首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The chlorophyll (Chl) a-b light harvesting complex II (LHC II)contains more than 80% of the light-harvesting pigments of photosystemII (PS II) in chloroplasts. The supramolecular assembly andfunction of this auxiliary antenna system was investigated inChi b-deficient and Chi b-less mutant chloroplasts from soybeanand barley plants, and in their wild-type counterparts. Fourdistinct LHC II polypeptides were resolved by SDS-PAGE (subunitsa, b, c and d), having apparent molecular masses of 29, 28,27.2 and 26.8 kDa, respectively. The analysis of LHC II subunitcomposition in different developmental stages of the PS II unitin soybean (3>Chla/Chlbb>6), indicated the associationof specific subunits with the LHC H-inner and LHC II-peripheralin the chloroplast. The amount of subunit a in PS II was constantover a broad range of Chl a/Chl b ratios, suggesting that thissubunit is closely associated with the PS II-core complex. Subunitd also appeared to be constant over a wide range of Chl a/Chlb ratios, suggesting close association with the LHC II-inner.The PS II content in subunits b and c increased with the PSII antenna development in soybean but the ratio of b/c remainedconstant in all developmental stages and equal to 2 :1. Subunita was present in the Chl b-less chlorina f2 mutant of barleygrown under continuous illumination but was absent under intermittentillumination. The results suggest that each subunit binds 13-15Chl molecules. A working hypothesis is presented on the PS IIantenna development and LHC II subunit composition in soybeanchloroplasts. (Received October 11, 1988; Accepted January 19, 1989)  相似文献   

2.
The relationship between the accumulation of Chl and the apoproteinsof the light-harvesting Chl a/b-protein complex of PS II (LHCII)during the greening of cucumber cotyledons was studied. LHCIIapoproteins were not detected in etiolated cotyledons. Uponillumination, Chl a was formed as a result of photoconversionof protochlorophyllide (Pchlide) which had accumulated in thedark. During the lag period that preceded the accumulation ofChl, a small amount of LHCII apoproteins appeared. The amountof LHCII apoproteins increased with increases in levels of Chlb, though somewhat more rapidly during the first 10 h of greening.Treatment with benzyladenine (BA) or levulinic acid (LA) wasused to vary the supply of Chl a for apoproteins by promotingor inhibiting the synthesis of Chl a, respectively. LA decreasedbut BA increased the rate of accumulation of Chl b and LHCIIapoproteins. Only small amounts of Chl b and LHCII apoproteinswere formed under intermittent illumination. However, in thepresence of chloramphenicol (CAP), which inhibits the synthesisof plastome-coded proteins including apoproteins of the P700-Chla-protein complex (CP1) and a Chl a-protein complex of PS II(CPa), we observed the accumulation of Chl b and LHCII apoproteins,both of which are of nuclear origin. During incubation in thedark after intermittent exposure to light, CAP alone allowedneither destruction nor accumulation of Chl b and LHCII apoproteins,but it did enhance the effect of CaCl2 in inducing both Chlb and these apoproteins. These results can be explained by assumingthat apoproteins of CP1 and CPa have a higher affinity for Chla than do LHCII apoproteins. When the availability of Chl ais limited, these apoproteins compete with one another for Chla, with the resultant preferential formation of CP1 and CPa.However, when the supply of Chl a becomes large enough for saturationof apoproteins of CP1 and CPa, some of the Chl a is incorporatedinto LHCII apoproteins either directly or after conversion toChl b. Thus, the formation of different Chl-protein complexes(CPs) is regulated by the relative rates of synthesis of Chla and apoproteins and by differential affinities of the apoproteinsfor Chl a. 4Present address: Kyowa Hakko Co., Ltd., 4041, Ami-machi, Inashiki,Ibaraki, 300-03 Japan (Received September 14, 1989; Accepted April 26, 1990)  相似文献   

3.
A water-soluble Chl a/b-protein (CP673) was isolated and purifiedfrom Brussels sprouts (Brassica oleracea L. var. gemmifera DC).The protein had a molecular mass of 78 kDa and an isoelectricpoint of 4.7, consisted of three or four subunits of 22 kDaand was extremely heat-stable. Although CP673 contained aboutone Chl a per protein, the blue and red absorption bands ofChl a that consisted of three or four Chl a forms with differentabsorption maxima suggested that there are several differentmodes or sites of binding for Chl a. Chl a/b ratio of largerthan 10 also indicated that Chl b is present only in a smallfraction of CP673. The heterogeneity of CP673 in terms of compositionand binding of Chl suggests that Chl is not an intrinsic componentof the Chl-protein. Homology search showed that the N-terminalamino acid sequence of CP673 is highly homologous with thatof a 22 kDa protein that accumulates in water-stressed leavesof two Brassicaceae plants, rapeseed and radish, but not withthose of the light-harvesting Chl a/b-proteins of photosynthesis.A possible function of the water-soluble Chl-protein was discussed. (Received September 17, 1996; Accepted November 18, 1996)  相似文献   

4.
The pyridazinone-type herbicide norflurazon SAN 9789 inhibiting the biosynthesis of long-chain carotenoids results in significant decrease in PS II core complexes and content of light-harvesting complex (LHC) polypeptides in the 29.5–21 kDa region. The Chl a forms at 668, 676, and 690 nm that belong to LHC and antenna part of PS I disappear completely after treatment. The intensity of the Chl b form at 648 nm is sharply decreased in treated seedlings grown under 30 or 100 lx light intensity. The bands of carotenoid absorption at 421, 448 (Chl a), 452, 480, 492, 496 (β-carotene), and 508 nm also disappear. The band shift from 740 to 720 nm and decrease in its intensity relative to the 687 nm emission peak in the low-temperature fluorescence spectrum (77 K) suggests a disturbance of energy transfer from LHC to the Chla form at 710–712 nm.  相似文献   

5.
Pea plants were grown under intermittent illumination (ImL)conditions. The low dosage of light given to ImL plastids limitedthe rate of chlorophyll (Chl) a and Chl b biosynthesis and,therefore, it retarded the rate of photosynthetic unit formationand thylakoid membrane development. Depending on the developmentalstage of the photosynthetic unit, ImL plastids had variableChl a/Chl b ratios (2.7 <Chl a/Chlb<20) and showed distinctintermediates in the assembly of the chlorophyll a–b light-harvestingcomplex (LHC) of photosystem-II (PSII). The results are consistentwith a step-wise increment in the PSII antenna size involvingthree distinct forms of the PSII unit: (i) a PSII-core formwith about 37 Chl a molecules; (ii) a PSILß form containingthe PSII-core and the LHC-II-inner antenna with a total of about130 Chl (a + b) molecules, and (iii) the mature PSIIa form containingPSIIß and the LHC-II-peripheral antenna with a totalof 210–300 Chl (a + b) molecules. The thylakoid membranecontained polypeptide subunits b, c and d (the Lhcb1, 2 and3 gene products, respectively) when only the LHC-II-inner waspresent. Polypeptide subunit a, (the apoprotein of the chlorophyll-proteinknown as CP29), along with increased amounts of b and c appearedlater in the development of thylakoids, concomitant with theassembly of the LHC-II-peripheral. The results suggest thatpolypeptide subunit d has priority of assembly over subunita. It is implied that, of all LHC-II constituent proteins, subunitd is most proximal to the PSII-core complex and that it servesas a linker in the transfer of excitation energy from the bulkLHC-II (subunits b and c) to the PSII-core. The work also addressesthe origin of low-molecular-weight proteins (Mr = 19, 17.5 and13.4 kDa) which co-isolate with intact developing plastids andwhose abundance decreases during plastid development. Aminoacid compositional and immunoblot analyses show a nuclear histoneorigin for these low-molecular-weight proteins and suggest co-isolationof histone-containing nuclear vesicles along with intact developingplastids. 1Present address: Plant Physiology Research Group, The Universityof Calgary, Department of Biological Sciences, 2500 UniversityDrive N.W., Calgary, Alberta CANADA T2N 1N4.  相似文献   

6.
Lin  Zhi-Fang  Peng  Chang-Lian  Lin  Gui-Zhu  Zhang  Jing-Liu 《Photosynthetica》2003,41(4):589-595
Two new yellow rice chlorophyll (Chl) b-less (lack) mutants VG28-1 and VG30-5 differ from the other known Chl b-less mutants with larger amounts of soluble protein and ribulose-1,5-bisphosphate carboxylase/oxygenase small sub-unit and smaller amounts of Chl a. We investigated the altered features of Chl-protein complexes and excitation energy distribution in these two mutants, as compared with wild type (WT) rice cv. Zhonghua 11 by using native mild green gel electrophoresis and SDS-PAGE, and 77 K Chl fluorescence in the presence of Mg2+. WT rice revealed five pigment-protein bands and fourteen polypeptides in thylakoid membranes. Two Chl b-less mutants showed only CPI and CPa pigment bands, and contained no 25 and 26 kDa polypeptides, reduced amounts of the 21 kDa polypeptide, but increased quantities of 32, 33, 56, 66, and 19 kDa polypeptides. The enhanced absorption of CPI and CPa and the higher Chl fluorescence emission ratio of F685/F720 were also observed in these mutants. This suggested that the reduction or loss of the antenna LHC1 and LHC2 was compensated by an increment in core component and the capacity to harvest photon energy of photosystem (PS) 1 and PS2, as well as in the fraction of excitation energy distributed to PS2 in the two mutants. 77 K Chl fluorescence spectra of thylakoid membranes showed that the PS1 fluorescence emission was shifted from 730 nm in WT rice to 720 nm in the mutants. The regulation of Mg2+ to excitation energy distribution between the two photosystems was complicated. 10 mM Mg2+ did not affect noticeably the F685/F730 emission ratio of WT thylakoid membranes, but increased the ratio of F685/F720 in the two mutants due to a reduced emission at 685 nm as compared to that at 720 nm.  相似文献   

7.
Six chlorophyll (Chl)-protein complexes associated with photosystemI (CPla), and the PS I reaction center complex (CPl) were isolatedfrom the thylakoid membranes of the green alga, Bryopsis maxima,by SDS-polyacrylamide gel electrophoresis. CPla had four polypeptides(22, 24, 25, 26 kDa) in addition to the 67 kDa polypeptide ofCPl. These complexes may thus possibly be a combination of CPland antenna complexes for PS I. Six CPla showed almost the sameoptical properties, with absorption maxima at 650 and 677 nmand contained carotene and a small amount of xanthophylls. TheChl a/b ratios of these CPla were about 2, while that of CPlwas 14. CPla showed a fluorescence emission maximum at 695 nm;its excitation spectrum had peaks at 438, 470 and 540 nm, correspondingto the absorption maxima of Chl a, Chl b, xanthophylls, respectively.An antenna complex free of CPl has been detected in some plantsbut was not found in the present alga. 1Present address: Department of Botany, The University of Adelaide,Adelaide, S.A. 5001, Australia (Received April 17, 1986; Accepted June 26, 1986)  相似文献   

8.
Occurrence of excitonic interactions in light-harvesting complex II (LHC II) was investigated by nonlinear polarization spectroscopy in the frequency domain (NLPF) at room temperature. NLPF spectra were obtained upon probing in the chlorophyll (Chl) a/b Soret region and pumping in the Qy region. The lowest energy Chl a absorbing at 678 nm is strongly excitonically coupled to Chl b.  相似文献   

9.
The Porphyridium cruentum light harvesting complex (LHC) binds Chl a, zeaxanthin and -carotene and comprises at least 6 polypeptides of a multigene family. We describe the first in vitro reconstitution of a red algal light-harvesting protein (LHCaR1) with Chl a/carotenoid extracts from P. cruentum. The reconstituted pigment complex (rLHCaR1) is spectrally similar to the native LHC I, with an absorption maximum at 670 nm, a 77 K fluorescence emission peak at 677 nm (ex. 440 nm), and similar circular dichroism spectra. Molar ratios of 4.0 zeaxanthin, 0.3 -carotene and 8.2 Chl a per polypeptide for rLHCaR1 are similar to those of the native LHC I complex (3.1 zeaxanthin, 0.5 -carotene, 8.5 Chl a). The binding of 8 Chl a molecules per apoprotein is consistent with 8 putative Chl-binding sites in the predicted transmembrane helices of LHCaR1. Two of the putative Chl a binding sites (helix 2) in LHCaR1 were assigned to Chl b in Chl a/b-binding (CAB) LHC II [Kühlbrandt et al. (1994) Nature 367: 614–21]. This suggests either that discrimination for binding of Chl a or Chl b is not very specific at these sites or that specificity of binding sites evolved separately in CAB proteins. LHCaR1 can be reconstituted with varying ratios of carotenoids, consistent with our previous observation that the carotenoid to Chl ratio is substantially higher in P. cruentum grown under high irradiance. Also notable is that zeaxanthin does not act as an accessory light-harvesting pigment, even though it is highly likely that it occupies the position assigned to lutein in the CAB LHCs.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

10.
The formation of Chl-protein complexes (CPs) in cucumber cotyledonsduring a dark period after a brief illumination was studied.SDS-PAGE analysis showed that the P700-Chl a-protein complex(CP1) and Chl a-protein complex of the PS II core (CPa) increased,with a concomitant decrease in the light-harvesting Chl a/6-proteincomplex of PS II (LHCII), during 24-h dark incubation of cotyledonsafter 6h of continuous illumination. In agreement with theseresults, curve analysis revealed that spectral components characteristicof CP1 and CPa increased while those of Chi b decreased duringthe dark incubation. Since Chl is not synthesized in the dark,Chl must be released from LHCII and re-incorporated into CP1and CPa. The amounts of apoproteins of CP1 and 43 kDa protein(one of the apoproteins of CPa) increased during the dark incubation,and the increase could be inhibited by chloramphenicol (CAP).CP1 did not increase in the dark when tissues were incubatedwith CAP which inhibited the synthesis of apoproteins of CP1,indicating that CP formation by Chl redistribution needs newlysynthesized apoproteins. The decrease in LHCII apoproteins duringdark incubation was inhibited by CAP probably because Chl wasnot removed from LHCII by apoproteins of CP1 and CPa, whosesynthesis was blocked by the presence of CAP. When intermittently-illuminatedcotyledons containing a little LHCII were incubated with CaCl2in the dark, Chl b and LHCII apoproteins accumulated with thedisappearance of 43 kDa protein; Chl of 43 kDa protein may beutilized for LHCII formation. We concluded that Chl moleculesonce bound with their apoproteins are redistributed among theapoproteins. (Received October 17, 1990; Accepted December 6, 1990)  相似文献   

11.
Beverley R. Green  Edith L. Camm 《BBA》1982,681(2):256-262
Reelectrophoresis of the oligomer form (CP II1) of the chlorophyll ab light-harvesting complex (LHC) from the green alga Acetabularia yields two green bands which run at the position typical of the monomer (CP II). The upper green band (CP II1) is enriched in the 27 kDa polypeptide of the LHC, while the lower is enriched in the 26 kDa polypeptide. The fact that both bands have both chlorophyll (Chl) a and b, and in the same ratio, implies that the LHC is made up of two Chl ab proteins. Neither of these bands can be attributed to the Chl ab complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432). Resolution of CP II1 and CP II2 of spinach can be obtained if sucrose gradient fractions of an octylglucoside extract are subjected to SDS-polyacrylamide gel electrophoresis. CP II1 and CP II2 are interpreted as being fundamental subunits of the light-harvesting complex as it is defined on SDS-polyacrylamide gels.  相似文献   

12.
In the oxygen-evolving photosystem-II (PSII) of higher plantchioroplasts and green algae, most of the light-harvesting functionis performed by the chlorophyll (Chl) a-b-protein complex (LHC-II).On the average, the LHC-II contains about 210 Chl (a+b) moleculesper PSII reaction center. The polypeptide composition, copynumber and organization of assembly in the LHC-II complex arenot fully understood at present. This work utilized the chlorinaf2 mutant of barley (lacking Chl b and having a LHC-II antennaof only 13 Chl a molecules) to determine the organization andstability of assembly of proteins in the LHC-II. High-resolutionSDS-PAGE and immunoblot analysis showed the presence of fourmain constitutive polypeptides in the wild-type LHC-II (termedhere subunits a, b, c and d) with molecular masses in the range30–25 kDa. Of those, only subunit d (a 25 kDa polypeptide)was found to occur at an equal copy number per PSII reactioncenter in both wild-type and in the Chl b-less chlorina f2 mutant.All other subunits were either absent or existed in much loweramounts in the mutant. Subunit d is a polypeptide constituentof the major Chl-protein subcomplex (CPII) of the LHC-II. Itis stably incorporated in the thylakoid membrane in the absenceof Chl b and probably binds the 13 Chl a molecules in the residualLHC-II antenna of the chlorina f2 mutant. We propose that, ofall LHC-II polypeptides, subunit d is most proximal to the PSIIcore and may serve as a linker in the process of excitationenergy transfer from the bulk LHC-II to the PSII reaction centerin chloroplasts. (Received February 25, 1992; Accepted May 12, 1992)  相似文献   

13.
The absorption (640–710 nm) and fluorescence emission (670–710 nm) spectra (77 K) of wild-type and Chl b-less, mutant, barley chloroplasts grown under either day or intermittent light were analysed by a RESOL curve-fitting program. The usual four major forms of Chl a at 662, 670, 678 and 684 nm were evident in all of the absorption spectra and three major components at 686, 693 and 704 nm in the emission spectra. A broad Chl a component band at 651 nm most likely exists in all chlorophyll spectra in vivo. The results show that the mutant lacks not only Chl b, but also the Chl a molecules which are bound to the light-harvesting, Chl a/b, protein complex of normal plants. It also appears that the absorption spectrum of this antenna complex is not modified appreciably by its isolation from thylakoid membranes.Abbreviations Chl chlorophyll - DL daylight - ImL intermittent light - WT wildtype - LHC light-harvesting Chl a/b protein complex - S.E. standard error of the mean DBP-CIW No. 763.  相似文献   

14.
Using 77 K chlorophyll a (Chl a) fluorescence spectra in vivo, the development was studied of Photosystems II (PS II) and I (PS I) during greening of barley under intermittent light followed by continuous light at low (LI, 50 μmol m−2 s−1) and high (HI, 1000 μmol m−2 s−1) irradiances. The greening at HI intermittent light was accompanied with significantly reduced fluorescence intensity from Chl b excitation for both PS II (F685) and PS I (F743), in comparison with LI plants, indicating that assembly of light-harvesting complexes (LHC) of both photosystems was affected to a similar degree. During greening at continuous HI, a slower increase of emission from Chl b excitation in PS II as compared with PS I was observed, indicating a preferred reduction in the accumulation of LHC II. The following characteristics of 77 K Chl a fluorescence spectra documented the photoprotective function of an elevated content of carotenoids in HI leaves: (1) a pronounced suppression of Soret region of excitation spectra (410–450 nm) in comparison with the red region (670–690 nm) during the early stage of greening indicated a strongly reduced excitation energy transfer from carotenoids to the Chl a fluorescing forms within PS I and PS II; (2) changes in the shape of the excitation band of Chl b and carotenoids (460–490 nm) during greening under continuous light confirmed that the energy transfer from carotenoids to Chl a within PS II remained lower as compared with the LI plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The effects were examined of 5-aminolevulinic acid (ALA) onthe accumulation of Chl and apoproteins of light-harvestingChl a/b-protein complex of photosystem II (LHCII) in cucumbercotyledons under intermittent light. A supply of ALA preferentiallyincreased the accumulation of Chl a during intermittent illumination.However, when cotyledons were pretreated with a brief exposureto light or benzyladenine (BA), the stimulatory effect of ALAon the increase in the level of Chl b was greater than thatin the level of Chl a, resulting in decreased ratios of Chla/b. Time-course experiments with preilluminated cotyledonsrevealed that LHCII apoproteins accumulated rapidly within thefirst 30 min of intermittent illumination with a decline duringsubsequent incubation in darkness. A supply of ALA did not affectthe accumulation of LHCII apoproteins during the intermittentlight period, but it efficiently inhibited the decline in theirlevels during the subsequent darkness. After exposure to a singlepulse of light of BA-treated cotyledons, the prompt increasein levels of LHCII apoproteins was not accompanied by the formationof Ch b, which began to accumulate later. The pattern of changesin levels of LHCII apoproteins was quite similar to that inlevels of Chl a. These results suggest that LHCII apoproteinsare first stabilized by binding with Chl a and that an increasedsupply of Chl a and the accumulation of LHCII apoproteins areprerequisites for the formation of Chl b. 1Present address: Department of Chemistry, Faculty of Scienceand Technology, Meijo University, Aichi, 468 Japan.  相似文献   

16.
Three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II (LHC II) were isolated from the thylakoid membranes of Dunaliella salina grown under different irradiance conditions. Cells grown under a low intensity light condition (80 micromol quanta m(-2) s(-1)) contained one form of LHC II, LHC-L. Two other forms of LHC II, LHC-H1 and LHC-H2, were separated from the cells grown under a high intensity light condition (1,500 micromol quanta m(-2) s(-1)). LHC-L and LHC-H1 showed an apparent particle size of 310 kDa and contained four polypeptides of 31, 30, 29 and 28 kDa. LHC-H2, with a particle size of 110 kDa, consisted of 30 and 28 kDa polypeptides. LHC-L contained 7.5 molecules of Chl a, 3.2 of Chl b and 2.1 of lutein per polypeptide, analogous to the content in higher plants. LHC-H1, with 5.6 molecules of Chl a, 2.5 of Chl b and 1.8 of lutein per polypeptide was similar to that in the green alga Bryopsis maxima. LHC-L and LHC-H1 maintained high efficiency energy transfer from Chl b and lutein to Chl a molecules. LHC-H2 showed a high Chl a/b ratio of 7.5 and contained 3.4 molecules of Chl a, 0.5 of Chl b and 1.4 of lutein per polypeptide. Chl b and lutein could not completely transfer the excitation energy to Chl a in LHC-H2.  相似文献   

17.
Jan M. Anderson 《BBA》1983,724(3):370-380
Eight chlorophyll-protein complexes were isolated from thylakoid membranes of a Codium species, a marine green alga, by mild SDS-polyacrylamide gel electrophoresis. CP 1a1, CP 1a2, CP 1a3 and CP 1a4 were partially dissociated Photosystem (PS) I complexes, which in addition to the core reaction centre complex, CP 1, possessed PS I light-harvesting complexes containing chlorophyll (Chl) a, Chl b and siphonaxanthin. LHCP1 and LHCP3 are orange-brown green chlorophyll ab-proteins (Chl aChl b ratios of 0.66) that contain siphonaxanthin and its esterified form, siphonein. CP a and CP 1, the core reaction centre complexes of PS II and PS I, respectively, had similar spectral properties to those isolated from other algae or higher plants. These P-680- or P-700-Chl a-proteins are universally distributed among algae and terrestrial plants; they appear to be highly conserved and have undergone little evolutionary adaptation. Siphonaxanthin and siphonein which are present in the Codium light-harvesting complexes of PS II and PS I are responsible for enhanced absorption in the green region (518 and 538 nm). Efficient energy transfer from both xanthophylls and Chl b to only Chl a in Codium light-harvesting complexes, which have identical fluorescence emission spectra at 77 K to those of the lutein-Chl ab-proteins (Chl aChl b ratios of 1.2) of most green algae and all higher plants, proved that the molecular arrangement of these light-harvesting pigments was maintained in the isolated Codium complexes. The siphonaxanthin-Chl ab-proteins allow enhanced absorption of blue-green and green light, the predominant light available in deep ocean waters or shaded subtidal marine habitats. Since there is a variable distribution of lutein, siphonaxanthin and siphonein in marine green algae and siphonaxanthin is found in very ancient algae, these novel siphonein-siphonaxanthin-Chl ab-proteins may be ancient light-harvesting complexes which were evolved in deep water algae.  相似文献   

18.
Photosystem II (PS II) particles isolated from spinach in the presence of 10 M CuSO4 contained 1.2 copper/300 Chl that was resistant to EDTA. When CuSO4 was not added during the isolation, PS II particles contained variable amounts of copper resistant to EDTA (0.1–1.1 copper/300 Chl). No correlation was found between copper content and oxygen evolving capacity of the PS II particles. To identify the copper binding protein, we developed a fractionation procedure which included solubilisation of PS II particles followed by precipitation with polyethylene glycol. A 22-fold purification of copper with respect to protein was achieved for a 28 kDa protein. Partial amino acid sequence of a 13 kDa fragment, obtained after V8 (endo Glu-C) protease treatment, showed identity with CP 26 over a 14 amino acid stretch. EPR measurements on the purified protein suggest oxygen and/or nitrogen as ligands for copper but tend to exclude sulfur. We conclude that the 28 kDa apoprotein of CP 26 from spinach binds one copper per molecule of CP 26. A possible function for this copper protein in the xanthophyll cycle is discussed.Abbreviations CP 26 and CP 29 chlorophyll a/b protein complex 26 and 29 - LHC II light-harvesting chlorophyll a/b protein complex of Photosystem II - SB14 sulfobetaine 14 A preliminary report of these results was presented at the IX Int. Congress on Photosynthesis, Nagoya, Japan, 1992.  相似文献   

19.
Regulation of the assembly of the photosystem I (PS I) complexin response to the light regime in the photosynthetic systemof cyanophytes was studied in Synechocystis PCC 6714. The relationshipbetween the assembly of the PS I complex and synthesis of Chla was examined by model experiments in which synthesis of Chla was controlled by two inhibitors, gabaculine (GAB) and 2,2'-dipyridyl(DP). Both inhibitors caused a change to a lower ratio of PSI to PS II even under light that normally induces a high ratioof PS I to PS II. The change in stoichiometry induced by theseinhibitors was suppressed when protein synthesis was inhibitedby chloram-phenicol, similarly to the change in the stoichiometryinduced by light that excites mainly PS I (PS I light). Comparisonof the levels of PS I, PS II and Cyt b6-f complexes per cellindicated that a selective suppression of the assembly of thePS I complex was induced by the inhibitors: the stoichiometricrelationship among PS I, PS II and Cyt b6-f complexes was identicalto that induced by PS I light or white light of high intensity.GAB induced a decrease in size of the phycobilisome also, whileDP did not, similarly to PS I light. The results indicate thatthe ratio of PS I to PS II can be changed by the control ofsynthesis of Chl a. They also suggest that control of the synthesisor supply of Chl a probably exerted at site(s) in or after theprocess of the Mg-protoporphyrin branch, is involved in themechanism of regulation of the assembly of the PS I complexin cyanophytes. (Received September 7, 1989; Accepted November 20, 1989)  相似文献   

20.
(1) Five minor chlorophyll-protein complexes were isolated from thylakoid membranes of the green alga Acetabularia by SDS-polyacrylamide gel electrophoresis, after SDS or octylglucoside solubilization. None of them were related to CP I (Photosystem I reaction center core) or CP II (chlorophyll ab light-harvesting complex). (2) Two complexes (CPa-1 and CPa-2) contained only chlorophyll (Chl) a, with absorption maxima of 673 and 671 nm, and fluorescence emission maxima of 683 nm compared to 676 nm for CP II. The complexes had apparent molecular masses of 43–47 and 38–40 kDa, and contained a single polypeptide of 41 and 37 kDa, respectively. They each account for about 3% of the total chlorophyll. (3) Three complexes had identical spectra, with Chl ab ratios of 3–4 compared to 2 for thylakoid membranes, and a pronounced shoulder around 485 nm indicating enrichment in carotenoids. One of them was the complex ‘CP 29’ (Camm, E.L. and Green, B.R. (1980) Plant Physiol. 66, 428–432) and the other two were slightly different oligomeric forms of CP 29. They could be formed from CP 29 during reelectrophoresis; but about half the complex was isolated originally in an oligomeric form. Together they account for at least 7% of the total chlorophyll. Their function is unknown.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号