首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transparent 1 at.% Nd:YAG ceramics were fabricated by spark plasma sintering (SPS) from nanometric Nd:YAG powders, both undoped and pre-mixed with 0.25 wt.% LiF additive. The mechanical and optical properties of the consolidated samples were determined as a function of the processing parameters, namely holding time, peak sintering temperature and heating rate. The presence of LiF accelerates densification and grain growth. Hardness and bending strength are decreased in the presence of the LiF additive, in consistence with the increase of the grain size. The optical transmittance in the doped samples sintered at 1400 °C, reaches 97% of the theoretical transmission and is significantly higher than that of the undoped samples. The increased optical transmittance of the doped samples is attributed to pore elimination by enhanced mass transport and cleansing of the carbon contamination by the fluorine component of the LiF additive. The presence of the latter has no effect on the absorption spectrum of the Nd:YAG ceramic.  相似文献   

2.
《Ceramics International》2017,43(6):5334-5337
A high quality Nd:YAG transparent ceramic disk (Φ60 mm×2 mm) has been prepared by the solid-state reactive sintering technique, which was sintered satisfactorily at 1780 °C for 20 h. The high transparency of the sample has been assured by its pore-free microstructure and pure YAG phase composition with the in-line transmittances up to 84.5% at 1064 nm and 82.5% at 400 nm, respectively. The optical homogeneity of the disk was evaluated by the interference stripes with the PV and RMS values being 0.099 λ and 0.013 λ, respectively. The maximum output power of 2052 W with the slope efficiency of 39.0% was obtained at 500 Hz repetition rate. Results indicated that the Nd:YAG transparent ceramics could be a potential option for high power disk laser.  相似文献   

3.
《Ceramics International》2017,43(13):10013-10019
Neodymium doped yttrium aluminum garnet (Nd:YAG) transparent ceramics were fabricated from Nd:YAG nanopowders synthesized via a reverse precipitation method by vacuum sintering and successive hot isostatic pressing (HIP) post-treatment. The powders obtained by calcining the precursor at 1100 °C for 4 h and then ball milling for 2 h with 0.5 wt% TEOS as sintering aid were used to fabricate Nd:YAG ceramics. The green bodies were vacuum sintered at 1500–1800 °C for 10 h, followed by the HIP at 1600 °C for 3 h in 200 MPa Ar atmosphere. Influence of the calcination temperature on the phase, morphology and particle size evolution of the nanopowders, as well as the optical transparency and microstructure of the obtained Nd:YAG ceramics before and after the HIP post-treatment was investigated in detail. It was found that for the post-treated 1800 °C-vacuum-sintered Nd:YAG ceramic sample, the in-line transmittance increased from 48.0% up to 81.2% at the lasing wavelength of 1064 nm.  相似文献   

4.
《Ceramics International》2016,42(12):13812-13818
Terbium doped yttrium aluminum garnet (Tb:YAG) transparent ceramics with different doping concentrations were fabricated by the solid-state reaction method using commercial Y2O3, α-Al2O3 and Tb4O7 powders as raw materials. Samples sintered at 1750 °C for 20 h were utilized to observe the optical transmittance, microstructure and fluorescence characteristics. It is found that all the Tb: YAG ceramics with different doping concentrations exhibit homogeneous structures with grain size distributions around 22–29 µm. For the 5 at% Tb:YAG transparent ceramics, the grain boundaries are clean with no secondary phases. The photoluminescence spectra show that Tb:YAG ceramics emit predominantly at 544 nm originated from the energy levels transition of 5D47F5 of Tb3+ ions, and the intensity of the emission peak reaches a maximum value when the Tb3+ concentration is 5 at%. The in-line transmittance of the 5 at% Tb:YAG ceramics is 73.4% at the wavelength of 544 nm, which needs to be further enhanced by optimizing the fabrication process. We think that Tb:YAG transparent ceramics may have potential applications in the high-power white LEDs.  相似文献   

5.
Tetraethyl orthosilicate (TEOS) was commonly served as a sintering additive to promote the densification of transparent Y3Al5O12 (YAG) ceramics. However, Si4+ that decomposed from TEOS would restrain the conversion of dopants into a higher valence state (e.g., Cr3+  Cr4+). In this study, by using divalent sintering additives (CaO and MgO), the colorless and highly transparent YAG ceramics (T = 84.6%, at 1064 nm) were obtained after vacuum sintering at 1840 °C for 8 h and without subsequent annealing in air. An absorption peak centered at ∼320 nm was observed before annealing, and it extended to ∼550 nm after annealing at 1450 °C for 10 h in air. A discoloration phenomenon occurred and more scattering centers were observed with the formation of new [Mg/Ca2+F+] color centers. Air annealing did not improve the optical quality of the as-fabricated YAG ceramics with divalent dopants as sintering additives, owing to the formation of scattering centers.  相似文献   

6.
Nd:YAG/YAG transparent ceramics were prepared by vacuum sintering at 1780 °C for 40 h and annealed at 1450 °C for 20 h in air. Two separately polished Nd:YAG/YAG samples were bonded into monolithic and uniform composite-material followed by vacuum sintering at 1790 °C for 50 h under uniaxial pressure of 60 MPa, and then annealed at 1450 °C for 100 h in air. The fracture strength of bonded samples at the bonding interface is higher than that of as-prepared Nd:YAG/YAG samples. Meanwhile, the extinction coefficient of bonded samples is 0.0305 cm−1 which is an improvement over as-prepared samples. The microstructure of the contact interface reveals the disappearance of the contact layer at the bond due to the grain growth and coalescence mainly based on grain boundary diffusion at higher temperatures and longer heat-treated time, which indicates that the bonding technology is beneficial to the fabrication of the thick composite materials.  相似文献   

7.
Yttrium aluminum garnet (YAG) precursor was synthesized via a coprecipitation method with aluminum nitrate and yttrium nitrate as raw materials, using ammonium hydrogen carbonate (AHC) as the precipitant. Fine and low-agglomerated YAG powder was obtained by calcining the precursor at 1200 °C. The primary crystallites were measured to be ~120 nm in size and weakly agglomerated to a particle size of ~500 nm, indicating a high degree of sinterability. With 0.5 wt% tetraethyl orthosilicate (TEOS) and 0.1 wt% magnesia as sintering aids, transparent YAG ceramics were fabricated by vacuum sintering at 1730–1790 °C for various hours. The influences of sintering temperature and holding time on the microstructure and transmittance of YAG ceramics were discussed.  相似文献   

8.
Commercial nanocrystalline yttrium aluminum garnet (nc-YAG) powders were used for fabrication of dense and transparent YAG by spark plasma sintering (SPS). Spherical 34 nm size particles were densified by SPS between 1200 and 1500 °C using 50 and 100 MPa pressures for 3, 6, and 9 min durations. Fully dense and transparent polycrystalline cubic YAG with micrometer grain size were fabricated at very moderate SPS conditions, i.e. 1375 °C, 100 MPa for 3 min. Increase in the SPS duration and pressure significantly increased the density especially at the lower temperature range. The observed microstructure is in agreement with densification by nano-grain rotation and sliding at lower densities, followed by curvature driven grain boundary migration and normal grain growth at higher densities. Residual nanosize pores at the grain boundary junctions are an inherent microstructure feature due to the SPS process.  相似文献   

9.
《Ceramics International》2017,43(12):9032-9040
Cerium doped transparent YAG ceramics 0.15–2 at% cerium) were prepared using nano-powder technique and vacuum sintering. The effective solubility limit of cerium in YAG was found to lie between 1.0 and 1.5 at%. The PL intensity increases with the cerium content and attains a maximum for 1.0 at% doping. Lifetime of PL is not very sensitive to cerium content, however, a slight decrease in the life-time from 66 ns to 55 ns was observed with increase in cerium content from 0.15 to 2.0 at%. This decrease in PL intensity and life-time is attributed to concentration quenching for the YAG ceramics with cerium content higher than 1.0 at%. A red-shift in the PL peak position was observed and attributed to the local symmetry distortion in YAG matrix.  相似文献   

10.
Measurement of the solubility limit of Si in yttrium aluminum garnet (YAG-Y3Al5O12) is crucial for understanding the mechanisms by which Si influences grain boundary mobility, and the mechanisms by which grain boundaries migrate. In the present work, the solubility limit of Si in YAG at 1700 °C in vacuum (5 × 10−6 Torr), which are the most common sintering temperature and environment for YAG, was measured for the first time. Measurements were conducted by wavelength dispersive spectroscopy (WDS), using polished YAG specimens with 3700 ppm Si (0.8 wt% SiO2). Si content to ensure saturation with Si. The accuracy of the WDS result was confirmed by using a series of doped specimens and by comparing to inductively coupled plasma mass spectrometry ICP-MS results. The results indicate that the solubility limit of Si in YAG at 1700 °C (5 × 10−6 Torr), is 980 ± 60 ppm. The measured Si solubility was found to significantly depend on the cooling rate, where for furnace cooled specimens the measured Si solubility was 650 ± 60 ppm. A second phase in triple junction was repeatedly observed when higher content of Si was used, confirming this work results.  相似文献   

11.
YAG:Ce transparent ceramics with high luminous efficiency and color render index were prepared via a solid state reaction-vacuum sintering method. Cr3+and Pr3+ were applied to expand the spectrum of YAG:Ce transparent ceramics. As prepared ceramics exhibit luminescence spectrum ranging from 500 nm to 750 nm, which almost covers full range of visible light. After the concentration optimization of Ce3+, Pr3+ and Cr3+, high quality white light was obtained by coupling the YAG:Ce,Pr,Cr ceramics with commercial blue LED chips. Color coordinates of the YAG:Ce,Pr,Cr ceramics under 450 nm LED excitation vary from cold white light to warm white light region. The highest luminous efficiency of WLEDs encapsulated by transparent YAG:Ce,Pr,Cr ceramic was 89.3 lm/W, while its color render index can reach nearly 80. Energy transfers between Ce3+  Pr3+ and Ce3+  Cr3+ were proved in co-doped ceramic system. Transparent luminescence ceramics accomplished in this work can be quite prospective for high power WLEDs application.  相似文献   

12.
A fine-grained (330 nm) yttrium aluminium garnet (YAG) ceramic, presenting a non-negligible transparency (66% RIT at 600 nm), was obtained by spark plasma sintering. The YAG powder was manufactured by co-precipitation, starting from a yttrium and aluminium chlorides solution. A soft precursor was obtained, whose phase evolution was studied by X-ray diffraction. Calcined powders were dispersed by either ball milling or by ultrasonication and then subjected to spark plasma sintering at several temperatures (1200–1400 °C) and for a reduced time (15 min). It is shown that the dispersion method plays a key role in enhancing the optical characteristics of YAG ceramics, in order to obtain a material with a small grain size, transparent in both the visible and the infrared range.  相似文献   

13.
At present stage, the transmittance improvement is still a thorny problem in SiAlON ceramics due to their complex composition and processing. In the present research, Dy–α-SiAlON ceramics were selected to be translucent in the medium infrared range. The samples had a higher densification value by using hot-pressing (HP) sintering method at 1650–1700 °C with or without LiF additive. The as-sintered specimens experienced the post-hot-isostatic-pressing (PHIP) treatment at 1650–1700 °C for 30–90 min in either N2 or Ar environment to increase the optical transmittance. A significant optical transparency improvement has been found in Dy–α-SiAlON, with or without LiF co-doping, undergone a PHIP at 1700 °C for 30 min under an Argon gas pressure of 180 MPa. The improved transmittance attributes to a fully developed α-Sialon crystalline phase, a uniform grain size, a denser grain arrangement, and a clean grain boundary, based on the X-ray diffraction analysis, SEM and TEM microstructure observation, and optical transmittance measurement.  相似文献   

14.
The microstructures and optical properties of 5%6Li: Ce3xY3(1-x)Al5O12 (x = 0.001, 0.003, 0.05, 0.01, 0.02) transparent ceramics prepared by solid-state reaction and vacuum sintering were investigated in this paper. The results revealed that the grain size of 6Li,Ce:YAG ceramics at this ration conditions is 4 μm–20 μm. With the doping of Ce3+, the transmittance of 6Li,Ce:YAG ceramics decreases from 82% (x = 0.001) to 67% (x = 0.02) at 800 nm, and the intensity of transmittance peak at 340 nm and 460 nm increases. The emission peaks show red shift at around 530 nm with the increasing of Ce3+ concentration.  相似文献   

15.
《Ceramics International》2017,43(3):3140-3146
Transparent YAG ceramics were fabricated by solid state reaction sintering using divalent dopants (CaO and MgO) as sintering additives without TEOS doping, and the effects of divalent dopants on their microstructure evolution and optical properties were investigated. It was found that CaO was more effective with respect to inhibiting grain growth than MgO, but not as effective as MgO in promoting densification. Fully dense, transparent YAG ceramics with excellent optical qualities could be achieved by optimizing the doping concentrations of CaO and MgO; the transmittance at 1064 nm was as high as 84.5% for 3 mm thick sample at the molar ratio of Ca: Mg=1:4, after sintered at 1840 °C for 8 h in vacuum.  相似文献   

16.
Fracture toughness, four-point bending strength of transparent spinel, Y2O3 and YAG ceramics in function of temperature (from room temperature up to 1500° C) were measured. Creep resistance at 1500–1550° C was studied too. Grain size distribution was determined on polished and etched surfaces of samples. Fracture surfaces after tests were examined by scanning electron microscopy. The obtained results showed that: in the case of spinel ceramics fracture toughness and strength decreased from 20 to 800° C, increased from 800 to 1200° C and decreased at higher temperature; in the case of Y2O3 ceramics they increased from 400 to 800° C, and next kept constant up to 1500° C; in the case of YAG ceramics they kept constant from 20 to 1200° C and then decreased. The creep strain rate was measured for spinel and YAG but not for Y2O3 ceramics which appeared creep resistant. The hypotheses concerning toughening and creep mechanisms were proposed.  相似文献   

17.
The various high content Er-doped YAG transparent ceramics with excellent transparency up to nearly 84% at the visible band and the near-infrared band were prepared by the solid-state reaction and the vacuum sintering technique. It is found that the samples exhibit pore-free structures and there are no secondary phases both at the grain boundaries and the inner grains. The average grain size of the Er:YAG ceramics is about 30 μm. The green and red upconversion luminescences in the Er:YAG ceramics pumped by a 980 nm LD were observed. The different upconversion mechanisms depending on Er content in the Er:YAG ceramics and the LD power were also discussed.  相似文献   

18.
Transparent MgO ceramics were fabricated by spark plasma sintering (SPS) of the commercial MgO powder using LiF as the sintering additive. Effects of the additive amount and the SPS conditions (i.e., sintering temperature and heating rate) on the optical transparency and microstructure of the obtained MgO ceramics were investigated. The results showed that LiF facilitated rapid densification and grain growth. Thus, the MgO ceramics could be easily densified at a moderate temperature and under a low pressure. In addition, the transparency and microstructure of the MgO ceramics were found to be strongly dependent on the temperature and heating rate. For the MgO ceramics sintered at 900 °C for 5 min with the heating rate of 100 °C/min and the pressure of 30 MPa from the powders with 1 wt% LiF, the average in-line transmittance reached 85% in the range of 3  5 μm, and the average grain size is ∼0.7 μm.  相似文献   

19.
High-quality cBN single crystals were successfully synthesized in the system of Li3N–hBN with additive LiF at high pressure and high temperature (HPHT). The lowest synthetic conditions of cBN decreased to 4.6 GPa, 1320 °C by employing 3 wt.% LiF, and it didn't change anymore though more than 3 wt.% LiF had been added. The quality of cBN crystals improved markedly. The cBN crystals and other products were examined by X-Ray diffraction and scanning electron microscopy. The X-Ray analysis reveals that the “graphitization index” (GI) of hBN increased by adding 3 wt.% LiF into the system of Li3N–hBN at HPHT. The SEM photographs show that different growth steps were formed on the cBN crystal surface in systems of Li3N–hBN and Li3N–LiF–hBN, respectively.  相似文献   

20.
The Nd3+ cation diffusion into transparent polycrystalline YAG (Y3Al5O12) was investigated as a function of temperature and silica content. Thin neodymium oxide layers were deposited on sintered YAG substrates prior to annealing under air at temperatures from 1400 to 1600 °C. Bulk and grain boundary neodymium diffusion coefficients were measured by secondary ion mass spectrometry. The experimental results show that silica addition increases the diffusivity of Nd3+ by a factor 10 whatever the diffusion path, probably as a result of extrinsic point defects formation, especially rare-earth vacancies.The experimental diffusion data were used to elucidate the sintering mechanism of Nd:YAG ceramics in the temperature range 1450–1550 °C. Firstly, it appeared that the intermediate stage of solid-state sintering should be controlled by the rare-earth diffusion along the grain boundary with an activation energy of about 600 kJ mol?1. Secondly, grain growth mechanism at the final stage of liquid-phase sintering was investigated for silica-doped Nd:YAG samples. Thus, the grain growth should be limited by the reaction at interfaces at a temperature lower than 1500 °C, with an activation energy of about 880 kJ mol?1. At higher temperature, it seems to be limited by the ionic diffusion through the intergranular liquid phase, with an activation energy of 250 kJ mol?1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号