首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Absolute ages of migmatization in the polymetamorphic, parautochthonous basement of the Sveconorwegian Province, Sweden, have been determined using U–Pb ion probe analysis of zircon domains that formed in leucosome of migmatitic orthogneisses. Migmatite zircon was formed by recrystallization whereas dissolution–reprecipitation and neocrystallization were subordinate. The recrystallized migmatite zircon was identified by comparison of zircon in mesosomes and leucosomes. It is backscatter electron‐bright, U‐rich (800–4400 ppm) with low Th/U‐ratios (generally 0.01–0.1), unzoned or ‘oscillatory ghost zoned’, and occurs as up to 100 μm‐thick rims with transitional contacts to cores of protolith zircon. Protolith ages of 1686 ± 12 and 1668 ± 11 Ma were obtained from moderately resorbed, igneous zircon crystals (generally Th/U = 0.5–1.5, U < 300 ppm) in mesosomes; protolith zircon is also present as resorbed cores in the leucosomes. Linkage of folding, synchronous migmatization and formation of recrystallized zircon rims allowed direct dating of south‐vergent folding at 976 ± 7 Ma. At a second locality, similar recrystallized zircon rims in leucosome date pre‐Sveconorwegian migmatization at 1425 ± 7 Ma; an upper age bracket of 1394 ± 12 Ma for two overprinting phases of deformation (upright folding along gently SSW‐plunging axes and stretching in ESE) was set by zircon in a folded metagranitic dyke. Lower age brackets for these events were set at 952 ± 7 and 946 ± 8 Ma by zircon in two crosscutting and undeformed granite–pegmatite dykes. Together with previously published data the present results demonstrate: (i) Tectonometamorphic reworking during the Hallandian orogenesis at 1.44–1.42 Ga, resulting in migmatization and formation of a coarse gneissic layering. (ii) Sveconorwegian continent–continent collision at 0.98–0.96 Ga, involving (a) emplacement of an eclogite unit, (b) regional high‐pressure granulite facies metamorphism, (c) southvergent folding, subhorizontal, east–west stretching and migmatization, all of which caused overprint or transposition of older Mesoproterozoic and Sveconorwegian structures. The Sveconorwegian migmatization and folding took place during or shortly after the emplacement of Sveconorwegian eclogite and is interpreted as a result of north–south shortening, synchronous with east–west extension and unroofing during late stages of the continent–continent collision.  相似文献   

2.
肖玲玲  刘福来  张健 《岩石学报》2019,35(2):325-348
新太古代早期是全球地质历史上一个重要的地壳生长时期,世界众多克拉通中广泛存在2. 7Ga左右的岩浆年龄记录。华北克拉通最主要的岩浆事件发生在新太古代晚期,这与世界其他克拉通广泛存在~2. 7Ga的构造热事件明显不同。但全岩Nd和锆石Hf同位素研究表明,华北克拉通~2. 5Ga的岩石主体来自于中太古代晚期-新太古代早期大陆物质的重熔或再造。因此,厘定~2. 7Ga地质事件在华北克拉通的空间分布对深入理解新太古代地壳形成与演化具有重要科学意义。华北克拉通已识别出的~2. 7Ga的花岗质岩石主要分布在胶东、鲁西、武川、赞皇和太华等少数杂岩区,中部带的恒山、阜平和中条杂岩中亦有零星出露。左权变质杂岩位于中部带中南段,赞皇杂岩西南,初步地球化学和锆石年代学研究表明,该地区有多种岩石类型记录了~2. 7Ga的年龄信息,包括副片麻岩、长英质浅色体、磁铁矿角闪片麻岩和TTG片麻岩。其中,TTG片麻岩的原岩为英云闪长岩,锆石发育明显的核边结构,核部具有清晰的岩浆环带,两个不同LA-ICP-MS实验室获得的不一致线上交点年龄分别为2727±14Ma和2731±12Ma,代表了TTG岩浆岩的结晶年龄。同时,左权变质岩石中较好地保存了新太古代晚期的岩浆和变质年龄记录,推测其所代表的构造热事件与华北克拉通~2. 5Ga所经历的大规模幔源岩浆的底侵作用有关。  相似文献   

3.
Garnet granulite and pyroxenite xenoliths from the Grib kimberlite pipe (Arkhangelsk, NW Russia) represent the lower crust beneath Russian platform in close vicinity to the cratonic region of the north-eastern Baltic (Fennoscandian) Shield. Many of the xenoliths have experienced strong interaction with the kimberlite host, but in others some primary granulite-facies minerals are preserved. Calculated bulk compositions for the granulites suggest that their protoliths were basic to intermediate igneous rocks; pyroxenites were ultrabasic to basic cumulates. A few samples are probably metasedimentary in origin. Zircons are abundant in the xenoliths; they exhibit complex zoning in cathodoluminescence with relic cores and various metamorphic rims. Cores include oscillatory zircon crystallized in magmatic protoliths, and metamorphic and magmatic sector-zoned zircons. Recrystallization of older zircons led to the formation of bright homogeneous rims. In some samples, homogeneous shells are surrounded by darker convoluted overgrowths that were formed by subsolidus growth when a change in mineral association occurred. The source of Zr was a phase consumed during a reaction, which produced garnet. Late-generation zircons in all xenoliths show concordant U–Pb ages of 1.81–1.84 Ga (1,826 ± 11 Ma), interpreted as the age of last granulite-facies metamorphism. This event completely resets most zircon cores. An earlier metamorphic event at 1.96–1.94 Ga is recorded by some rare cores, and a few magmatic oscillatory zircons have retained a Neoarchaean age of 2,719 ± 14 Ma. The assemblage of metaigneous and metasedimentary rocks was probably formed before the event at 1.96 Ga. Inherited magmatic zircons indicate the existence of continental crust by the time of intrusion of magmatic protoliths in the Late Archaean. The U–Pb zircon ages correspond to major events recorded in upper crustal rocks of the region: collisional metamorphism and magmatism 2.7 Ga ago and reworking of Archaean rocks at around 1.95–1.75 Ga. However, formation of the granulitic paragenesis in lower crustal rocks occurred significantly later than the last granulite-facies event seen in the upper crust and correlates instead with retrograde metamorphism and small-volume magmatism in the upper crust.  相似文献   

4.
The Eastern Segment abutting the Transscandinavian Igneous Belt (TIB) mostly consists of rocks with overlapping igneous ages. In the Eastern Segment west of Lake Vättern, granitoids of clear TIB affinity exhibit strong deformational fabrics. This article presents U–Pb zircon ages from 21 samples spanning the border zone between these deformed TIB rocks in the east, and more thoroughly reworked rocks in the west. Magmatic ages fall in the range 1710–1660 million years, irrespective of the degree of deformation, confirming the overlapping crystallization ages between deformed TIB rocks and orthogneisses of the Eastern Segment. A common history is further supported by leucocratic rocks of similar ages. Prolonged orogenic (magmatic) activity is suggested by continued growth of zircon at 1.66–1.60 Ga. Six of the weakly gneissic rocks show zircons with cathodoluminescence-dark patches and embayments, possibly partly replacing metamict parts of older magmatic crystals, with 207Pb/206Pb ages dominantly between 1460 and 1400 million years, whereas three of the gneisses have zircon rims with calculated ages of 1440–1430 million years. Leucosome formation took place at 1443 ± 9 and 1437 ± 6 Ma. The minimum age of SE–NW folds was determined by an undeformed 1383 ± 4 million years crosscutting aplitic dike. Sveconorwegian zircon growth was not found in any of the samples from the studied area. To our knowledge, 1.46–1.40 Ga metamorphism affecting the U–Pb zircon system has not previously been reported this far northeast in the Eastern Segment. We suggest that the E–W- to SE–NW-trending deformation fabrics in our field area were produced during the Hallandian–Danopolonian orogeny and escaped later, penetrative Sveconorwegian reworking.  相似文献   

5.
An ion-microprobe (SIMS) U-Pb zircon dating study on four samples of Precambrian metasediments from the high-grade Bamble Sector, southern Norway, gives the first information on the timing of discrete crust-forming events in the SW part of the Baltic Shield. Recent Nd and Pb studies have indicated that the sources of the clastic metasediments in this area have crustal histories extending back to 1.7 to 2.1 Ga, although there is no record of rocks older than 1.6 Ga in southern Norway. The analysed metasediments are from a sequence of intercalated, centimetre to 10-metre wide units of quartzites, semi-metapelites, metapelites and mafic granulites. The zircons can be grouped in two morphological populations: (1) long prismatic; (2) rounded, often flattened. The BSE images reveal that both populations consist of oscillatory zoned, rounded and corroded cores (detrital grains of magmatic origin), surrounded by homogeneous rims (metamorphic overgrowths). The detrital zircons have 207Pb/206Pb ages between 1367 and 1939 Ma, with frequency maxima in the range 1.85 to 1.70 Ga and 1.60 to 1.50 Ga. There is no correlation between crystal habit and age of the zircon. One resorbed, inner zircon core in a detrital grain is strongly discordant and gives a composite inner core-magmatic outer core 207Pb/206Pb age of 2383 Ma. Two discrete, unzoned zircons have 207Pb/206Pb ages of 1122 and 1133 Ma, representing zircon growth during the Sveconorwegian high-grade metamorphism. Also the μm wide overgrowths, embayments in the detrital cores and apparent “inner cores” which represent secondary metamorphic zircon growth in deep embayments in detrital grains, are of Sveconorwegian age. The composite-detrital-metamorphic zircon analyses give generally discordant 206Pb/238U versus 207Pb/235U ratios and maximum 207Pb/206Pb ages of 1438 Ma. These data demonstrate the existence of a protocrust of 1.7 to 2.0 Ga in the southwestern part of the Baltic Shield, implying a break in the overall westward younging trend of the Precambrian crust, inferred from the southeastern part of the Baltic Shield. Received: 8 April 1997 / Accepted: 14 July 1997  相似文献   

6.
The microgeochemistry of zircon was studied in three samples: charnockite gneiss (1594), charnockite (1594a), and migmatite leucosome Lc4 (1594c). Prismatic (Zrn I) and oval (Zrn II) zircon morphotypes are distinguished in the first two samples. Most zircon grains consist of two-phase cores and overgrowth rims variable in thickness. The average weighted concordant U–Pb age of Zrn II cores from charnockite gneiss is 2436 ± 10 Ma. The concordant ages of Zrn I and Zrn II cores from charnockite are 2402 ± 16 Ma and 2453 ± 14 Ma, respectively. Some overgrowth rims are 1.9–2.1 Ga in age. In leucosome Lc4, all measured prismatic zircon crystals yielded a discordant age of 1942 ± 11 Ma (the upper intersection of discordia with concordia). These zircons are strongly altered and anomalously enriched in U and Th. Zrn I grains are enriched relative to Zrn II in REE, Li, Ca, Sr, Ba, Hf, Th, and U. Zrn I is considered to be a product of melt crystallization or subsolidus recrystallization in the presence of melt. Zrn II is relict or crystallizing from melt and then partly fused again. Zrn I from charnockite gneiss and especially from charnockite are markedly altered and have a more discordant age than Zrn II. This is probably related to concentration of fluid in the residual melt left after zircon crystallization.  相似文献   

7.
U–Pb sensitive high resolution ion microprobe (SHRIMP) zircon geochronology, combined with REE geochemistry, has been applied in order to gain insight into the complex polymetamorphic history of the (ultra) high pressure [(U)HP] zone of Rhodope. Dating included a paragneiss of Central Rhodope, for which (U)HP conditions have been suggested, an amphibolitized eclogite, as well as a leucosome from a migmatized orthogneiss at the immediate contact to the amphibolitized eclogite, West Rhodope. The youngest detrital zircon cores of the paragneiss yielded ca. 560 Ma. This date indicates a maximum age for sedimentation in this part of Central Rhodope. The concentration of detrital core ages of the paragneiss between 670–560 Ma and around 2 Ga is consistent with a Gondwana provenance of the eroded rocks in this area of Central Rhodope. Metamorphic zircon rims of the same paragneiss yielded a lower intercept 206Pb/238U age of 148.8±2.2 Ma. Variable post-148.8 Ma Pb-loss in the outermost zircon rims of the paragneiss, in combination with previous K–Ar and SHRIMP-data, suggest that this rock of Central Rhodope underwent an additional Upper Eocene (ca. 40 Ma) metamorphic/fluid event. In West Rhodope, the co-magmatic zircon cores of the amphibolitized eclogite yielded a lower intercept 206Pb/238U age of 245.6±3.9 Ma, which is interpreted as the time of crystallization of the gabbroic protolith. The metamorphic zircon rims of the same rock gave a lower intercept 206Pb/238U age of 51.0±1.0 Ma. REE data on the metamorphic rims of the zircons from both the paragneiss of Central Rhodope and the amphibolitized eclogite of West Rhodope show no Eu anomaly in the chondrite-normalized patterns, indicating that they formed at least under HP conditions. Flat or nearly flat HREE profiles of the same zircons are consistent with the growth of garnet at the time of zircon formation. Low Nb and Ta contents of the zircon rims in the amphibolitized eclogite indicate concurrent growth of rutile. Based on the REE characteristics, the 148.8±2.2 Ma age of the garnet–kyanite paragneiss, Central Rhodope and the 51.0±1.0 Ma age of the amphibolitized eclogite, West Rhodope are interpreted to reflect the time close to the (U)HP and HP metamorphic peaks, respectively, with a good approximation. The magmatic zircon cores of the leucosome in the migmatized orthogneiss, West Rhodope, gave a lower intercept 206Pb/238U age of 294.3±2.4 Ma for the crystallization of the granitoid protolith of the orthogneiss. Two oscillatory zircon rims around the Hercynian cores, yielded ages of 39.7±1.2 and 38.1±0.8 Ma (2σ errors), which are interpreted as the time of leucosome formation during migmatization. The zircons in the leucosome do not show the 51 Ma old HP metamorphism identified in the neighboring amphibolitized eclogite, possibly because the two rock types were brought together tectonically after 51 Ma. If one takes into account the two previously determined ages of ca. 73 Ma for (U)HP metamorphism in East Rhodope, as well as the ca. 42 Ma for HP metamorphism in Thermes area, Central Rhodope, four distinct events of (U)HP metamorphism throughout Alpine times can be distinguished: 149, 73, 51 and 42 Ma. Thus, it is envisaged that the Rhodope consists of different terranes, which resulted from multiple Alpine subductions and collisions of micro-continents, rather similar to the presently accepted picture in the Central and Western Alps. It is likely that these microcontinents were rifted off from thinned continental margins of Gondwana, between the African and the European plates before the onset of Alpine convergence.  相似文献   

8.
《International Geology Review》2012,54(12):1446-1461
ABSTRACT

Meta-pelitic rocks with interlayers of meta-psammites within the inner thermal aureole of the Alvand plutonic complex (Sanandaj-Sirjan Zone (SaSZ), western Iran) underwent partial melting; generating various types of migmatites. The mesosome of the Hamedan migmatites is classified into two groups: (1) cordierite-rich and Al-silicate-poor mesosomes and (2) cordierite-poor, Al-silicate-rich groups. Leucosomes are also variable, ranging from plagioclase-rich to K-feldspar-rich leucosomes. Mineral-chemical studies and thermobarometric estimations indicate temperature and pressure of 640–700°C and 3–5 kbar, respectively, for the formation of mesosomes. U–Pb zircon geochronology on 214 grains from the mesosome of migmatites indicates ages of 160–180 Ma (ca ~170 Ma) for zircon metamorphic rims and variable ages of 190–2590 Ma for the inherited detrital zircon cores. Inherited core ages show various age populations, but age populations at 200–600 Ma are more frequent. The age populations of the detrital zircons clarify that the provenance of the younger zircon grains (200–500 Ma) was more likely the Iranian plate, whereas the older grains (600 Ma to >2.5 Ga) may be sourced from both northern Gondwana (such as Arabian-Nubian Shield) and the neighbouring, old cratons like as Africa. We suggest that magmatic activities, especially mafic plutonism at ~167 Ma, are the main triggers for the heat source of metamorphism, partial melting, and migmatization. In contrast to a presumed idea for a Cretaceous regional metamorphic event in the NW parts of the SaSZ, this study attests that the metamorphism should be older and can be associated with Jurassic magmatic pulses.  相似文献   

9.
Hafnium isotope analyses of a large number of metamorphic zircon grains of two garnet-kyanite-staurolite schist samples from the Shackleton Range yielded 176Hf/177Hf of 0.28160 ± 0.00003 and 0.28142 ± 0.00003, respectively. The variations of these analyses are less than ±1.2 epsilon units and indicate that all metamorphic zircon grains in the two rocks formed in environments with nearly homogenous Hf isotopic composition. The metamorphic origin of the zircon grains is constrained by textures as well as by their low Th/U (<0.2), 176Lu/177Hf (<0.0003), and 176Yb/177Hf ratios (<0.009), indicating that they grew in the presence of garnet. Furthermore, the grains yield Pb-Pb ages of c. 1.7 Ga, which is the time of amphibolite-facies metamorphism. In combination with petrological results, it is suggested that the observed 176Hf/177Hf homogeneity was caused by a fluid- and deformation-assisted dissolution of detrital zircon grains, followed by new zircon re-precipitation that was accompanied by Hf transport on at least a hand-specimen scale. This interpretation is supported by results obtained from an additional paragneiss sample that contains zoned zircon grains with xenocrystic cores formed at 2.6-1.8 Ga and metamorphic rims with a U-Pb age of 1.7 Ga. The 176Hf/177Hf variation of the zircon rims is mostly at ±0.0003, which is much less than that of the magmatic cores (±0.0019). The metamorphic fluid for the dissolution-homogenization-re-precipitation process most likely resulted from prograde reactions among the minerals chlorite-muscovite-biotite-garnet-staurolite-apatite, in agreement with thin section observations and P-T pseudosection calculations.  相似文献   

10.
东南极Windmill群岛变质杂岩经历的变质和岩浆事件与西澳大利亚Albany-Fraser造山带在时间上相对应,并可能与罗迪尼亚超大陆的拼合有关。Windmill群岛Bailey半岛的镁铁质片麻岩(角闪石-单斜辉石-斜方辉石-黑云母-斜长石-石英-磁铁矿-锆石)被认为具有较早的形成年龄,其中还出露属于正片麻岩的淡色片麻岩(斜长石-钾长石-石英-黑云母-锆石)。对这两种片麻岩中的锆石分别进行了SHRIMP U-Pb年龄测定,首次获得该区镁铁质片麻岩锆石核部207Pb/206Pb加权平均年龄1403±28 Ma,该年龄记录了本区中元古代早期岩浆事件,这是Windmill群岛地区记录的最早一期岩浆事件,可能受到了东部莫森大陆(Mawson Continent)构造岩浆活动的影响。铁镁质片麻岩锆石增生边的年龄为1318±34 Ma,则记录了早期构造热事件。淡色片麻岩中锆石核部年龄为1257±51 Ma,与Bailey半岛的片麻状含石榴子石花岗岩侵位年龄一致,共同记录了该区的一期岩浆活动。淡色片麻岩中锆石增生边的年龄为1197±26 Ma,记录了晚期的变质事件。这些新的年龄数据强烈支持1375~1151 Ma期间东南极Windmill群岛与西澳大利亚Albany-Fraser造山带相连接的构造模型,同时也为罗迪尼亚超大陆拼合过程提供了重要的年代学约束。   相似文献   

11.
深熔作用是大陆地壳分异、元素迁移富集和混合岩化作用的主要机制和关键地质过程.吉南地区出露的太古宙基底普遍经历了角闪岩相-麻粒岩相变质及深熔作用,长英质淡色体及淡色花岗岩广泛分布.吉南和龙花岗-绿岩地体出露的太古宙变质石英闪长岩及相关的长英质浅色体和含斜方辉石(角闪石)淡色伟晶花岗岩的野外地质特征、相互关系及岩相学特征指...  相似文献   

12.
U–Pb sensitive high resolution ion microprobe (SHRIMP) dating of zircons from charnockitic and garnet–biotite gneisses from the central portion of the Mozambique belt, central Tanzania indicate that the protolith granitoids were emplaced in a late Archaean, ca. 2.7 Ga, magmatic event. These ages are similar to other U–Pb and Pb–Pb ages obtained for other gneisses in this part of the belt. Zircon xenocrysts dated between 2.8 and 3.0 Ga indicate the presence of an older basement. Major and trace element geochemistry of these high-grade gneisses suggests that the granitoid protoliths may have formed in an active continental margin environment. Metamorphic zircon rims and multifaceted metamorphic zircons are dated at ca. 2.6 Ga indicating that these rocks were metamorphosed some 50–100 my after their emplacement. Pressure and temperature estimates on the charnockitic and garnet–biotite gneisses were obscured by post-peak metamorphic compositional homogenisation; however, these estimates combined with mineral textures suggest that these rocks underwent isobaric cooling to 800–850 °C at 12–14 kbar. It is considered likely that the granulite facies mineral assemblage developed during the ca. 2.6 Ga event, but it must be considered that it might instead represent a pervasive Neoproterozoic, Pan African, granulite facies overprint, similar to the ubiquitous eastern granulites further to the east.  相似文献   

13.
Palaeoproterozoic metasedimentary migmatite reflects the highest temperature parts of a regional aureole at Mt Stafford, central Australia, comprising rocks that experienced 500–800 °C at ≈3 kbar. Whole‐rock major element concentrations are correlated with Zr content, psammitic compositions having nearly twice the Zr content of pelitic compositions. Zirconium is concentrated in mesosome compared with leucosome. Zircon is largely detrital, mostly lacking any overgrowth contemporary with migmatite formation. Comparatively small proportions of micro‐zircon (<10 μm) in sub‐solidus rocks are mostly hosted by quartz and plagioclase. Much higher proportions (three to five times) of micro‐zircon in migmatite are hosted by prograde K‐feldspar, cordierite and biotite. TX and PT NCKFMASHTZr pseudosections constructed using thermocalc model the distribution of Zr between solid and silicate liquid phases. Half of the detrital zircon (~100 ppm Zr) is predicted to be dissolved into silicate liquid at ≈800 °C and all dissolved by 850 °C, if all zircon is involved in the equilibration volume. Melt segregation at relatively low temperature is predicted to enrich the residuum in Zr, consistent with the observed distribution of Zr between mesosome and leucosome. The limited development of metamorphic zircon rims or overgrowths at Mt Stafford is explained by three concurrent processes: (i) Zr liberated during prograde metamorphism formed micro‐zircon, rather than following the prediction that Zr will partition into silicate liquid; (ii) some detrital zircon was probably armoured by other rock‐forming minerals, reducing Zr content in the effective bulk rock composition; and (iii) small proportions of melt loss during migmatization removed Zr that otherwise would have been available to form metamorphic rims.  相似文献   

14.
Crustal xenoliths can provide new insights into the unexposed crust, and those from the northeastern Yangtze Block have rarely been studied. This paper reports U–Pb–Hf isotopes and trace-element compositions of zircons from six felsic xenoliths hosted by the Neogene alkali basalts in the Donghai region (i.e. Anfengshan and Pingmingshan) of the Sulu orogen in central eastern China. The xenoliths are mainly composed of orthoclase and quartz, or orthoclase and natrolite, with accessory minerals of Fe–Ti oxides and zircon. Most zircon grains show core-rim structures, with the cores and rims being magmatic and metamorphic in origin, respectively. The zircon cores mainly yield ages of ca. 827–794 Ma, while the zircon rims give ages of ca. 232–212 Ma. We interpret the zircon core ages as the time of an early Mid-Neoproterozoic magmatic event in the northeastern Yangtze Block and the zircon rim ages as the time of collision between the Yangtze and North China Blocks. Our data suggest that much more ca. 830–800 Ma magmatic records are possibly preserved in the unexposed deep crust, and the early Mid-Neoproterozoic is an important era for the crust evolution of the northeastern Yangtze Block. The new zircon Hf isotopic analyses show that the Anfengshan sample (south of Donghai) has zircon εHf (820 Ma) values ranging from −15.3 to −9.4, and two-stage Hf model ages of 2.66–2.30 Ga; the Pingmingshan sample (southeast of Donghai) has zircon εHf (820 Ma) values ranging from −1.4 to +3.8, and two-stage Hf model ages of 1.80–1.47 Ga. These data suggest that ancient crust as old as Neoarchean to Mesoproterozoic was involved in the early Mid-Neoproterozoic magmatism. Combined with the previously reported zircon U–Pb–Hf results of the exposed rocks, it is highlighted that crustal recycling was dominant in the early Mid-Neoproterozoic (ca. 830–800 Ma) magmatism, whereas both crustal recycling and addition of mantle-derived melts were significant in the late Mid-Neoproterozoic (ca. 800–720 Ma) magmatism in the northeastern Yangtze Block.  相似文献   

15.
This paper reports SHRIMP zircon U–Pb dating of Precambrian supracrustal and granitic rocks from the Lushan area, Henan Province, in the southern portion of the Central Zone (also referred to as the Trans-North China Orogen) of the North China Craton. A graphite–garnet–sillimanite gneiss (Sample TW0006/1) of the Shangtaihua ‘Group’ gives a range of inherited zircon ages from 2.73 to 2.26 Ga and a metamorphic zircon age of 1.84 ± 0.07 Ga. A garnet-bearing gneissic granitoid (Sample TWJ358/1), which is considered to intrude the Shangtaihua ‘Group’, gives a magmatic zircon age of 2.14 ± 0.02 Ga and a metamorphic zircon age of 1.87 Ga. The metamorphic zircon ages of 1.87–1.84 Ga obtained in this study indicate that an important tectonothermal event occurred at the end of the Paleoproterozoic in the Lushan area. This supports the southern continuation of a Central Zone in the North China Craton that workers have recently considered to result from continent–continent collision. It is also evident that the Shangtaihua ‘Group’ was formed during the Paleoproterozoic (between 2.26 and 2.14 Ga), and not during the Archean, as previously considered.  相似文献   

16.
Migmatite gneisses are widespread in the Dabie orogen, but their formation ages are poorly constrained. Eight samples of migmatite, including leucosome, melanosome, and banded gneiss, were selected for U–Pb dating and Hf isotope analysis. Most metamorphic zircon occurs as overgrowths around inherited igneous cores or as newly grown grains. Morphological and internal structure features suggest that their growth is associated with partial melting. According to the Hf isotope ratio relationships between metamorphic zircon and inherited cores, three formation mechanisms for metamorphic zircon can be determined, which are dissolution–reprecipitation of pre‐existing zircon, breakdown of Zr‐bearing phase other than zircon in a closed system and crystallization from externally derived Zr‐bearing melt. Four samples contain magmatic zircon cores, yielding upper intercept U–Pb ages of 807 ± 35–768 ± 12 Ma suggesting that the protoliths of the migmatites are Neoproterozoic in age. The migmatite zircon yields weighted mean two‐stage Hf model ages of 2513 ± 97–894 ± 54 Ma, indicating reworking of both juvenile and ancient crustal materials at the time of their protolith formation. The metamorphic zircons give U–Pb ages of 145 ± 2–120 ± 2 Ma. The oldest age indicates that partial melting commenced prior to 145 Ma, which also constrains the onset of extensional tectonism in this region to pre‐145 Ma. The youngest age of 120 Ma was obtained from an undeformed granitic vein, indicating that deformation in this area was complete at this time. Two major episodes of partial melting were dated at 139 ± 1 and 123 ± 1Ma. The first episode of partial melting is obviously older than the timing of post‐collision magmatism, corresponding to regional extension. The second episode of partial melting is coeval with the widespread post‐collision magmatism, indicating the gravitational collapse and delamination of the orogenic lithospheric keel of the Dabie orogen, which were possibly triggered by the uprising of the Cretaceous mid‐Pacific superplume.  相似文献   

17.
The Early Precambrian granulite-gneiss complex of the Irkut Block (Sharyzhalgai salient of the Siberian Craton basement) with the protoliths represented by a wide range of magmatic and sedimentary rocks, has a long-term history including several magmatic and metamorphic stages. To estimate the age of sedimentation and metamorphism of the terrigenous deposits, the composition of the garnet-biotite, hyper-sthene-biotite, and cordierite-bearing gneisses has been studied; their isotopic Sm-Nd values have been revealed; and the U-Pb zircon dating has been performed using the SHRIMP II ion microprobe. The protoliths of the terrigenous sediments metamorphosed under conditions of the granulite facies correspond to a rock series from siltstones and graywackes to pelites. The Nd model ages of paragneisses range from 2.4 to 3.1 Ga. Zircons of the cordierite-bearing and hypersthene—biotite gneisses show the presence of cores and rims. The clastic, smoothed, and irregular shape of the cores indicates their detrital character and relicts of oscillatory zoning suggest the magmatic origin of zircon. The rim’s metamorphic genesis is indicated by the lack of zoning and by the lower Th/U ratio compared to that of the cores. The age of the detrital cores (≥2.7, ~2.3, and 1.95—2.0 Ga) and metamorphic rims (1.85–1.86 Ga) defines the time of sedimentation at 1.85–1.95 Ga ago. Potential sources for the Archean detrital zircons were metamagmatic rocks of the granulite—gneiss complexes in the southwestern margin of the Siberian Craton. The age of the dominant detrital cores at 1.95–2.0 Ga ago, together with the minimal TNd(DM) values, indicates the contribution of the juvenile Paleoproterozoic crust to the formation of sediments. The juvenile Paleoproterozoic crust was likely represented by magmatic complexes similar to the volcanic and granitoid associations of the Aldan shield, which were formed 1.99–2.0 Ga ago and showthe model age of 2.0—2.4 Ga. The isotopic Sm-Nd data show that the Late Paleoproterozoic metasedimentary rocks occur not only in the Sharyzhalgai salient but in the Aldan and Anabar shields of the Siberian Craton as well.  相似文献   

18.
本文报道了内蒙古大青山地区早前寒武纪变质岩石的锆石Hf同位素和稀土组成。两个古元古代晚期(1.9~2.1 Ga)变质碎屑沉积岩样品中碎屑锆石的(n(176Hf)/n(177Hf))c、tDM1(Hf)和tDM2(Hf)分别为0.281079~0.281502、2548~3000 Ma、2612~3153 Ma和0.280916~0.281451、2533~2717 Ma、2600~3404 Ma; 一个古元古代早期(2.37 Ga)变质辉长岩样品中岩浆锆石的εHf(t)和tDM1(Hf)分别为1.50~6.68和2449~2647 Ma,表明大青山及邻区在新太古代晚期—古元古代早期存在强烈的构造岩浆热事件,既有地幔添加又有壳内再循环作用。三个样品的边部变质锆石εHf(t)、tDM1(Hf)和tDM2(Hf)分别为-9.49~3.91、2201~2686 Ma、2285~2887 Ma;-7.29~-2.42、2350~2540 Ma、2499~2740 Ma和-5.46~-0.53、2319~2507 Ma、2443~2687 Ma,Th/U比值普遍小于01。与核部锆石相比,边部变质锆石tDM2(Hf)变小,Th/U比值和稀土含量降低,但稀土模式十分类似。研究表明,变质锆石增生边的形成及其Hf同位素、稀土和U—Th组成受核部锆石和变质作用的双重制约。变质增生边的形成至少部分与核部锆石溶解以后的再结晶有关,变质流体起了重要作用。  相似文献   

19.
U–Pb ages, trace elements, and Hf isotope compositions of zircons from the Mayuan migmatite complex in NW Fujian province have been determined to provide constraints on the source and genesis of anatexis and tectonothermal evolution related to the Caledonian orogeny in South China. The migmatites investigated consist of various amounts of mesosome, leucosome, and melansome. Zircons extracted from mesosome, leucosome, and granite samples are characterized by oscillatory overgrowths enclosing inherited cores or occur as newly grown grains. The ages of the inherited zircons from the leucosome and granite samples are consistent with those of adjacent basement paragneiss in the study area, suggesting that both leucosome and granite were generated by partial melting of the latter. A comparison of Hf isotopes between the newly-formed zircons and inherited cores indicates that the former resulted from the breakdown of preexisting inherited zircons and/or less Hf-rich minerals other than zircons at the source. One mesosome sample contains typical metamorphic zircons that yielded a weighted mean 206Pb/238U age of 453 ± 3 Ma. They show enrichments in heavy REEs (LuN/LaN up to 22,709), indicating their growth prior to garnet crystallization. The other mesosome sample, in contrast, contains both newly-formed metamorphic rims and grains that gave a weighted mean 206Pb/238U age of 442 ± 8 Ma. They are characterized by relatively low Th/U ratios, depletions in heavy REEs (LuN/LaN = 117–396), and low 176Lu/177Hf ratios, suggesting their growth synchronous with garnet crystallization. The U–Pb ages of the mesosome samples are interpreted as recording the time of early (ca. 453 Ma) to peak (442 Ma) stages of a regional metamorphic event. Two leucosome and two granite samples yield consistent U–Pb ages of 438 ± 5 Ma to 442 ± 4 Ma, which provide constraints on the timing of subsequent anatexis and magmatism. The geochronological data reported here reveal a consecutive sequence of regional metamorphism, anatexis, and magmatism in NW Fujian province, lasting for at least 15 Myr, which was driven by the Caledonian orogeny that have affected a major part of the SCB.  相似文献   

20.
SHRIMP U–Pb zircon studies on two post-collisional granitic plutons and reassessment of the data previously reported for two anatectic gneissic granites are used to assess the late Neoproterozoic history of the Florianópolis Batholith, southern Brazil. The results, supported by SEM backscattered and cathodoluminescence imagery, identify inherited zircon populations and confirm the long-lived, crustal recycling processes responsible for the accretion of the batholith. The study casts new lights on the timing of the processes involved in the generation and modification of the internal structure of distinct zircon populations, and enables discrimination to be made between inherited cores and melt-precipitated overgrowths. New dating of two post-tectonic plutons (samples 1 and 2) revealed crystals showing magmatic-textured cores sharply bounded by melt-precipitated overgrowths. The U/Pb isotopic results from both samples spread along concordia by ca. 40 m.y. (sample 1) to 100 m.y. (sample 2), clustering in two closely spaced (bimodal), partially overlapping peaks. Melt-precipitated rims and homogeneous new grains, dated at ca. 600 Ma, furnish the crystallisation age of the plutons. The magmatic textured cores and xenocrysts dated at ca. 630–620 Ma are interpreted as inherited restitic material from supposedly short-lived (meta)granitic sources. The reassessment of previous SHRIMP data of two banded anatectic granitoids (samples 3 and 4) revealed more complex morphological patterns, in which the overgrown inherited cores are sharply bounded against large melt-precipitated rims, dated at ca. 600 Ma and 592±2 Ma, respectively. Major populations of magmatic-textured inherited cores dated at 2006±3 Ma and 2175±13 Ma characterise samples 3 and 4, respectively. The latter additionally shows metamorphic and magmatic inherited cores with a large range of ages (ca. 2900–620 Ma), suggesting partial melting of metasedimentary components. The main magmatic Paleoproterozoic core populations are interpreted as inherited restite from partial melting of the adjacent (meta)tonalitic gneiss and amphibolitic country-rock (paleosome). The recognition of the (melt-precipitated) Neoproterozoic overgrowths and new crystals, and the restite provenance of the cores, supplants a previous interpretation of Paleoproterozoic magmatism (cores) and Neoproterozoic (solid-state) metamorphic overprint. As a major consequence of the former interpretation, the unit was mistakenly considered part of major Paleoproterozoic gneissic remnant within the Neoproterozoic Florianópolis Batholith/arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号