolymer and a reactive maleic anhydride grafted SEBS (SEBS‐g‐MAH) at fixed compositions are prepared using twin‐screw extruder at different levels of die temperature (235‐245‐255°C), screw speed (70‐100‐130 rpm), and blending sequence (M1‐M2‐M3). In M1 procedure, all of the components are dry blended and extruded simultaneously using Brabender twin‐screw extruder, whereas in M2 procedure, PC, SEBS, and SEBS‐g‐MAH minor phases are first preblended in twin‐screw extruder and after granulating are added to PP continuous phase in twin‐screw extruder. Consequently, in M3 procedure, PP and SEBS‐g‐MAH are first preblended and then are extruded with other components. The influence of these parameters as processing conditions on mechanical properties of PP/PC/SEBS ternary blends is investigated using L9 Taguchi experimental design. The responding variables are impact strength and tensile properties (Young's modulus and yield stress), which are influenced by the morphology of ternary blend, and the results are used to perform the analysis of mean effect as well. It is shown that the resulted morphology, tensile properties, and impact strength are influenced by extrusion variables. Additionally, the optimum processing conditions of ternary PP/PC/SEBS blends were achieved via Taguchi analysis. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
This work investigated the deformation and fracture behavior of polypropylene–ethylene vinyl alcohol (PP/EVOH) blends compatibilized with ionomer Zn2+. Uniaxial tensile tests and quasistatic fracture experiments were performed for neat PP and for 10 and 20 wt % EVOH blends with different ionomer contents. The addition of EVOH copolymer to PP led to an increase in the Young's modulus whereas the yield strength was decreased with the EVOH content as a consequence of the higher stiffness of EVOH and the poor interfacial adhesion between PP and EVOH, respectively. Furthermore, the incorporation of EVOH into PP promoted stable crack growth. Neat PP displayed nonlinear load‐displacement behavior with some amount of slow crack growth preceding unstable brittle fracture, whereas most PP/EVOH blends exhibited “pseudostable” fracture characterized by slow crack growth that could not be externally controlled. All blends exhibited lower resistance to crack initiation than PP but the fracture propagation resistance was significantly improved. For 10 wt % EVOH blends, the resistance to crack initiation was roughly constant with the ionomer content up to 5%, then it increased with the further addition of compatibilizer. Conversely, for 20 wt % EVOH blends, the resistance to crack initiation appeared to be independent of the ionomer content. The better resistance to crack initiation exhibited by the 10 wt % EVOH blends could be attributed to a higher level of compatibilization in these blends. By contrast, 20 wt % EVOH blends with ≤2% ionomer content showed completely stable crack growth. In addition, JR curves and valid plane strain fracture toughness values for these blends could also be determined. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1271–1279, 2005  相似文献   

20.
Polyethylene terephthalate (PET) and polypropylene (PP) are incompatible thermoplastics because of differences in chemical structure and polarity, hence their blends possess inferior mechanical and thermal properties. Compatibilization with a suitable block/graft copolymer is one way to improve the mechanical and thermal properties of the PET/PP blend. In this study, the toughness, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA) of PET/PP blends were investigated as a function of different content of styrene‐ethylene‐butylene‐styrene‐g‐maleic anhydride (SEBS‐g‐MAH) compatibilizer. PET, PP, and SEBS‐g‐MAH were melt‐blended in a single step using the counter rotating twin screw extruder with compatibilizer concentrations of 0, 5, 10, and 15 phr, respectively. The impact strength of compatibilized blend with 10 phr SEBS‐g‐MAH increased by 300% compared to the uncompatibilized blend. Scanning electron microscope (SEM) micrographs show that the addition of 10 phr SEBS‐g‐MAH compatibilizer into the PET/PP blends decreased the particle size of the dispersed PP phase to the minimum level. The improvement of the storage modulus and the decrease in the glass transition temperature of the PET phase indicated an interaction among the blend components. Thermal stability of the PET/PP blends was significantly improved because of the addition of SEBS‐g‐MAH. J. VINYL ADDIT. TECHNOL., 23:45–54, 2017. © 2015 Society of Plastics Engineers  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号