首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A technique is developed to measure silicon-on-insulator (SOI) silicon device film thickness using a MOSFET. The method is based on CV measurements between gate and source/drain at two different back-gate voltages. The SOI devices used in this study were n+ polysilicon gate n-channel MOSFETs fabricated with modified submicrometer CMOS technology on SIMOX (separation by implanted oxygen) wafers. The SIMOX wafers were implanted with a high dose of oxygen ions (1018 cm-2) at 200 keV and subsequently annealed at 1230°C. The NMOS threshold boron implant dose is 2×1012 cm-2. This method is simple, nondestructive, and no special test structure is needed. Using this technique, SOI film thickness mapping was made on a finished wafer and a thickness variation of ±150 Å was found  相似文献   

2.
We characterized the distribution of trap states in silicon-on-insulator (SOI) layers in epitaxial layer transfer (ELTRAN) wafers and in low-dose separation by implanted oxygen (SIMOX) wafers. We measured the front- and back-gate characteristics of MOSFETs with SOI layers of different thicknesses. We used the current-Terman method to estimate the trap states at the gate oxide (GOX)/SOI interface and at the SOI/buried oxide (BOX) interface separately. As a result, we concluded that the high-density trap states in the SOI layers in SIMOX wafers cause a gate-voltage shift, which is attributed to the charged trap states only in the inversion layer. We also found that the trap states are distributed within about 30 nm from the SOI/BOX interface in the SOI layer in SIMOX wafers, which indicates that the distribution of trap states originates from the oxygen implantation that is peculiar to the SIMOX process.  相似文献   

3.
Current-voltage characteristics of Au contacts formed on buried implanted oxide silicon-on-insulator (SOI) structures are discussed, which indicate that the dominant transport mechanism is space-charge-limited current (SCLC) conduction in the presence of deep-level states. The deep-level parameters, determined using a simple analysis, appear to be sensitive to anneal conditions used and subsequent processing. Silicon implanted with 1.7×1018 cm-2 oxygen ions at 150 keV following a 1200°C anneal for 3 h shows deep level 0.37 eV below the conduction band edge with a concentration of unoccupied traps of ~ 2×1015 cm-3 . In contrast, arsenic ion implantation, in the 1200°C annealed material with a dose of 1.5×1012 cm-2 at 60 keV and activated by rapid thermal annealing (RTA), introduces a deep level 0.25 eV below the conduction band edge with an unoccupied trap concentration of ~6×1017 cm-2  相似文献   

4.
A comprehensive investigation of the low-temperature anodization of silicon in RF and microwave oxygen plasmas is discussed. A comparison of the growth results and ion signals observed, using quadropole mass spectrometry, indicates a strong correlation between the growth rate and the presence of O- ions in the plasma. Characterization of parameters such as pressure, electrode spacing, and current density has allowed wafers up to 4-in. diameter to be anodized with good growth rates (0.3 μm/h) and excellent oxide uniformity, using low temperatures (⩽600°C), low input power densities (~59 W-cm-2), and low current densities (~7 mA-cm-2). Oxide properties such as etch rate and refractive index were found to be indistinguishable from thermally grown oxides. Optimization of anneals and the use of a halogen gas enables plasma oxides with high breakdown fields (10-11 MV/cm), an interface trap density of ~5×1010 cm-2-eV-1 at midgap, and a fixed oxide charge of 6×1010 cm-2 to be fabricated without resorting to high-temperature (⩾600°C) processing  相似文献   

5.
The silicon-silicon dioxide interface created by the epitaxial lateral growth of monocrystalline silicon (ELO) over existing thermally oxidized silicon was investigated using a novel device structure. This structure is proposed as the basic building block of technology for the fabrication of locally restricted three-dimensional integrated CMOS circuits, as well as advanced bipolar devices. Results are reported from the investigation of the surface states of this silicon-on-insulator (SOI) interface. It is demonstrated that these interfaces can exhibit characteristics comparable to those interfaces created by the thermal oxidation of silicon. The SOI interface surface state densities, as grown, were measured to be about 2×1011 cm-2 eV-1 at midgap energies. It is believed that H2 from the epitaxial growth ambient is trapped at the interface and neutralizes surface states  相似文献   

6.
By adding a few percent of chlorine to oxygen plasma, the anodization rate of Si was enhanced; for example, the rate was doubled for oxygen containing 3-percent chlorine. With a chlorine concentration of 1.5 percent, the density of trap states at the Si-SiO2interface was reduced from 7×1011/cm2.eV to 5×1011/cm2.eV at the midgap of Si; after annealing at 800°C in argon for 60 min, it was reduced to 8 × 1010/cm2.eV, and did not return to the original value after heating the specimen to 800°C. The density and capture cross section of traps in plasma-anodic oxide were also measured using the constant-current avalanche-injection method. The number of electron traps with small cross sections in plasmaanodic SiO2films was reduced by annealing them at 800°C in argon, but SiO2films which were anodized in oxygen/chlorine plasma showed an increase of trap density under the same annealing condition.  相似文献   

7.
Chemical reaction of gate metal with gate dielectric for Ta gate MOS devices has been experimentally investigated both by electrical and physical measurements: capacitance-voltage (C-V), current-voltage (I-V), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), electron diffraction measurements. In spite of the chemical reaction of Ta with SiO2 consuming ~1-nm-thick in gate oxide, the interface trap densities of ~2×1010 cm-2 eV -1 at midgap and ideal channel mobility characteristics have been observed in the Ta gate MOS devices with 5.5-nm-thick thermal oxide gate dielectric. Considering the experimental data with theoretical calculation based on thermodynamics together, a barrier layer model has been developed for the Ta gate MOS systems. The physical mechanism involved is probably self-sealing barrier layer formation resulting from the chemical reaction kinetics in the free-energy change of Ta-Si-O system  相似文献   

8.
The effect of back-gate bias on the subthreshold behavior and the switching performance in an ultrathin SOI CMOS inverter operating at 300 and 77 K is investigated using a low-temperature device simulator. The simulation results show that the nonzero back-gate bias induces hole pile-up at the back interface, which causes opposite effects on the NMOS and PMOS subthreshold characteristics at 300 and 77 K. Throughout the transient process, at 300 K, for VB=-5 V operation, hole pile-up at the back interface always exists in the NMOS device. Compared to the zero back-gate bias case, at VB=-5 V, the risetime of the SOI CMOS inverter is over 5% shorter at 77 and 300 K and the falltime is 5% longer. Prepinch-off velocity saturation in the NMOS device dominates the pull-down transient as a result of the smaller electron critical electric field  相似文献   

9.
High-performance inversion-type enhancement-mode n-channel In0.53Ga0.47As MOSFETs with atomic-layer-deposited (ALD) Al2O3 as gate dielectric are demonstrated. The ALD process on III-V compound semiconductors enables the formation of high-quality gate oxides and unpinning of Fermi level on compound semiconductors in general. A 0.5-mum gate-length MOSFET with an Al2O3 gate oxide thickness of 8 nm shows a gate leakage current less than 10-4 A/cm2 at 3-V gate bias, a threshold voltage of 0.25 V, a maximum drain current of 367 mA/mm, and a transconductance of 130 mS/mm at drain voltage of 2 V. The midgap interface trap density of regrown Al2O3 on In0.53Ga0.47As is ~1.4 x 1012/cm2 ldr eV which is determined by low-and high-frequency capacitance-voltage method. The peak effective mobility is ~1100 cm2 / V ldr s from dc measurement, ~2200 cm2/ V ldr s after interface trap correction, and with about a factor of two to three higher than Si universal mobility in the range of 0.5-1.0-MV/cm effective electric field.  相似文献   

10.
Bulk traps in very thin ( ~100-nm) SIMOX films have been studied by applying current deep-level transient spectroscopy (DLTS) to fully depleted, enhancement MOS transistors, fabricated in these films. The effect of states at both the front and back SiO2-Si interfaces is eliminated by suitable biasing. Using this technique, a bulk trap with energy level 0.44 eV above the valence-band edge, capture cross section ~10-17 cm2, and concentration ~10 15 cm-3, which is believed to be due to iron contamination, has been identified  相似文献   

11.
The paper reports the sidewall-related narrow channel effect in mesa-isolated fully-depleted ultra-thin SOI NMOS devices. Based on the study, contrary to bulk NMOS devices, for a channel width shrinking from 1 μm to 0.2 μm, the threshold voltage of mesa-isolated ultra-thin SOI NMOS devices with a 1000 Å thin film doped with 1017 cm-3, decreases by 0.145 V for a front gate oxide of 100 Å and a sidewall oxide of 150 Å as a result of the sidewall edge effect  相似文献   

12.
1/f noise magnitude in a 15 μm×0.5 μm PMOSFET was remarkably reduced by simply adding a cleaning step using an ammonia hydrogen peroxide mixture (APM) prior to gate oxidation. Gate input-referred noise level for APM-finished PMOSFETs at f=10 Hz was around -128 dBV2/Hz whereas for standard, HF-finished devices, the level was around -114 dBV2/Hz. Flat-band voltages (VFBs) determined by a capacitance-voltage (C-V) measurement were -0.19 V for an APM-finished PMOS and -0.34 V for a HF-finished PMOS. Based on the VFB values, interface state densities were determined to be Nit=3.02×1011 cm-2 for APM-finished PMOS and Nit=6.47×1011 cm-2 for HF-finished PMOS. Lower interface state density obtained by the APM preoxidation cleaning is consistent with the remarkable reduction in the 1/f noise magnitude  相似文献   

13.
Results presented in this letter demonstrate that the effective channel mobility of lateral, inversion-mode 4H-SiC MOSFETs is increased significantly after passivation of SiC/SiO2 interface states near the conduction band edge by high temperature anneals in nitric oxide. Hi-lo capacitance-voltage (C-V) and ac conductance measurements indicate that, at 0.1 eV below the conduction band edge, the interface trap density decreases from approximately 2×1013 to 2×1012 eV-1 cm-2 following anneals in nitric oxide at 1175°C for 2 h. The effective channel mobility for MOSFETs fabricated with either wet or dry oxides increases by an order of magnitude to approximately 30-35 cm2/V-s following the passivation anneals  相似文献   

14.
Hole trapping and trap generation in the gate silicon dioxide   总被引:2,自引:0,他引:2  
Oxide breakdown has been proposed to be a limiting factor for future generation CMOS. The breakdown is caused by defect generation in the oxide. Although electron trap generation has received much attention, there is little information available on the hole trap generation. The relatively high potential barrier for holes at the oxide/Si interface makes it difficult to achieve a high level of hole injection. Most previous work was limited to an injection level Qinj of 1014 cm-2. In this paper, we investigate the hole trapping and trap generation when Qinj reaches the order of 1018 cm-2. When Qinj <1015 cm-2, the trapping is dominated by the as-grown traps. As Qinj increases further, however, it is found that the generation of new traps controls the trapping. The trap generation does not saturate up to the oxide breakdown. The trapping kinetics for both the as-grown and the generated traps is studied. The relationship between the density of generated traps and the Qinj is explored. Attention is paid to how the trapping and trap generation depends on the distance from the interface. In contrast to the uniform generation of electron traps across the oxide, we found that the hole trap generation was not uniform and it moved away from the interface as Qinj increased  相似文献   

15.
采用10keV X射线研究了部分耗尽SOI MOSFETs的总剂量辐射效应.实验结果显示,在整个辐射剂量范围内,前栅特性保持良好;而nMOSFET和pMOSFET的背栅对数Id-Vg2曲线中同时出现了异常kink效应.分析表明电离辐射在埋氧/顶层硅(BOX/SOI)界面处产生的界面态陷阱是导致异常kink效应产生的原因.基于MEDICI的二维器件模拟结果进一步验证了这个结论.  相似文献   

16.
A CMOS VLSI technology using p- and p+ poly gates for NMOS and PMOS devices is presented. Due to the midgap work function of the p- poly gate, the NMOS native threshold voltage is 0.7 V and, therefore, no additional threshold adjust implantation is required. The NMOS transistor is a surface-channel device with improved field-effect mobility and lower body effect due to the reduction in the channel doping concentration. In addition, the p - poly gate is shown to be compatible with p+ poly-gated surface-channel PMOS devices  相似文献   

17.
A novel back-gated P-MOSFET structure is fabricated in a high-voltage complementary bipolar technology using BESOI (bonded etch back SOI) substrates. The P+ buried layer regions, used for the PNP BJT are used as the source and drain regions, the N- epi as the channel region, the silicon handle wafer as the gate, and the BOX (buried oxide) as the gate oxide. The P-MOSFET was used to characterize the interface between the BOX and the SOI. The devices exhibit high sub-threshold slope which is attributed to a high interface state density of about 2×1012/cm2 at the bonding interface. Bias-temperature stress measurements show an effective mobile charge density of 4×1010/cm2 in the buried oxide  相似文献   

18.
Hydrogenation of polysilicon (poly-Si) thin film transistors (TFT's) by ion implantation has been systematically studied. Poly-Si TFT performance was dramatically improved by hydrogen ion implantation followed by a forming gas anneal (FGA). The threshold voltage, channel mobility, subthreshold swing, leakage current, and ON/OFF current ratio have been studied as functions of ion implantation dose and FGA temperature. Under the optimized conditions (H+ dose of 5×1015 cm-2 and FGA temperature at 375°C), NMOS poly-Si TFT's fabricated by a low temperature 600°C process have a mobility of ~27 cm 2/V·s, a threshold voltage of ~2 V, a subthreshold swing of ~0.9 V/decade, and an OFF-state leakage current of ~7 pA/μm at VDS=10 V. The avalanche induced kink effect was found to be reduced after hydrogenation  相似文献   

19.
The characteristics of CMOS devices fabricated in oxygen-implanted silicon-on-insulator (SOI) substrates with different oxygen doses are studied. The results show that transistor junction leakage currents are improved by orders of magnitude when the oxygen dose is decreased from 2.25×1018 cm-2 to 1.4×1018 cm-2 . The floating-body effect, i.e. transistor turn-on at lower gate voltage with dramatic improvement in subthreshold slope when the drain voltage is increased, is enhanced by the reduction in leakage current and hence the oxygen dose. In SOI substrates implanted with 1.4×1017 cm-2 oxygen dose and annealed at 1150°C, back-channel mobilities are decreased by several orders of magnitude compared to the mobilities in the precipitate-free silicon film. These device characteristics are correlated with the microstructure at the silicon-buried-oxide interface, which is controlled by oxygen implantation and post-oxygen-implantation anneal  相似文献   

20.
Key technologies for fabricating polycrystalline silicon thin film transistors (poly-Si TFTs) at a low temperature are discussed. Hydrogenated amorphous silicon films were crystallized by irradiation of a 30 ns-pulsed XeCl excimer laser. Crystalline grains were smaller than 100 nm. The density of localized trap states in poly-Si films was reduced to 4×1016 cm-3 by plasma hydrogenation only for 30 seconds. Remote plasma chemical vapor deposition (CVD) using mesh electrodes realized a good interface of SiO 2/Si with the interface trap density of 2.0×1010 cm-2 eV-1 at 270°C. Poly-Si TFTs were fabricated at 270°C using laser crystallization, plasma hydrogenation and remote plasma CVD. The carrier mobility was 640 cm2/Vs for n-channel TFTs and 400 cm2/Vs for p-channel TFTs. The threshold voltage was 0.8 V for n-channel TFTs and -1.5 V for p-channel TFTs. The leakage current of n-channel poly-Si TFTs was reduced from 2×10-10 A/μm to 3×10-13 A/μm at the gate voltage of -5 V using an offset gate electrode with an offset length of 1 μm  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号