首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
In this paper a novel model based on a geographic information system (GIS) is presented for the assessment of sustainable crop residue potentials. The approach is applied to analyse the amount and the spatial distribution (1 km × 1 km grid cells) of cereal straw, root crop and oil plant residues for five European regions, considering spatially differentiated environmental sustainability issues, i.e. organic carbon content in topsoil, soil erodibility, and protected areas. The maximum sustainable residue potential varies strongly between the regions and residue types. In the scenarios Basis and Restrict, it accounts for 45–59% and 24–48% of the theoretical potential respectively without considering competing uses. Among the crop residues, cereal straw shows the highest energy potential in all regions under investigation. In terms of wet mass it accounts for 3.7 Mio. twet/a in North Rhine-Westphalia, 1.6 Mio. twet/a in Île-the-France, 1.2 Mio. twet/a in Wallonia, 0.9 Mio. twet/a in West Midlands, and 0.3 Mio. twet/a in South Netherlands (scenario Basis). Our survey shows that spatially differentiated potential estimations and the inclusion of crop residues other than cereal straw are urgently needed to improve the present rough estimations for crop residues which can be used in a sustainable way. The rather high spatial resolution of our analyses particularly allows for the support of regional stakeholders and prospective investors when it comes to questions of regional availability of biomass resources, transport distances to biomass conversion plants, and identification of suitable plant sites and sizes, respectively.  相似文献   

2.
Biogas from pig slurry in Mexico has potential to produce 21 PJ per year, equivalent to 3.5% of natural gas consumption in 2013. In this paper, three different scenarios are analysed: mono-digestion of pig slurry in a finisher farm (scenario 1); co-digestion of pig slurry and elephant grass in a finisher farm in situ (scenario 2) and co-digestion of pig slurry and elephant grass in centralised biogas plants (scenario 3). The digesters proposed are anaerobic high density polyurethane (HDPE) covered lagoons. HDPE centralised plants can have capital costs 5 times cheaper than European biogas plants. The economics of utilisation of biogas for electricity generation and as biomethane (a natural gas substitute) were investigated. Economic evaluations for on-site slurry digestion (Scenario 1) and on-site co-digestion of elephant grass and pig slurry (Scenario 2) showed potential for profitability with tariffs less than $US 0.12/kWhe. For centralised systems (Scenario 3) tariffs of $US 0.161/kWhe to $US 0.195/kWhe are required. Slurry transportation, energy use and harvest and ensiling account for 65% of the operational costs in centralised plants (Scenario 3). Biomethane production could compete with natural gas if a subsidy of 4.5 c/L diesel (1 m3 of biomethane) equivalent was available.  相似文献   

3.
In producing cellulosic ethanol as a renewable biofuel from forest biomass, a tradeoff exists between the displacement of fossil fuel carbon (C) emissions by biofuels and the high rates of C storage in aggrading forest stands. To assess this tradeoff, the landscape area affected by feedstock harvest must be considered, which depends on numerous factors including forest productivity, the amount of forest in a fragmented landscape, and the willingness of forest landowners to sell timber as a bioenergy feedstock. We studied landscape scale net C balance by combining these considerations in a new, basic simulation model, CEBRAM, and applying it to a hypothetical landscape of short-rotation aspen forests in northern Michigan, USA. The model was parameterized for forest species, growth and ecosystem C storage, as well as landscape spatial patterns of forest cover in this region. To understand and parameterize forest owner decision making we surveyed 505 nonindustrial private forest (NIPF) owners in Michigan. Survey results indicated that 47% of these NIPF owners would willingly harvest forest biomass for bioenergy. Model results showed that at this rate the net C balance was 0.024 kg/m2 for a cellulosic ethanol system without considering land use over a 40 year time horizon. When C storage in aggrading, nonparticipating NIPF land was included, net C balance was 1.09 kg/m2 over 40 years. In this region, greater overall C gains can be realized through aspen forest aggradation than through the displacement of gasoline by cellulosic ethanol produced from forest biomass.  相似文献   

4.
The area used for bioenergy feedstock production is increasing because substitution of fossil fuels by bioenergy is promoted as an option to reduce greenhouse gas (GHG) emissions. However, agriculture itself contributes to rising atmospheric nitrous oxide (N2O) and methane (CH4) concentrations. In this study we tested whether the net exchanges of N2O and CH4 between soil and atmosphere differ between annual fertilized and perennial unfertilized bioenergy crops. We measured N2O and CH4 soil fluxes from poplar short rotation coppice (SRC), perennial grass-clover and annual bioenergy crops (silage maize, oilseed rape, winter wheat) in two central German regions for two years. In the second year after establishment, the N2O emissions were significantly lower in SRC (<0.1 kg N2O–N ha−1 yr−1) than grassland (0.8 kg N2O–N ha−1 yr−1) and the annual crop (winter wheat; 1.5 kg N2O–N ha−1 yr−1) at one regional site (Reiffenhausen). However, a different trend was observed in the first year when contents of mineral nitrogen were still higher in SRC due to former cropland use. At the other regional site (Gierstädt), N2O emissions were generally low (<0.5 kg N2O–N ha−1 yr−1) and no crop-type effects were detected. Net uptake of atmospheric CH4 varied between 0.4 and 1.2 kg CH4–C ha−1 yr−1 with no consistent crop-type effect. The N2O emissions related to gross energy in the harvested biomass ranged from 0.07 to 6.22 kg CO2 equ GJ−1. In both regions, Gierstädt (low N2O emissions) and more distinct Reiffenhausen (medium N2O emissions), this energy yield-related N2O emission was the lowest for SRC.  相似文献   

5.
Corn (Zea mays L.) cobs are being evaluated as a potential bioenergy feedstock for combined heat and power generation (CHP) and conversion into a biofuel. The objective of this study was to determine corn cob availability in north central United States (Minnesota, North Dakota, and South Dakota) using existing corn grain ethanol plants as a proxy for possible future co-located cellulosic ethanol plants. Cob production estimates averaged 6.04 Tg and 8.87 Tg using a 40 km radius area and 80 km radius area, respectively, from existing corn grain ethanol plants. The use of CHP from cobs reduces overall GHG emissions by 60%–65% from existing dry mill ethanol plants. An integrated biorefinery further reduces corn grain ethanol GHG emissions with estimated ranges from 13.9 g CO2 equiv MJ−1 to 17.4 g CO2 equiv MJ−1. Significant radius area overlap (53% overlap for 40 km radius and 86% overlap for 80 km radius) exists for cob availability between current corn grain ethanol plants in this region suggesting possible cob supply constraints for a mature biofuel industry. A multi-feedstock approach will likely be required to meet multiple end user renewable energy requirements for the north central United States. Economic and feedstock logistics models need to account for possible supply constraints under a mature biofuel industry.  相似文献   

6.
Changes in direct soil organic carbon (SOC) can have a major impact on overall greenhouse gas (GHG) emissions from biofuels when using life-cycle assessment (LCA). Estimated changes in SOC, when accounted for in an LCA, are typically derived from near-surface soil depths (<30 cm). Changes in sub-surface soil depths (>30 cm) could have a large positive or negative impact on overall GHG emissions from biofuels that are not always accounted for. Here, we evaluate how sub-surface SOC changes impact biofuel GHG emissions for corn (Zea mays L.) grain, corn stover, and switchgrass (Panicum virgatum L.) using the (Greenhouse Gases, Regulated Emissions, and Energy Use in the Transportation) GREET model. Biofuel GHG emissions showed as much as a 154% difference between using near-surface SOC stocks changes only or when accounting for both near- and sub-surface SOC stock changes. Differences in GHG emissions highlight the importance of accounting for sub-surface SOC changes especially in bioenergy cropping systems with potential for soil C storage to deeper soil depths.  相似文献   

7.
Forestlands in the United States have tremendous potential for providing feedstocks necessary to meet emerging renewable energy standards. The Lake States region is one area recognized for its high potential of supplying forest-derived biomass; however, the long-term availability of roundwood harvests and associated residues from this region has not been fully explored. Better distribution and temporal availability estimates are needed to formulate emerging state policies regarding renewable energy development. We used a novel predictive methodology to quantify sustainable biomass availability and likely harvest levels over a 100-year period in the Lake States region. USDA Forest Inventory and Analysis estimates of timberland were combined with published growth and yield models, and historic harvest data using the Forest Age Class Change Simulator (FACCS) to generate availability estimates. Monte-Carlo simulation was used to develop probability distributions of biomass harvests and to incorporate the uncertainty of future harvest levels. Our results indicate that 11.27–15.71 Mt y−1 dry roundwood could be sustainably harvested from the Lake States. Assuming 65% collection rate, 1.87–2.62 Mt y−1 residue could be removed, which if substituted for coal would generate 2.12–2.99 GW h of electricity on equivalent energy basis while reducing GHG (CO2e) emission by 1.91–2.69 Mt annually. In addition to promoting energy security and reducing GHG emissions, forest residues for energy may create additional revenues and employment opportunities in a region historically dependent on forest-based industries.  相似文献   

8.
Grass from urban roadside verges is a potential, though widely unused, resource for bioenergy recovery. Two possible bioenergy recovery techniques were tested, i.e. i) direct anaerobic digestion of the whole parent material and ii) the “integrated generation of solid fuel and biogas from biomass” (IFBB) procedure, which divides biomass into a press fluid and a press cake by mashing and mechanical dewatering. Biomass yield, chemical composition and canopy height of biomass, contribution of functional groups, fermentation characteristics of silage and press fluids, as well as characteristics of the produced solid fuel was investigated, applying a 4-cut management for anaerobic digestion, a 2-cut management for IFBB and an 8 times mulching as a reference. Mean annual biomass yield (2013 and 2014) was 3.24, 3.33 and 5.68 t dry matter ha−1 for the mulching, 4-cut management and 2-cut management, respectively. Yields were higher in 2014 due to more favourable weather conditions. Fibre concentration was higher in material of the 2-cut management than in the 4-cut management, however, methane yield of the corresponding silages was the same. Highest methane yield was gained from press fluids with 292 lN kg−1 volatile solids. The press cake had a lower heating value of 16 MJ kg−1 dry matter and a K2O/CaO index of 0.51–0.88. Gross energy output was 26.4 GJ ha−1 for anaerobic digestion and 84.4 GJ ha−1 for IFBB. Thus, an altered roadside verge management with reduced cutting frequency might allow a significant energy recovery and improved ecosystem services, i.e. increased biodiversity.  相似文献   

9.
In this study, thermo-environmental sustainability of an oil palm-based biorefinery concept for the co-production of cellulosic ethanol and phytochemicals from oil palm fronds (OPFs) was evaluated based on exergetic life cycle assessment (ExLCA). For the production of 1 tonne bioethanol, the exergy content of oil palm seeds was upgraded from 236 MJ to 77,999 MJ during the farming process for OPFs production. Again, the high exergy content of the OPFs was degraded by about 62.02% and 98.36% when they were converted into cellulosic ethanol and phenolic compounds respectively. With a total exergy destruction of about 958,606 MJ (internal) and 120,491 MJ (external or exergy of wastes), the biorefinery recorded an overall exergy efficiency and thermodynamic sustainability index (TSI) of about 59.05% and 2.44 per tonne of OPFs' bioethanol respectively. Due to the use of fossil fuels, pesticides, fertilizers and other toxic chemicals during the production, the global warming potential (GWP = 2265.69 kg CO2 eq.), acidification potential (AP = 355.34 kg SO2 eq.) and human toxicity potential (HTP = 142.79 kg DCB eq.) were the most significant environmental impact categories for a tonne of bioethanol produced in the biorefinery. The simultaneous saccharification and fermentation (SSF) unit emerged as the most exergetically efficient (89.66%), thermodynamically sustainable (TSI = 9.67) and environmentally friendly (6.59% of total GWP) production system.  相似文献   

10.
Waste wood represents as much a waste to dispose of as a secondary resource to exploit. Various studies have assessed the energy potential and/or climate impact of energy recovery from waste wood. This paper aims to assess the long-term potential of waste wood for energy production and greenhouse gas (GHG) emissions reduction in Switzerland. Material flow analysis (MFA) is applied for modelling the metabolism of wood and waste wood in the Swiss anthroposphere over one century. The energy and climate impacts are estimated for 32 scenarios which assume different forest harvesting variants and waste wood treatment options. The scenario analysis shows that waste wood treatment options are more beneficial in the long term in terms of energy production (by energy recovery from waste wood) and of GHG emission reduction than the increase in the quantities of waste wood generated in the future caused by the advocated strategies of increased forest harvesting. By using the Maximin criterion, the long-term optimal additional potential for energy recovery from waste wood is estimated at 2110 GWh/year of useful energy, which offers a reduction of 364 tonnes of CO2 equivalents per year. As prerequisites, the nominal installed capacity of the waste wood boilers needs to be raised and their efficiency and as well as those of incineration plants need to be increased. In addition, the sustainable potential of Swiss forests must be fully exploited. This study identifies various recommendations for the optimal exploitation of energy recovery from waste wood.  相似文献   

11.
A standard ISO Life Cycle Assessment study was carried out to evaluate the environmental sustainability of electricity production from an anaerobic digestion (AD) plant using a mixture of dedicated energy crops, agricultural residues and livestock effluents as input materials. The functional unit was 1 MJ of electricity. System boundaries were from cradle to grave and covered all the phases from energy crops cultivation to the production of biogas and its use in a Combined Heat and Power plant to produce electricity. Liquid and solid digestate storage and spreading on agricultural land were included. Primary data were collected from the AD plant for all the above phases. Since heat produced is used only internally, no allocation was applied in the study. As regards digestate management, CH4 emissions were calculated from literature, whereas four literature methods were applied for calculation of nitrogen emissions with the goal to perform a sensitivity analysis on LCA results. ILCD Handbook impact assessment methodologies were used. Results show that the main hotspots are energy crops cultivation and the management of digestate, mainly because of both nitrogen and methane emissions, affecting Global Warming, Acidification, Marine and Freshwater Eutrophication. Finally, a detailed Monte Carlo analysis, was carried out to evaluate the results uncertainty. The study represents the state of the art about the environmental performance of the AD plant with the use of sensitivity and uncertainty analysis, which both improve the reliability of results, and allows drawing general conclusions on how to mitigate the environmental impacts of AD process.  相似文献   

12.
Most residents of Canada's 300 remote communities do not have access to natural gas and must rely upon higher cost and/or less convenient heat sources such as electric heat, heating (furnace) oil, propane, and/or cord wood. This research sought to determine the techno-economic feasibility of increasing biomass utilization for space and hot water heating in remote, off-grid communities in Canada and abroad using a two-option case study approach: 1) a district energy system (DES) connected to a centralized heat generation energy centre fuelled by wood chips; and 2) a decentralized heating option with wood pellet boilers in each individual residence and commercial building. The Nuxalk First Nation Bella Coola community was selected as a case study, with GIS, ground surveys, and climate data used to design DES routes and determine heat demand. It was determined that biomass has the potential to reduce heat costs, reduce the cost of electricity subsidization for electrical utilities, reduce greenhouse gas emissions, and increase energy independence of remote communities. Although results of the analysis are site-specific, the research methodology and general findings on heat-source economic competitiveness could be utilized to support increased bioheat production in remote, off-grid communities for improved socio-economic and environmental outcomes.  相似文献   

13.
Bioconversion production of ethanol from cellulosic feedstock is generally proposed to use direct fermentation of sugars to ethanol. Another potential route for ethanol production is fermentation of sugars to acetic acid followed by hydrogenation to convert the acetic acid into ethanol. The advantage of the acetogen pathway is an increased ethanol yield; however, using an acetogen requires the additional hydrogenation, which could substantially affect the life cycle global warming potential of the process. Assuming a poplar feedstock, a cradle to grave Life cycle assessment (LCA) is used to evaluate the environmental impacts of an acetogen based fermentation pathway. An LCA of a fermentation pathway that uses ethanologen fermentation is developed for comparison. It is found that the ethanologen and acetogen pathways have Global Warming Potentials (GWP) that are 92% and 46% lower than the GWP of gasoline, respectively. When the absolute GWP reduction compared to gasoline is calculated using a unit of land basis, the benefit of the higher ethanol yield using the acetogen is observed as the two pathways achieve similar GWP savings. The higher ethanol yield in the acetogen process plays a crucial role in choosing a lignocellulosic ethanol production method if land is a limited resource.  相似文献   

14.
Hybrid microgrid systems are an emerging tool for rural electrification due in part to their purported environmental benefits. This study uses Life Cycle Assessment (LCA) to compare the environmental impacts of a diesel/PV/wind hybrid microgrid on the island of Koh Jig, Thailand with the electrification alternatives of grid extension and home diesel generators. The impact categories evaluated are: acidification potential (kg SO2 eq), global warming potential (kg CO2 eq), human toxicity potential (kg 1.4 DCB eq), and abiotic resource depletion potential (kg Sb eq). The results show that the microgrid system has the lowest global warming and abiotic resource depletion potentials of all three electrification scenarios. The use phase of the diesel generator and the extraction of copper are shown to significantly contribute to the microgrid's environmental impacts. The relative environmental impacts of the grid extension scenario are found to be proportional to the distance required for grid extension. Across all categories except acidification potential, the impacts from the home diesel generators are the largest. Sensitivity analyses show that maximizing the renewable energy fraction does not necessarily produce a more environmentally sustainable electrification scenario and that the diesel generator provides versatility to the system by allowing power production to be scaled significantly before more technology is needed to meet demand. While the environmental benefits of the microgrid increase as the installation community becomes more isolated, the choice of electrification scenario requires assigning relative importance to each impact category and considering social and economic factors.  相似文献   

15.
Rice husk-based electricity generation and supply has been popularized in South Asia by the Husk Power Systems (HPS) and the Decentralised Energy Systems India (DESI), two enterprises that have successfully provided electricity access using this resource. The purpose of this paper is to analyze the conditions under which a small-scale rural power supply business becomes viable and to explore whether larger plants can be used to electrify a cluster of villages. Based on the financial analysis of alternative supply options considering residential and productive demands for electricity under different scenarios, the paper shows that serving low electricity consuming customers alone leads to part capacity utilization of the electricity generation plant and results in a high cost of supply. Higher electricity use improves the financial viability but such consumption behaviour benefits high consuming customers greatly. The integration of rice mill demand, particularly during the off-peak period, with a predominant residential peak demand system improves the viability and brings the levelised cost of supply down. Finally, larger plants bring down the cost significantly to offer a competitive supply. But the higher investment need and the risks related to monopoly supply of husk from the rice mill, organizational challenges of managing a larger distribution area and the risk of plant failure can adversely affect the investor interest. Moreover, the regulatory uncertainties and the potential for grid extension can hinder business activities in this area.  相似文献   

16.
This study explores how two different cellulosic ethanol production system configurations (distributed versus centralized processing) affect some aspects of the economic and environmental performance of cellulosic ethanol, measured as minimum ethanol selling price (MESP) and various environmental impact categories. The eco-efficiency indicator, which simultaneously accounts for economic and environmental features, is also calculated. The centralized configuration offers better economic performance for small-scale biorefineries, while the distributed configuration is economically superior for large-scale biorefineries. The MESP of the centralized configuration declines with increased biorefinery size up to a point and then rises due to the cost of trucking biomass to the biorefinery. In contrast, the MESP in the distributed configuration continuously declines with increasing biorefinery size due to the lower costs of railroad transportation and the greater economies of scale achieved at much larger biorefinery sizes, including biorefineries that reach the size of an average oil refinery—about 30,000 tons per day of feedstock. The centralized system yields lower environmental impacts for most impact categories than does the distributed system regardless of the biorefinery size. Eco-efficiency analysis shows that the centralized configuration is more sustainable for small-scale biorefineries, while the distributed configuration with railroad transport is more sustainable for large-scale biorefineries. Compared with gasoline from petroleum, cellulosic ethanol fuel offers sustainability advantages for the following environmental impact categories: fossil energy consumption, global warming, human health impacts by particulate matter, ozone layer depletion, ecotoxicity, human health cancer, and human health non-cancer, depending somewhat on the biorefinery sizes and the system configurations.  相似文献   

17.
Research is focused on the utilisation of waste or residue biomass for bioenergy conversion. A promising conversion technology for the production of liquid biofuels from residue biomass is a process called Thermo-Catalytic Reforming (TCR®​) which is a combination of prior thermal treatment of the biomass at mild temperatures (intermediate pyrolysis) followed by a second catalytic treatment step at elevated temperatures (reforming). This article focuses on the conversion of TCR® liquids from digestate as a feedstock for subsequent hydrocarbon production. The generated bio-oil showed a lower heating value of 34.0 MJ kg1 with an oxygen content of 7.0% and a water content of 2.2%. The bio-oil was hydrodeoxygenated using an industrial NiMo–Al2O3 catalyst at temperatures of 503 K–643 K and a pressure of 14 MPa. The hydrodeoxygenated bio-oil reached a lower heating value of 42.3 MJ kg−1 with an oxygen content below 0.8 mg kg−1 and water content of 30 ppm. Product yields and catalyst life give confidence that upgrading of the TCR®​ bio-oil offers a suitable option to meet the high standards of common fuels.  相似文献   

18.
Feedstock quality mainly depends upon the biomass composition and bioenergy conversion system being used. Higher cellulose and hemicellulose concentrations are desirable for biochemical conversion, whereas higher lignin is favored for thermochemical conversion. The efficiency of these conversion systems is influenced by the presence of high nitrogen and ash concentrations. Switchgrass (Panicum virgatum L.) varieties are classified into two ecotypes based on their habitat preferences, i.e., upland and lowland. The objectives of this study were to quantify the chemical composition of switchgrass varieties as influenced by harvest management, and to determine if ecotypic differences exist among them. A field study was conducted near Ames, IA during 2012 and 2013. Upland (‘Cave-in-Rock’, ‘Trailblazer’ and ‘Blackwell’) and lowland switchgrass varieties (‘Kanlow’ and ‘Alamo’) were grown in a randomized block design with six replications. Six biomass harvests were collected at approximately 2-week intervals each year. In both years, delaying harvest increased cellulose, hemicellulose and lignin concentrations while decreasing nitrogen and ash concentrations in all varieties. On average, Kanlow had the highest cellulose and hemicellulose concentration (354 and 321 g kg−1 DM respectively), and Cave-in-Rock had the highest lignin concentration (33 g kg−1 DM). The lowest nitrogen and ash concentrations were observed in Kanlow (14 and 95 g kg−1 DM respectively). In general, our results indicate that delaying harvest until fall improves feedstock quality, and ecotypic differences do exist between varieties for important feedstock quality traits. These findings also demonstrate potential for developing improved switchgrass cultivars as bioenergy feedstock by intermating lowland and upland ecotypes.  相似文献   

19.
The aim of this research it is to show how the biogas biomethanisation from primary and secondary treatment of activated sludge from a wastewater treatment plant (WWTP), can be an alternative renewable energy option from fossil fuels, which offers competitive advantages and points out new horizons for the use of this fuel. This will allow to achieve some important priorities of energy plans in EU countries: to reduce the organic matter deposited in landfills and CO2 emissions and to find viable solutions to minimize the environmental impact of sewage sludge (SS).This study analyses the biogas combustion and energy recovery processes from a thermodynamic, thermoeconomic and exergetic point of view.The results show that the boiler of the process is the main source of irreversibility and exergy destruction. Moreover, the energy and exergy economic value of exhaust gases from the combustion chamber, are significant and worthwhile to be exploited. For this reason, the present study explores the applicability and suitability of integrating a Stirling engine in such process. The study reveals that it is possible to create a small micro-cogeneration system which leads to sustainable waste management and energy savings in the treatment plant itself.  相似文献   

20.
Absorption heat transformer (AHT) and flash evaporator (FE) are used to reduce the heat consumption of CO2 capture processes and an AHT–FE-aided capture system is proposed. Analyses are carried out to verify the effectiveness in reducing heat consumption. Compared with the base CO2 capture system of 3000 t/d CO2 capture capacity from a 660 MW coal-fired power unit, the AHT–FE-aided capture system reduces the heat consumption from 3.873 GJ/tCO2 to 3.772 GJ/tCO2, and the corresponding energy saving is 2.62%. The economic analysis shows that the annual profit would be 2.94 million RMB Yuan. The payback period of the AHT–FE-aided capture system is approximately 2.4 years. Therefore, the AHT–FE-aided capture system is both economically and technically feasible for improving the CO2 capture energy performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号