首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Traps in the photoactive layer or interface can critically influence photovoltaic device characteristics and stabilities. Here, traps passivation and retardation on device degradation for methylammonium lead trihalide (MAPbI3) perovskite solar cells enabled by a biopolymer heparin sodium (HS) interfacial layer is investigated. The incorporated HS boosts the power conversion efficiency from 17.2 to 20.1% with suppressed hysteresis and Shockley–Read–Hall recombination, which originates primarily from the passivation of traps near the interface between the perovskites and the TiO2 cathode. The incorporation of an HS interfacial layer also leads to a considerable retardation of device degradation, by which 85% of the initial performance is maintained after 70 d storage in ambient environment. Aided by density functional theory calculations, it is found that the passivation of MAPbI3 and TiO2 surfaces by HS occurs through the interactions of the functional groups (? COO?, ? SO3?, or Na+) in HS with undersaturated Pb and I ions in MAPbI3 and Ti4+ in TiO2. This work demonstrates a highly viable and facile interface strategy using biomaterials to afford high‐performance and stable perovskite solar cells.  相似文献   

2.
The origins of the high device performance and degradation in the air are the greatest issues for commercialization of perovskite solar cells. Here this study investigates the possible origins of the mixed perovskite cells by monitoring defect states and compositional changes of the perovskite layer over the time. The results of deep‐level transient spectroscopy analysis reveal that a newly identified defect formed by Br atoms exists at deep levels of the mixed perovskite film, and its defect state shifts when the film is aged in the air. The change of the defect state is originated from loss of the methylammonium molecules of the perovskite layer, which results in decreased JSC, deterioration of the power conversion efficiency and long‐term stability of perovskite solar cells. The results provide a powerful strategy to diagnose and manage the efficiency and stability of perovskite solar cells.  相似文献   

3.
The charge recombination resulting from bulk defects and interfacial energy level mismatch hinders the improvement of the power conversion efficiency (PCE) and stability of carbon-based inorganic perovskite solar cells (C-IPSCs). Herein, a series of small molecules including ethylenediaminetetraacetic acid (EDTA) and its derivatives (EDTA-Na and EDTA-K) are studied to functionalize the zinc oxide (ZnO) interlayers at the SnO2/CsPbI2Br buried interface to boost the photovoltaic performance of low-temperature C-IPSCs. This strategy can simultaneously passivate defects in ZnO and perovskite films, adjust interfacial energy level alignment, and release interfacial tensile stress, thereby improving interfacial contact, inhibiting ion migration, alleviating charge recombination, and promoting electron transport. As a result, a maximum PCE of 13.94% with a negligible hysteresis effect is obtained, which is one of the best results reported for low-temperature CsPbI2Br C-IPSCs so far. Moreover, the optimized devices without encapsulation demonstrate greatly improved operational stability.  相似文献   

4.
Interface strains and lattice distortion are inevitable issues during perovskite crystallization. Silane as a coupling agent is a popular connector to enhance the compatibility between inorganic and organic materials in semiconductor devices. Herein, a protonated amine silane coupling agent (PASCA-Br) interlayer between TiO2 and perovskite layers is adopted to directionally grasp both of them by forming the structural component of a lattice unit. The pillowy alkyl ammonium bromide terminals at the upper side of the interlayer provide well-matched growth sites for the perovskite, leading to mitigated interface strain and ensuing lattice distortion; meanwhile, its superior chemical compatibility presents an ideal effect on healing the under-coordinated Pb atoms and halogen vacancies of bare perovskite crystals. The PASCA-Br interlayer also serves as a mechanical buffer layer, inducing less cracked perovskite film when bending. The developed molecular-level flexible interlayer provides a promising interfacial engineering for perovskite solar cells and their flexible application.  相似文献   

5.
The highest power conversion efficiency of perovskite solar cells is beyond 22%. Charge transport layers are found to be critical for device performance and stability. A traditional electron transport layer (ETL), such as TiO2, is not very efficient for charge extraction at the interface, especially in planar structure. In addition, the devices using TiO2 suffer from serious degradation under ultraviolet illumination. SnO2 owns a better band alignment with the perovskite absorption layer and high electron mobility, which is helpful for electron extraction. In this Review, recent progresses in efficient and stable perovskite solar cells using SnO2 as ETL are summarized.  相似文献   

6.
The quality of perovskite films is critical to the performance of perovskite solar cells. However, it is challenging to control the crystallinity and orientation of solution‐processed perovskite films. Here, solution‐phase van der Waals epitaxy growth of MAPbI3 perovskite films on MoS2 flakes is reported. Under transmission electron microscopy, in‐plane coupling between the perovskite and the MoS2 crystal lattices is observed, leading to perovskite films with larger grain size, lower trap density, and preferential growth orientation along (110) normal to the MoS2 surface. In perovskite solar cells, when perovskite active layers are grown on MoS2 flakes coated on hole‐transport layers, the power conversion efficiency is substantially enhanced for 15%, relatively, due to the increased crystallinity of the perovskite layer and the improved hole extraction and transfer rate at the interface. This work paves a way for preparing high‐performance perovskite solar cells and other optoelectronic devices by introducing 2D materials as interfacial layers.  相似文献   

7.
Tailoring the doping of semiconductors in heterojunction solar cells shows tremendous success in enhancing the performance of many types of inorganic solar cells, while it is found challenging in perovskite solar cells because of the difficulty in doping perovskites in a controllable way. Here, a small molecule of 4,4′,4″,4″′-(pyrazine-2,3,5,6-tetrayl) tetrakis (N,N-bis(4-methoxyphenyl) aniline) (PT-TPA) which can effectively p-dope the surface of FAxMA1−xPbI3 (FA: HC(NH2)2; MA: CH3NH3) perovskite films is reported. The intermolecular charge transfer property of PT-TPA forms a stabilized resonance structure to accept electrons from perovskites. The doping effect increases perovskite dark conductivity and carrier concentration by up to 4737 times. Computation shows that electrons in the first two layers of octahedral cages in perovskites are transferred to PT-TPA. After applying PT-TPA into perovskite solar cells, the doping-induced band bending in perovskite effectively facilitates hole extraction to hole transport layer and expels electrons toward cathode side, which reduces the charge recombination there. The optimized devices demonstrate an increased photovoltage from 1.12 to 1.17 V and an efficiency of 23.4% from photocurrent scanning with a stabilized efficiency of 22.9%. The findings demonstrate that molecular doping is an effective route to control the interfacial charge recombination in perovskite solar cells which is in complimentary to broadly applied defect passivation techniques.  相似文献   

8.
Organic–inorganic lead halide perovskite solar cells (PVSCs), as a competing technology with traditional inorganic solar cells, have now realized a high power conversion efficiency (PCE) of 22.1%. In PVSCs, interfacial carrier recombination is one of the dominant energy‐loss mechanisms, which also results in the simultaneous loss of potential efficiency. In this work, for planar inverted PVSCs, the carrier recombination is dominated by the dopant concentration in the p‐doped hole transport layers (HTLs), since the F4‐TCNQ dopant induces more charge traps and electronic transmission channels, thus leading to a decrease in open‐circuit voltages (VOC). This issue is efficiently overcome by inserting a thin insulating polymer layer (poly(methyl methacrylate) or polystyrene) as a passivation layer with an appropriate thickness, which allows for increases in the VOC without significantly sacrificing the fill factor. It is believed that the passivation layer attributes to the passivation of interfacial recombination and the suppression of current leakage at the perovskite/HTL interface. By manipulating this interfacial passivation technique, a high PCE of 20.3% is achieved without hysteresis. Consequently, this versatile interfacial passivation methodology is highly useful for further improving the performance of planar inverted PVSCs.  相似文献   

9.
Owing to the merits of low cost and high power conversion efficiency (PCE), perovskite solar cells (PSCs) have become the best candidate to replace the commonly used silicon solar cells. However, PSCs have been slow to enter the market for a number of reasons, including poor stability, high toxicity, and rigorous preparation process. Passivation strategies including surface passivation and bulk passivation have been successfully applied to improve the device performance of PSCs. The passivation of the defects at the buried interface, which is regarded as a key strategy to breakthrough the device efficiency and stability of PSCs in the future, is ongoing with challenge. Herein, in detail the recent passivation of the buried interface is introduced from three aspects: perovskite layer, buried interlayer, and transport layer. The passivation effect of the buried interface is clearly demonstrated through three categories of salts, organics, and 2D materials. In addition, the transport layer is classified into electron transport layer (ETL) and hole transport layer (HTL). These classifications can help to have a clear understanding of substances which generate passivating effect and guide the continuous promotion of the follow-up buried interface passivating work.  相似文献   

10.
A synergic interface design is demonstrated for photostable inorganic mixed‐halide perovskite solar cells (PVSCs) by applying an amino‐functionalized polymer (PN4N) as cathode interlayer and a dopant‐free hole‐transporting polymer poly[5,5′‐bis(2‐butyloctyl)‐(2,2′‐bithiophene)‐4,4′‐dicarboxylate‐alt‐5,5′‐2,2′‐bithiophene] (PDCBT) as anode interlayer. First, the interfacial dipole formed at the cathode interface reduces the workfunction of SnO2, while PDCBT with deeper‐lying highest occupied molecular orbital (HOMO) level provides a better energy‐level matching at the anode, leading to a significant enhancement in open‐circuit voltage (Voc) of the PVSCs. Second, the PN4N layer can also tune the surface wetting property to promote the growth of high‐quality all‐inorganic perovskite films with larger grain size and higher crystallinity. Most importantly, both theoretical and experimental results reveal that PN4N and PDCBT can interact strongly with the perovskite crystal, which effectively passivates the electronic surface trap states and suppresses the photoinduced halide segregation of CsPbI2Br films. Therefore, the optimized CsPbI2Br PVSCs exhibit reduced interfacial recombination with efficiency over 16%, which is one of the highest efficiencies reported for all‐inorganic PVSCs. A high photostability with a less than 10% efficiency drop is demonstrated for the CsPbI2Br PVSCs with dual interfacial modifications under continuous 1 sun equivalent illumination for 400 h.  相似文献   

11.
In planar perovskite solar cells, it is vital to engineer the extraction and recombination of electron–hole pairs at the electron transport layer/perovskite interface for obtaining high performance. This study reports a novel titanium oxide (TiO2) bilayer with different Fermi energy levels by combing atomic layer deposition and spin‐coating technique. Energy band alignments of TiO2 bilayer can be modulated by controlling the deposition order of layers. The TiO2 bilayer based perovskite solar cells are highly efficient in carrier extraction, recombination suppression, and defect passivation, and thus demonstrate champion efficiencies up to 16.5%, presenting almost 50% enhancement compared to the TiO2 single layer based counterparts. The results suggest that the bilayer with type II band alignment as electron transport layers provides an efficient approach for constructing high‐performance planar perovskite solar cells.  相似文献   

12.
Though various efforts on modification of electrodes are still undertaken to improve the efficiency of perovskite solar cells, attributing to the large scope of these methods, it is of significance to unveil the working principle systematically. Herein, inverted perovskite solar cells based on indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)/CH3NH3PbI3/phenyl‐C61‐butyric acid methyl ester (PC61 BM)/buffer metal/Al are constructed. Through the choice of different buffer metals to tune work function of the cathode, the contact nature of the active layer with the cathode could be manipulated well. In comparison with the device using Au/Al as the electrode that shows an unfavorable band bending for conducting the excited electrons to the cathode, the one with Ca/Al presents a dramatically improved efficiency over 17.1%, ascribed to the favorable band bending at the interface of the cathode with the active layer. Details for tuning the band bending and the corresponding charge transfer mechanism are given in a systematic manner. Thus, a general guideline for constructing perovskite photovoltaic devices efficiently is provided.  相似文献   

13.
Cesium‐based trihalide perovskites have been demonstrated as promising light absorbers for photovoltaic applications due to their superb composition stability. However, the large energy losses (Eloss) observed in inorganic perovskite solar cells has become a major hindrance impairing the ultimate efficiency. Here, an effective and reproducible method of modifying the interface between a CsPbI2Br absorber and polythiophene hole‐acceptor to minimize the Eloss is reported. It is demonstrated that polythiophene, deposited on the top of CsPbI2Br, can significantly reduce electron‐hole recombination within the perovskite, which is due to the electronic passivation of surface defect states. In addition, the interfacial properties are improved by a simple annealing process, leading to significantly reduced energy disorder in polythiophene and enhanced hole‐injection into the hole‐acceptor. Consequently, one of the highest power conversion efficiency (PCE) of 12.02% from a reverse scan in inorganic mixed‐halide perovskite solar cells is obtained. Modifying the perovskite films with annealing polythiophene enables an open‐circuit voltage (VOC) of up to 1.32 V and Eloss of down to 0.5 eV, which both are the optimal values reported among cesium‐lead mixed‐halide perovskite solar cells to date. This method provides a new route to further improve the efficiency of perovskite solar cells by minimizing the Eloss.  相似文献   

14.
Mixed lead-tin (Pb Sn) perovskite solar cells (PSCs) possess low toxicity and adjustable bandgap for both single-junction and all-perovskite tandem solar cells. However, the performance of mixed Pb Sn PSCs still lags behind the theoretical efficiency. The uncontrollable crystallization and the resulting structural defect are important reasons. Here, the bidirectional anions gathering strategy (BAG) is reported by using Methylammonium acetate (MAAc) and Methylammonium thiocyanate (MASCN) as perovskite bulk additives, which Ac escapes from the perovskite film top surface while SCN gathers at the perovskite film bottom in the crystallization process. After the optoelectronic techniques, the bidirectional anions movement caused by the top-down gradient crystallization is demonstrated. The layer-by-layer crystallization can collect anions in the next layer and gather at the broader, enabling a controllable crystallization process, thus getting a high-quality perovskite film with better phase crystallinity and lower defect concentration. As a result, PSCs treated by the BAG strategy exhibit outstanding photovoltaic and electroluminescent performance with a champion efficiency of 22.14%. Additionally, it demonstrates excellent long-term stability, which retains ≈92.8% of its initial efficiency after 4000 h aging test in the N2 glove box.  相似文献   

15.
Excess lead iodide (PbI2), as a defect passivation material in perovskite films, contributes to the longer carrier lifetime and reduced halide vacancies for high-efficiency perovskite solar cells. However, the random distribution of excess PbI2 also leads to accelerated degradation of the perovskite layer. Inspired by nanocrystal synthesis, here, a universal ligand-modulation technology is developed to modulate the shape and distribution of excess PbI2 in perovskite films. By adding certain ligands, perovskite films with vertically distributed PbI2 nanosheets between the grain boundaries are successfully achieved, which reduces the nonradiative recombination and trap density of the perovskite layer. Thus, the power conversion efficiency of the modulated device increases from 20% to 22% compared to the control device. In addition, benefiting from the vertical distribution of excess PbI2 and the hydrophobic nature of the surface ligands, the modulated devices exhibit much longer stability, retaining 72% of their initial efficiency after 360 h constant illumination under maximum power point tracking measurement.  相似文献   

16.
Corrosive precursors used for the preparation of organic–inorganic hybrid perovskite photoactive layers prevent the application of ultrathin metal layers as semitransparent bottom electrodes in perovskite solar cells (PVSCs). This study introduces tin‐oxide (SnOx) grown by atomic layer deposition (ALD), whose outstanding permeation barrier properties enable the design of an indium‐tin‐oxide (ITO)‐free semitransparent bottom electrode (SnOx/Ag or Cu/SnOx), in which the metal is efficiently protected against corrosion. Simultaneously, SnOx functions as an electron extraction layer. We unravel the spontaneous formation of a PbI2 interfacial layer between SnOx and the CH3NH3PbI3 perovskite. An interface dipole between SnOx and this PbI2 layer is found, which depends on the oxidant (water, ozone, or oxygen plasma) used for the ALD growth of SnOx. An electron extraction barrier between perovskite and PbI2 is identified, which is the lowest in devices based on SnOx grown with ozone. The resulting PVSCs are hysteresis‐free with a stable power conversion efficiency (PCE) of 15.3% and a remarkably high open circuit voltage of 1.17 V. The ITO‐free analogues still achieve a high PCE of 11%.  相似文献   

17.
An electron-transport layer (ETL) with appropriate energy alignment and enhanced charge transfer is critical for perovskite solar cells (PSCs). However, interfacial energy level mismatch limits the electrical performance of PSCs, particularly the open-circuit voltage (VOC). Herein, a simple low-temperature-processed In2O3/SnO2 bilayer ETL is developed and used for fabricating a new PSC device. The presence of In2O3 results in uniform, compact, and low-trap-density perovskite films. Moreover, the conduction band of In2O3 is shallower than that of Sn-doped In2O3 (ITO), enhancing the charge transfer from perovskite to ETL, thus minimizing VOC loss at the perovskite and ETL interface. A planar PSC with a power conversion efficiency of 23.24% (certified efficiency of 22.54%) is obtained. A high VOC of 1.17 V is achieved with the potential loss at only 0.36 V. In contrast, devices based on single SnO2 layers achieve 21.42% efficiency with a VOC of 1.13 V. In addition, the new device maintains 97.5% initial efficiency after 80 d in N2 without encapsulation and retains 91% of its initial efficiency after 180 h under 1 sun continuous illumination. The results demonstrate and pave the way for the development of efficient photovoltaic devices.  相似文献   

18.
A simple, low‐cost, large area, and continuous scalable coating method is proposed for the fabrication of hybrid organic–inorganic perovskite solar cells. A megasonic spray‐coating method utilizing a 1.7 MHz megasonic nebulizer that could fabricate reproducible large‐area planar efficient perovskite films is developed. The coating method fabricates uniform large‐area perovskite film with large‐sized grain since smaller and narrower sized mist droplets than those generated by existing ultrasonic spray methods could be generated by megasonic spraying. The volume flow rate of the CH3NH3PbI3 precursor solution and the reaction temperature are controlled, to obtain a high quality perovskite active layer. The devices reach a maximum efficiency of 16.9%, with an average efficiency of 16.4% from 21 samples. The applicability of megasonic spray coating to the fabrication of large‐area solar cells (1 cm2), with a power conversion efficiency of 14.2%, is also demonstrated. This is a record high efficiency for large‐area perovskite solar cells fabricated by continuous spray coating.  相似文献   

19.
Low temperature solution processed planar‐structure perovskite solar cells gain great attention recently, while their power conversions are still lower than that of high temperature mesoporous counterpart. Previous reports are mainly focused on perovskite morphology control and interface engineering to improve performance. Here, this study systematically investigates the effect of precise stoichiometry, especially the PbI2 contents on device performance including efficiency, hysteresis and stability. This study finds that a moderate residual of PbI2 can deliver stable and high efficiency of solar cells without hysteresis, while too much residual PbI2 will lead to serious hysteresis and poor transit stability. Solar cells with the efficiencies of 21.6% in small size (0.0737 cm2) and 20.1% in large size (1 cm2) with moderate residual PbI2 in perovskite layer are obtained. The certificated efficiency for small size shows the efficiency of 20.9%, which is the highest efficiency ever recorded in planar‐structure perovskite solar cells, showing the planar‐structure perovskite solar cells are very promising.  相似文献   

20.
The improving intrinsic stability, determining the life span of devices, is a challenging task in the industrialization of inverted perovskite solar cells. The most important prerequisite for boosting intrinsic stability is high-quality perovskite films deposition. Here, a molecule, N-(2-pyridyl)pivalamide (NPP) is utilized, as a multifunctional resonance bridge between poly(triarylamine) (PTAA) and perovskite film to regulate the perovskite film quality and promote hole extraction for enhancing the device intrinsic stability. The pyridine groups in NPP couple with the phenyl groups in PTAA through π−π stacking to improve hole extraction capacities and minimize interfacial charge recombination, and the resonance linkages (N CO) in NPP dynamically modulate the perovskite buried defects through strong Pb O bonds based on the fast self-adaptive tautomerization between resonance forms (N CO and N+C O). Because of the combined effect of the reduction defect density and improved energy level in the perovskite buried interfaces as well as the optimized crystal orientation in perovskite film enabled by the NPP substrate, the devices based on NPP-grown perovskite films show an efficiency approaching 20% with negligible hysteresis. More impressively, the unencapsulated device displays start-of-the-art intrinsic photostability, operating under continuous 1-sun illumination for 2373 h at 65 °C without loss of PCE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号