首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Six alternatives for the conversion of an average Colombian palm oil mill (30 t h−1 of fresh fruit bunches (FFB) into biorefineries were evaluated. The alternatives studied were: (C1) Production of biogas from the Palm Oil Mill Effluents (POME), (C2) Composting of empty fruit bunches (EFB) and fiber, (C3) Biomass combustion for high pressure steam combined heat and power, (C4) Pellets production, (C5) Biochar production and, (C6) Biochar and bio-oil production. The available biomass could result in up to 125 kWh of electricity, 207 kg of compost, 125 kg of pellet, 44 kg of biochar and 63 kg of bio-oil per metric ton of FFB. The global warming potential (GWP), eutrophication potential (EP), net energy ratio (NER), capital expenditures (CAPEX), operational costs (OPEX), net present value (NPV) and internal rate of return (IRR) were calculated for all the alternatives. GHG reductions of more than 33% could be achieved. Anaerobic digestion and composting contributed to 30% reduction of the EP. The CAPEX for all of the biorefinery alternatives studied varies between 0.7 $ t−1 and 2.8 $ t−1 of FFB. The OPEX varies between 1.6 $ t−1 and 7.3 $ t−1 of FFB. The NPV for viable scenarios ranged between 2.5 million and 13.9 million US dollars. The IRR calculated varied between 3% and 56% and the payback periods were between 3 and 8 years. The total extra incomes reached values up to 15.2 $ t−1 of FFB. Overall the pellets production biorefinery was the preferred alternative.  相似文献   

2.
The global demand for wood pellets used for energy purposes is growing. Therefore, increased amounts of wood pellets are produced from primary forestry products, such as pulp wood. The present analysis demonstrates that substantial amounts of alternative, low-value wood resources are available that could be processed into wood pellets. For three resources, test batches have been produced and tested to qualify for industrial pellet standards. These include: primary forestry residues from premerchantable thinning operations, secondary forestry residues from pole mills and post-consumer wood wastes from discarded wooden transport pallets. The total wood potential of these resources in the southeast of the U.S. (Florida, Georgia, North Carolina, South Carolina), was estimated to be 1.9 Tg y−1 (dry) available at roadside (excluding transport cost) for 22 $ Mg−1 (dry) increasing to over 5.1 Tg y−1 at 33 $ Mg−1 (dry). In theory, 4.1 Tg y−1 pellets could be produced from the estimated potential. However, due to the geographically dispersed supply of these resources, the cost of feedstock supply at a pellet plant increases rapidly at larger plants. It is therefore not expected that the total potential can be processed into wood pellets at costs competitive with those of conventional wood pellets. The optimal size of a pellet plant was estimated at between 55 Gg y−1 and 315 Gg y−1 pellets depending on the location and feedstock supply assumptions. At these locations and plant sizes, pellets could be produced at competitive costs of between 82 $ Mg−1 and 100 $ Mg−1 pellets.  相似文献   

3.
A process model was developed to determine the net energy ratio (NER) for both regular and steam-pretreated pellet production from ligno-cellulosic biomass. NER is a ratio of the net energy output to the total net energy input from non-renewable energy source into the system. Scenarios were developed to measure the effect of temperature and level of steam pretreatment on the NER of both production processes. The NER for the base case at 6 kg h−1 is 1.29 and 5.0 for steam-pretreated and regular pellet production respectively. However, at the large scale NER would improve. The major factor for NER is energy for steam and drying unit. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 200 °C with 50% pretreatment (Steam pretreating 50% feed stock, while the rest is undergoing regular pelletization). Uncertainty result for steam pretreated and regular pellet is 1.35 ± 0.09 and 4.52 ± 0.34 respectively.  相似文献   

4.
A process model was developed to determine the net energy ratio (NER) for the production of pellets from steam pretreated agricultural residue (wheat straw) and energy crops (i.e., switchgrass in this case). The NER is a ratio of the net energy output to the total net energy input from non-renewable energy sources into a system. Scenarios were developed to measure the effects of temperature and level of steam pretreatment on the NER of steam pretreated wheat straw and switchgrass pellets. The NERs for the base case at 6 kg h−1 are 1.76 and 1.37 for steam-pretreated wheat straw and switchgrass-based pellets, respectively. The reason behind the difference is that more energy is required to dry switchgrass pellets than wheat straw pellets. The sensitivity analysis for the model shows that the optimum temperature for steam pretreatment is 160 °C with 50% pretreatment (i.e. 50 % steam treated material is blended with the raw biomass and then pelletised). The uncertainty results for NER for steam pretreated wheat straw and switch grass pellets are 1.62 ± 0.10 and 1.42 ± 0.11, respectively.  相似文献   

5.
This study is to evaluate the potential for development of a cellulosic ethanol facility in Vietnam. Rice straw is abundant in Vietnam and highly concentrated in the Mekong Delta, where about 26 Mt year−1 of rice straw has been yearly produced. To minimize the overall production cost (PC) of ethanol from rice straw, it is crucial to choose the optimal facility size. The delivered cost of rice straw varied from 20.5 to 65.4 $ dry t−1 depending on transportation distance. The Mekong Delta has much lower rice straw prices compared with other regions in Vietnam because of high density and quantity of rice straw supply. Thus, this region has been considered as the most suitable location for deploying ethanol production in Vietnam. The optimal plant size of ethanol production in the region was estimated up to 200 ML year−1. The improvement in solid concentration of material in the hydrothermal pre-treatment step and using residues for power generation could substantially reduce the PC in Vietnam, where energy costs account for the second largest contribution to the PC, following only enzyme costs. The potential for building larger ethanol plants with low rice straw costs can reduce ethanol production costs in Vietnam. The current estimated production cost for an optimal plant size of 200 ML year−1 was 1.19 $ L−1. For the future scenario, considering improvements in pre-treatment, enzyme hydrolysis steps, specific enzyme activity, and applying residues for energy generation, the ethanol production cost could reduce to 0.45 $ L−1 for a plant size of 200 ML year−1 in Vietnam. These data indicated that the cost-competitiveness of ethanol production could be realized in Vietnam with future improvements in production technologies.  相似文献   

6.
Crude glycerol, bentonite, lignosulfonate, and softwood residue (wood residue) were investigated in this study as binders for biomass fuel pellets for thermochemical conversion to enhance pellet quality for transportation and storage. The mass fraction of water of the wheat straw and the wood residue used for pelleting were 0.0676 and 0.0949, respectively. Wheat straw with crude glycerol, bentonite, lignosulfonate, wood residue, and pretreated wood residue with crude glycerol were compressed in a single pelleting unit at a temperature of 95 °C. The specific energy consumption, density, dimensional stability, tensile strength, calorific value, ash content, and chemical composition of the pellets made were determined. Results showed that the specific energy consumption for wheat straw pelletization significantly decreased with the addition of lignosulfonate, bentonite, wood residue, and pretreated wood residue with crude glycerol. With the addition of binders chosen in this study, the tensile strength of wheat straw pellets was improved with values ranging from 1.13 to 1.63 MPa. There was a significant increase in the higher heating value (17.98 MJ kg−1 to 18.77 MJ kg−1) when crude glycerol, wood residue, and pretreated wood residue were used as binders. The addition of both pretreated and non-pretreated wood residue significantly decreased the ash content of wheat straw pellets.  相似文献   

7.
Specialized varieties of sugar beets (Beta vulgaris L.) may be an eligible feedstock for advanced biofuel designation under the USA Energy Independence and Security Act of 2007. These non-food industrial beets could double ethanol production per hectare compared to alternative feedstocks. A mixed-integer mathematical programming model was constructed to determine the breakeven price of ethanol produced from industrial beets, and to determine the optimal size and biorefinery location. The model, based on limited field data, evaluates Southern Plains beet production in a 3-year crop rotation, and beet harvest, transportation, and processing. The optimal strategy depends critically on several assumptions including a just-in-time harvest and delivery system that remains to be tested in field trials. Based on a wet beet to ethanol conversion rate of 110 dm3 Mg−1 and capital cost of 128 M$ for a 152 dam3 y−1 biorefinery, the estimated breakeven ethanol price was 507 $ m−3. The average breakeven production cost of corn (Zea mays L.) grain ethanol ranged from 430 to 552 $ m−3 based on average net corn feedstock cost of 254 and 396 $ m−3 in 2014 and 2013, respectively. The estimated net beet ethanol delivered cost of 207 $ m−3 was lower than the average net corn feedstock cost of 254–396$ m−3 in 2013 and 2014. If for a mature industry, the cost to process beets was equal to the cost to process corn, the beet breakeven ethanol price would be $387 m-3 (587 $ m−3 gasoline equivalent).  相似文献   

8.
For woody biomass to make a significant contribution to the United States' energy portfolio, harvesting contractors must economically harvest and transport energywood to conversion/processing facilities. We conducted a designed operational study in the Coastal Plain of North Carolina, USA with three replications of three treatments to measure harvesting productivity and costs when utilizing woody biomass. The treatments were: a conventional roundwood only harvest (control), an integrated harvest in which merchantable roundwood was delivered to mills and residuals were chipped for energy, and a chip harvest in which all stems were chipped for energy use. The harvesting contractor in this study typically delivers 2200–2700 t of green roundwood per week and is capable of wet-site harvesting. Results indicate that onboard truck green roundwood costs increased from 9.35 $ t−1 in the conventional treatment to 10.98 $ t−1 in the integrated treatment as a result of reduced felling and skidding productivity. Green energy chips were produced for 19.19 $ t−1 onboard truck in the integrated treatment and 17.93 $ t−1 in the chip treatment. Low skidding productivity contributed to high chip costs in the integrated treatment. Residual green biomass was reduced from 18 t ha−1 in the conventional treatment to 4 and 3 t ha−1 in the integrated and chip treatments, respectively. This study suggests that until energywood prices appreciate substantially, loggers are unlikely to sacrifice roundwood production to increase energywood production. This research provides unique information from a designed experiment documenting how producing energywood affects each function of a harvesting system.  相似文献   

9.
In this study, the effect of compressive load and particle size on compression characteristics of four varieties (Strongfield, Blackbird, DT773 and DT818) of wheat straw grown at two different fields was investigated. Particle size, bulk and particle densities of all wheat straw samples were determined after grinding. Ground wheat straw samples were densified in a cylindrical die at 90 °C using an Instron testing machine. The wheat straw samples with 9% moisture content were compressed at five levels of compressive pressures (31.6, 63.2, 94.7, 126.4 and 138.9 MPa) and two levels of particle sizes (1.6 and 3.2 mm). Dimensions and mass of all compressed samples were measured to calculate the pellet density. The specific energy required to compress and eject the pellets was calculated from force-displacement data. Applied compressive force and particle size significantly affected the pellet density of wheat straw samples. The pellet density was in the range of 699–1064 kg m−3 increasing with pressure and particle size. The total specific energy required for compression and ejection of pellets varied from 4.35 to 33.64 MJ t−1 that increased with compressive load and particle size. Higher compressive forces and particle size increased the durability of pellets to more than 95%. Blackbird variety was the most compressible of the four varieties of wheat straw.  相似文献   

10.
In Australia the use of forest biomass has been developing in recent years and initial efforts are built on adopting and trialling imported European technology. Using a linear programming-based tool, BIOPLAN, this study investigated the impact of five operational factors: energy demand, moisture mass fraction, interest rate, transport distance, and truck payload on total forest residues supply chain cost in Western Australia. The supply chain consisted four phases: extraction of residues from the clear felled area to roadside by forwarders, storage at roadside, chipping of materials by mobile chippers, and transport of chips to an energy plant. For an average monthly energy demand of 5 GWh, the minimum wood supply chain cost was about 29.4 $ t−1, which is lower than the maximum target supply cost of 30–40 $ t−1, reported by many industry stakeholders as the breakeven point for economically viable bioenergy production in Australia. The suggested volume available for chipping in the second year was larger than in the first year indicating that the optimisation model proposed storing more materials in the first year to be chipped in the second year. The sensitivity analysis showed no strong correlation between energy demand and supply chain cost per m3. For higher interest rates, the total storage cost increased which resulted in larger operational cost per m3. Longer transport distances and lower truck payloads resulted in higher transport cost per unit of delivered chips. In addition, the highest supply chain costs occurred when moisture mass fraction ranged between 20% and 30%.  相似文献   

11.
This work compares the different methods of transport used to import pellets, through a case study of pellets imported into Italy. The objective was to evaluate the economic and environmental sustainability of the different transport methods, the former via a cost analysis, and the latter via an LCA analysis. In particular, the method of transport by sea from Virginia (USA) was compared to overland transport from some European locations. Industrial pellet markets strictly depend on the import of wood pellets from outside the EU-27. The analysis of transport phase is therefore crucial, for inspecting the consequences of transporting such a commodity along considerable distances and allowing decision makers to make strategic decisions about trade planning, optimize international routes, and choose the most sustainable transport methods. The economic analysis showed that road transport cost ranged from 18 to 112 € t−1, while sea cost from 68 to 82 € t−1. Concerning the environmental evaluation, the impact categories most involved were Fossil Fuels, Respiratory Inorganics and Land Use, showing that the critical points in the transport phase are the oil consumption per km and the production of high quantities of SO2 and NOx. Basically, transport by sea appeared to be better, from the economic viewpoint, and for what concerns one of the major environmental impacts involved (fossil fuels) and primary energy consumption, compared to road transport from some of the European locations normally supplying the Italian market. On the contrary, road transport was preferred if transporting pellets from locations nearest to Italy.  相似文献   

12.
Feedstocks generated from processing forest residues have traditionally been considered as a low value product. The economic potential of these materials can be enhanced by emerging biomass conversion technologies, such as torrefaction, briquetting, and gasification; however, these systems require higher quality feedstock. The objective of this study was to determine the cost of processing and sorting forest residues to produce feedstock, so that the best comminution machines (i.e. chipper vs. grinder) could be used to better control feedstock size distribution. The tree tops left from sawlog processing and small-diameter trees were delimbed and separated from the slash pile. Three harvest units were selected and each unit was divided into three sub-treatment units (no-, moderate, and intensive sorting). Results showed that the cost of operations were higher for the sorted sub-units when compared to the non-sorted. The total cost of operation (felling to loading) for sawlogs was lowest at 40.81 $ m−3 in the nosorting treatment unit, followed by moderate (42.25 $ m−3) and intensive treatment unit (44.75 $ m−3). For biomass harvesting, the cost of operation (felling to delimbing and sorting) ranged from 27 to 29 $ oven dry metric ton−1. The most expensive operational phase was primary transportation; therefore, cost of treating the forest residues had less impact on the overall cost. The cost increase (1150 $ ha−1) of sorting forest residues could offset cost savings from avoided site preparation expenses (1100 $ ha−1), provided that the forest residues were utilized.  相似文献   

13.
Rice straw is a promising renewable energy source because it is abundantly available in Asia. This study conducted a case study of logistics cost analysis for rice straw pellets by considering all stages in the supply chain to define the main factors affecting the selling price of rice straw pellets: collection (job-commission or employment of part-time workers), transportation, storage (vinyl greenhouses or storage buildings with larger capacity), pelletizing, and delivery to users with biomass boilers. The selling price was found to be strongly dependent on the production capacity because the investment cost for the pellet production facility had a significant effect of economies of scale. A production capacity of larger than 1500 t y−1 is required for rice straw pellets to compete with wood pellets and fossil fuels in the studied Japanese context if the subsidy rate for the investment is 50%, part-time workers conduct the collection, and rice straw is stored in the storage buildings. Our sensitivity analysis also showed an economically feasible spatial scale: for example, rice straw should be collected within a 20 km radius and the users should be within a 38 km radius when the production capacity is 1500 t y−1. In addition, other critical factors related to the collection of rice straw from the paddy fields and transportation of rice straw rolls to storage were identified as planning factors to further reduce the total logistics cost of rice straw pellets.  相似文献   

14.
Mobile distributed pyrolysis facilities have been proposed for delivery of a forest residue resource to bio-fuel facilities. This study examines the costs of producing hydrogen or synthetic petrol (gasoline) and diesel from feedstock produced by mobile facilities (bio-oil, bio-slurry, torrefied wood). Results show that using these feedstock can provide fuels at costs competitive to conventional bio-fuel production methods using gasification of a woodchip feedstock. Using a bio-oil feedstock in combination with bio-oil steam reforming or bio-oil upgrading can produce hydrogen or petrol and diesel at costs of 3.25 $ kg−1 or 0.86 $ litre−1, respectively, for optimally sized bio-fuel facilities. When compared on an energy basis ($ GJ−1), hydrogen production costs tend to be lower than those for synthetic petrol or diesel production across a variety of bio-fuel production pathways.  相似文献   

15.
The commercial production of jet fuel from camelina oil via hydrolysis, decarboxylation, and reforming was simulated. The refinery was modeled as being close to the farms for reduced camelina transport cost. A refinery with annual nameplate capacity of 76,000 cubic meters hydrocarbons was modeled. Assuming average camelina production conditions and oil extraction modeling from the literature, the cost of oil was 0.31 $ kg−1. To accommodate one harvest per year, a refinery with 1 year oil storage capacity was designed, with the total refinery costing 283 million dollars in 2014 USD. Assuming co-products are sold at predicted values, the jet fuel break-even selling price was 0.80 $ kg−1. The model presents baseline technoeconomic data that can be used for more comprehensive financial and risk modeling of camelina jet fuel production. Decarboxylation was compared to the commercially proven hydrotreating process. The model illustrated the importance of refinery location relative to farms and hydrogen production site.  相似文献   

16.
Miscanthus is emerging as a potential bioenergy crop because of its high yield and ability to reduce greenhouse gas emissions. However, there is a lack of data on harvesting machinery performance for the USA conditions, and influence of yield on harvesting cost and fuel consumption. This study quantified performance of a mower-conditioner and a large square baler for Illinois conditions, and investigated influence of yield on fuel consumption and harvesting costs. To calculate performance parameters, a field area was segmented from which a bale was formed. Then in the segmented field area, yield and machine performance parameters were determined. The mower-conditioner's field capacity was 1.8 ha h−1, and diesel consumption was 19.2 L ha−1. The baler's field capacity was 1.4 ha h−1, and diesel consumption was 19.7 L ha−1. The mowing cost was 4.8 $ Mg−1, and baling cost was 6.8 $ Mg−1. An inverse correlation (R2 = 0.62) was found between miscanthus yield and harvesting cost ($ Mg−1), and a direct correlation (R2 = 0.67) was found between miscanthus yield and fuel consumption (L ha−1). It is expected that this study would help in more accurate assessment of environmental impact and economic feasibility of miscanthus, and may lead to further studies for quantifying crop yield and machine performance interactions.  相似文献   

17.
This paper presents the quality and cost of small-scale production of briquettes, made from agricultural and forest biomass in north-eastern Poland. The experiment involved production of eight types of briquettes. The highest net calorific value was determined for briquettes made from pine sawdust (18,144 MJ t−1). The value measured for briquettes made from perennial energy plants was over 1500 MJ t−1 lower, and for those made from straw 2000 MJ t−1 lower than for sawdust briquettes. The sawdust briquettes left significantly the lowest amount of ash (0.40% of dry mass). The significantly highest content of hydrogen, sulphur and nitrogen was found in briquettes containing the highest portion of rapeseed oilcake. The quality of briquettes varied and only some of them met the requirements of DIN 51731. Briquettes made from pine sawdust were of the highest quality. The briquette production cost ranged from 66.55 € t−1 to 137.87 € t−1 for rape straw briquettes and for those made from a mixture of rape straw and rapeseed oilcake (50:50), respectively. In general, briquette production was profitable, except for the briquettes made from a straw and rapeseed oilcake mixture.  相似文献   

18.
This paper analyzed the technical and economic feasibility of electricity generation using the residues from the exploitation of Assaí, an Amazonian agrosilvicultural product (Euterpe oleracea, Mart). Assaí biomass characteristics as fuel were reviewed based on available literature and its availability assessed. The profile of a typical industrial processing unit was described. The electricity generation cost for a 1 MW conversion systems, considering 5.5 US$ t−1 biomass price, were evaluated: conventional steam cycle with backpressure turbine (66.97 US$ MWh−1), steam cycle with extraction condensation turbine (92.11 US$ MWh−1), organic Rankine cycle (ORC – 122 US$ MWh−1) and a gasifier/internal combustion engine set (102 US$ MWh−1). Based on financial performance, back-pressure steam turbine was the best option, and gasifier/internal combustion should be further considered due its operation flexibility. For any system, minimal electricity commercialization price for economical feasibility found was 150 US$ MWh−1.  相似文献   

19.
While the cost competitiveness of vegetable oil-based biofuels (VOBB) has impeded extensive commercialization on a large-scale, the economic viability of small-scale on-farm production of VOBB is unclear. This study assessed the cost competitiveness of small-scale on-farm production of canola- [Brassica napus (L.)] and soybean-based [Glycine max (L.)] biodiesel and straight vegetable oil (SVO) biofuels in the upper Midwest at 2007 price levels. The effects of feedstock type, feedstock valuation (cost of production or market price), biofuel type, and capitalization level on the cost L−1 of biofuel were examined. Valuing feedstock at the cost of production, the cost of canola-based biodiesel ranged from 0.94 to 1.13 $ L−1 and SVO from 0.64 to 0.83 $ L−1 depending on capitalization level. Comparatively, the cost of soybean-based biodiesel and SVO ranged from 0.40 to 0.60 $ L−1 and from 0.14 to 0.33 $ L−1, respectively, depending on capitalization level. Valuing feedstock at the cost of production, soybean biofuels were cost competitive whereas canola biofuels were not. Valuing feedstock at its market price, canola biofuels were more cost competitive than soybean-based biofuels, though neither were cost competitive with petroleum diesel. Feedstock type proved important in terms of the meal co-product credit, which decreased the cost of biodiesel by 1.39 $ L−1 for soybean and 0.44 $ L−1 for canola. SVO was less costly to produce than biodiesel due to reduced input costs. At a small scale, capital expenditures have a substantial impact on the cost of biofuel, ranging from 0.03 to 0.25 $ L−1.  相似文献   

20.
Straw and corn stover can be used to produce ethanol by enzymatic hydrolysis and fermentation, or syndiesel by oxygen gasification and Fischer Tropsch (FT) reaction. FT has a higher processing cost and a higher energy yield of liquid transportation fuel. We analyze the cost of produced liquid fuel as a function of the field cost of biomass. At 80 $ t?1 (dry basis) a crossover point is reached. Below this value, the cost of producing energy as ethanol is lower; above this value, FT syndiesel is lower. However, the crossover point occurs at a very high field cost of biomass, more than 5.50 $ GJ?1, and ethanol plants are less capital intense than FT and hence have a smaller economic size. For both reasons ethanol is likely to be the preferred processing alternative.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号