首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The photodissociation coefficient of NO2, J NO 2, has been measured from a balloon platform in the stratosphere. Results from two balloon flights are reported. High Sun values of J NO 2 measured were 10.5±0.3 and 10.3±0.3×10-3 s-1 at 24 and 32 km respectively. The decrease in J NO 2 at sunset was monitored in both flights. The measurements are found to be in good agreement with calculations of J NO 2 using a simplified isotropic multiple scattering computer routine.  相似文献   

2.
A photochemical box model including a detailed heterogeneous chemistrymodule has been used to analyze in detail the effects of temperature andaerosol surface area on odd oxygen production/depletion in the lowerstratosphere at 30° S. Results show that for background aerosolloading, the hydrolysis of BrONO2 and N2O5are most important atall temperatures studied except when the temperature falls below about205 K, when ClONO2 hydrolysis becomes most important. Thisprocessing leads to removal of active nitrogen to form nitric acid andenhancement of HOx, BrOx, ClOx levels. Detailed O3 budgets asa function of temperature are presented showing how ozone loss andproduction terms vary with changes in stratospheric sulfate aerosol loadingfor the individual families. For (most) aerosol loading levels, thelargest ozone losses occurred at warmer temperatures due to the strongtemperature dependence of the NOx ozone-destroying reactions. Theexception to this occurred for the conditions representative of volcanicloading, which showed a strong increase in ozone destruction due toincreases in destruction from the ClOx and HOx families.The ozoneproduction term k[NO][HO2] did not show a strong dependence oneithertemperature or aerosol loading, due to the offsetting effect of reducedNOxand increased HOx concentrations.  相似文献   

3.
Measurements of stratospheric NO2 by ground-based visible spectrometers rely on laboratory measurements of absorption cross-sections. We review low-temperature laboratory measurements, which disagree by amounts claimed to be significant. Our recalculation of their errors shows that in general disagreements are not significant and that errors in the ratios of cross-sections at low to room temperature are between ±3% and ±8.8%. Of these errors, up to ±3.5% was contributed by errors in the equilibrium constant,K p, in those measurements where the pressure was above 0.1 mbar.We review measurements and calculations ofK p, which were accurate to ±5% from 300 to 233 K. Each method was potentially flawed. For example, infrared measurements of the partial pressure of NO2 ignored the dependence of absorption on total pressure. From thermodynamic theory, formulae forK pcan be derived from expressions for the variation of heat capacity with temperature. Contrary to common belief, coefficients in the formulae used by spectroscopists were not derived from the thermodynamic quantities. Rather, they were fitted to measurements or to calculations. Hence, they are empirical and it is dangerous to extrapolate below 233 K, the lowest temperature of the measurements.There are no measurements of NO2 cross-sections below 230 K. Extrapolation of these cross-sections to analysis of measurements of NO2 at the low temperatures of the Arctic and Antarctic stratosphere is also dangerous. For satisfactory analysis of polar spectra, the NO2 cross-sections should be measured at temperatures down to 190 K with a relative accuracy of ±1%. This difficult experiment would need a cell of minimum length 32 m whose length can be adjusted. Because their effects are circular, many errors cannot be removed simply. Although circular errors also arise in the measurements ofK pand of the infrared spectrum, their weights differ from those in the visible spectrum. The optimum experiment might therefore simultaneously measure the visible and infrared spectra andK p.  相似文献   

4.
A 2-D global chemistry-transport model is set up in this paper.The model simulates the atmospheric ozone distributions well with specified dynamical conditions.The analysis of ozone variation mechanism shows that ozone is chemically in quasi-equilibrium except for the polar night region where the variation of ozone concentration is under the control of dynamical processes,that the oxygen atoms which produce ozone are mainly provided by the photolysis of O2 in the upper stratosphere and by the photolysis of NO2 in the lower stratosphere and the troposphere.and that the ozone is destroyed mainly by NOx:the reactions between NOx and O3 and the odd oxygen cycle contribute 80% to more than 90% of the ozone destruction.  相似文献   

5.
A one-dimensional photochemical model was used to explore the role of chlorine atoms in oxidizing methane and other nonmethane hydrocarbons (NMHCs) in the marine troposphere and lower stratosphere. Where appropriate, the model predictions were compared with available measurements. Cl atoms are predicted to be present in the marine troposphere at concentrations of approximately 103 cm-3, mostly as a consequence of the reaction of OH with HCl released from sea spray. Despite this low abundance, our results indicate that 20 to 40% of NMHC oxidation in the troposphere (0–10 km) and 40 to 90% of NMHC oxidation in the lower stratosphere (10–20 km) is caused by Cl atoms. At 15 km, NMHC-Cl reactions account for nearly 80% of the PAN produced.The model was also used to test the longstanding hypothesis that NOCl is an intermediate to HCl formation from sea salt aerosols. It was found that the NOCl concentration required (10 ppt) would be incompatible with field observations of reactive nitrogen and ozone abundance. Chlorine nitrate (ClONO2) and methyl nitrate (CH3ONO2) were shown to be minor components of the total NO y abundance. Heterogeneous reactions that might enhance photolysis of halocarbons or convert ClONO2 to HOCl or Cl2 were determined to be relatively unimportant sources of Cl atoms. Specific and reliable measurements of HCl and other reactive chlorine species are needed to better assess their role in tropospheric chemistry.  相似文献   

6.
Infrared absorption features due to ClO in the lower stratosphere have been identified from groundbased solar absorption spectra taken from Aberdeen, U.K. (57° N, 2° W) on 20 January 1995. A vertical column abundance of 3.42 (±0.47)×1015 molec cm-2 has been derived from 13 independent absorption features in the P and R branches of the (0–1) vibration-rotation band of 35ClO, spanning the spectral region 817–855 cm-1. The observed absorption features are consistent with very high levels of ClO (approximately 2.6 parts per billion by volume (ppbv)) in the altitude range 16–22 km. A comparison of this profile with a 3D chemical transport model profile indicates the observation was made inside the polar vortex and shows good qualitative agreement but the model underestimates the concentrations of ClO. Simultaneous measurements of other species were made including HCl, HF and ClONO2. These columns yield a value for HCl+ClONO2+ClO of 7.02±0.65×1015 molec cm-2. This is lower than the total inorganic chlorine (ClO y ) column of 10.7±1.6×1015 molec cm-2 estimated from mean measured (HCl+ClONO2)/HF ratios together with in-vortex HF measurements. The discrepancy is probably due to significant amounts of the ClO dimer (Cl2O2) in the lower part of the stratosphere. The measurements of highly elevated levels of ClO are used to estimate O3 loss rates at the 400, 475 and 550 K levels making assumptions about the probable distribution of ClO and Cl2O2. These are compared with loss rates derived from ozone sonde data.  相似文献   

7.
During SESAME phase I ground-based FTIR measurements were performed atEsrange near Kiruna, Sweden, from 28 January to 26 March 1994. Zenith columnamounts of ClONO2, HCl, HF, HNO3,O3, N2O, CH4, and CFC-12 werederived from solar absorption spectra. Time series of ClONO2and HCl indicate a chlorine activation at the end of January and around 1March. On 1 March a very low amount of HCl of 2.09times; 1015molec. cm-2 was detected, probably caused by a second chlorineactivation phase starting from an already decreased amount of HCl. The ratioof column amounts of HCl to ClONO2 decreased inside the vortexfrom about 1 in January to 0.4 in late March compared to values of about 2outside the vortex. Although the Arctic stratosphere was rather warm in winter1993/94 and PSCs occurred seldom, chlorine partitioning into its reservoirspecies HCl and ClONO2 changed during that winter andClONO2 is the major chlorine reservoir at the end of thewinter as in cold winters like 1991/92 and 1994/95.  相似文献   

8.
Abstract

To evaluate future climate change in the middle atmosphere and the chemistry–climate interaction of stratospheric ozone, we performed a long-term simulation from 1960 to 2050 with boundary conditions from the Intergovernmental Panel on Climate Change A1B greenhouse gas scenario and the World Meteorological Organization Ab halogen scenario using the chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). In addition to this standard simulation we performed five sensitivity simulations from 2000 to 2050 using the rerun files of the simulation mentioned above. For these sensitivity simulations we used the same model setup as in the standard simulation but changed the boundary conditions for carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone-depleting substances (ODS). In the first sensitivity simulation we fixed the mixing ratios of CO2, CH4, and N2O in the boundary conditions to the amounts for 2000. In each of the four other sensitivity simulations we fixed the boundary conditions of only one of CO2, CH4, N2O, or ODS to the year 2000.

In our model simulations the future evolution of greenhouse gases leads to significant cooling in the stratosphere and mesosphere. Increasing CO2 mixing ratios make the largest contributions to this radiative cooling, followed by increasing stratospheric CH4, which also forms additional H2O in the upper stratosphere and mesosphere. Increasing N2O mixing ratios makes the smallest contributions to the cooling. The simulated ozone recovery leads to warming of the middle atmosphere.

In the EMAC model the future development of ozone is influenced by several factors. 1) Cooler temperatures lead to an increase in ozone in the upper stratosphere. The strongest contribution to this ozone production is cooling due to increasing CO2 mixing ratios, followed by increasing CH4. 2) Decreasing ODS mixing ratios lead to ozone recovery, but the contribution to the total ozone increase in the upper stratosphere is only slightly higher than the contribution of the cooling by greenhouse gases. In the polar lower stratosphere a decrease in ODS is mainly responsible for ozone recovery. 3) Higher NOx and HOx mixing ratios due to increased N2O and CH4 lead to intensified ozone destruction, primarily in the middle and upper stratosphere, from additional NOx; in the mesosphere the intensified ozone destruction is caused by additional HOx. In comparison to the increase in ozone due to decreasing ODS, ozone destruction caused by increased NOx is of similar importance in some regions, especially in the middle stratosphere. 4) In the stratosphere the enhancement of the Brewer-Dobson circulation leads to a change in ozone transport. In the polar stratosphere increased downwelling leads to additional ozone in the future, especially at high northern latitudes. The dynamical impact on ozone development is higher at some altitudes in the polar stratosphere than the ozone increase due to cooler temperatures. In the tropical lower stratosphere increased residual vertical upward transport leads to a decrease in ozone.  相似文献   

9.
Zenith sky observations of O3, NO2, OClO and BrO are reported, which were performed at Kiruna (67.9°N, 21.1°E) within the SESAME winters 1993/1994 and 1994/95. For both winters large total amounts of OClO were observed inside the polar vortex at twilight, indicating the degree and the temporal variation of the halogen activation of the polar stratosphere. Occasionally OClO could also be observed outside the polar vortex, most likely due to export of halogen activated vortex air masses into the ambient stratosphere. BrO could also be detected in winter 1994/95, with the largest slant column amounts (5·1014/cm2) occuring in the polar vortex in mid-winter. Similar abundances of stratospheric BrO were observed at dusk and dawn, for both, air masses inside and outside the vortex. This observation is in reasonable agreement with previous studies on stratospheric BrO (observations and models) of Wahner et al. (1992), Arpag et al. (1994), Krug et al. (1996), and Lary et al. (1996a,b), but partly in disagreement with those of Solomon et al. (1989), Fish et al. (1995), and Sessler et al. (1996).  相似文献   

10.
Lightning is thought to represent an important source of tropospheric reactive nitrogen species NOx (NO + NO2),but estimates of global production of NOx by lightning varyconsiderably. We evaluate the production of NOx by lightning using a global chemical/transport model, satellite lightning observations, and airborne NOx measurements. Various model calculations are conducted toassess the global NOx production rate of lightning by comparing the model calculations with airborne measurements. The results show that the simulated NOx in the tropical middle and upper troposphere are very sensitiveto the amount and altitude of the lightning NOx used in the model. A global lightning NOx production of 7 Tg N yr–1uniformly distributed in convective clouds or 3.5 Tg N yr–1 distributedin the upper cloud regions produces good agreement between calculated and measured NOx concentrations in the tropics.  相似文献   

11.
Growth in subsonic air traffic over the past 20 years has been dramatic, with an annual increase of }6.1% over the decade between 1978 and 1988. Furthermore, aircraft activities in the year 2000 are predicted to be double those of 1990, with a shift towards more high-flying, longhaul subsonics. Aircraft exhaust gases increase the amount of nitrogen oxides (NO x ) in the upper troposphere/lower stratosphere through injection at cruise altitudes. Given that NO x is instrumental in tropospheric ozone production and stratospheric ozone destruction, it is important to determine the influence of subsonic aircraft NO x emissions on levels of atmospheric ozone. This paper describes calculations designed to investigate the impact that subsonic aircraft may already have had on the atmosphere during the 1980s, run in a 2-D chemical-radiative-transport model. The results indicate a significant increase in upper tropospheric ozone over the decade arising from aircraft emissions. However, when comparing model results with observational data, certain discrepancies appear. Lower stratospheric ozone loss over the 1980s does not appear to be greatly altered by the inclusion of aircraft emissions in the model. However, given the trend in greater numbers of long-haul subsonic aircraft, this factor must be considered in any further calculations.  相似文献   

12.
Ground-based FTIR measurements have been performed in the Arctic summer in July 1993 and June 1994 at 79° N to study the zenith column densities of several trace gases in the undisturbed Arctic summer atmosphere. Zenith column densities of H2O, N2O, HNO3, NO2, NO, ClONO2, ClO, HCl, HF, COF2, OCS, SF6, HCN, CH4, C2H6, C2H2, CO, O3, CFC-12, CFC-22, and CO2 were retrieved by line-by-line calculations. The results are compared with winter and springtime observations measured at the same site, with column densities obtained in the Antarctic summer atmosphere, and with measurements at midlatitudes. For HCl the spectra give lower total zenith columns than expected, but the ratio HF/HCl agrees well with midlatitude literature data. Measurements of ClONO2 give low total columns in agreement with observations at midlatitudes. In the undisturbed atmosphere HCl was found to be in excess of ClONO2. The total columns of HNO3, N2O and the sum of NO and NO2 agree with summer observations in Antarctica. Results for the tropospheric trace gas C2H6 are higher by 250% when compared with Antarctic observations. Contrary to N2O and CH4 the seasonal cycle of C2H6 and C2H2 give much higher total columns in winter/spring compared to the summer observations. This is assigned to transport of polluted airmasses from mid-latitudes into the Arctic.  相似文献   

13.
An instrument, specifically designed for measurements from a balloon platform in the stratosphere, has been used to obtain ground-level values of the atmospheric photodissociation coefficient of nitrogen dioxide, J NO 2.A typical clear-sky value is 8.0×10-3 s-1 when the solar zenith angle is 40°. Measurements were made as a function of solar zenith angle and correlated with a calibrated Eppley UV radiometer. It is shown that J NO 2may be expressed as a simple function of the radiometer output so that estimates of J NO 2can be made using just an upward looking radiometer to an accuracy of about 20%. The measurements are also found to be in good agreement with calculations of J NO 2using a simplified isotropic multiple scattering computer routine.  相似文献   

14.
A mean meridional circulation model of the stratosphere, incorporating radiative heating and photochemistry of the oxygen‐hydrogen‐nitrogen atmosphere, is used to simulate the meridional distributions of O3, HOX, N2O,NOX, temperature and the three components of mean motion for the summer and winter seasons under steady‐state conditions. The results are generally in good agreement with the available observations in the normal stratosphere. The model has been applied to assess the effects of water vapour and nitrogen oxide perturbations resulting from aircraft emissions in the stratosphere. It is found that a fleet of 500 Boeing‐type sst's, flying at 20 km and 45°N in the summer hemisphere and inserting NOx at a rate of 1.8 megatons per year, has the effect of reducing the global total ozone by 14.7%. Similar calculations for 342 Concorde/TU‐114's, cruising at 17 km and injecting NOx at a rate of 0.35 megatons per year, show a global‐average total‐ozone reduction of 1.85%. Although water vapour is considered important, because of its ability to convert NO2 into HNO3, the direct effect on global‐average total‐ozone reduction resulting from the 100% increase in the stratospheric water content is less than 1%. The changes in the chemical structure (HO^NO^), temperature, and mean motions associated with the ozone reduction are also investigated in the case of the 1.8‐megaton‐per‐year NOX perturbation. It is shown that the reduced meridional temperature gradient in the middle and upper stratosphere resulting from the NOx perturbation leads to the weakening of the tropical easterly jet in the summer hemisphere and mid‐latitude westerlies in the winter season.

The sensitivity of the model solutions to an alternate choice of input parameters (diffusion coefficients and solar photodissociation data) is tested and the main deficiency of the model is pointed out.  相似文献   

15.
In situ aircraft measurements of O3, CO,HNO3, and aerosol particles are presented,performed over the North Sea region in the summerlower stratosphere during the STREAM II campaign(Stratosphere Troposphere Experiments by AircraftMeasurements) in July 1994. Occasionally, high COconcentrations of 200-300 pbbv were measured in thelowermost stratosphere, together with relatively highHNO3 concentrations up to 1.6 ppbv. The particlenumber concentration (at standard pressure andtemperature) between 0.018-1 m decreased acrossthe tropopause, from >1000 cm-3 in the uppertroposphere to <500 cm-3 in the lowermoststratosphere. Since the CO sources are found in thetroposphere, the elevated CO mixing ratios areattributed to mixing of polluted tropospheric air intothe lowermost extratropical stratosphere. Further wehave used a chemical model to illustrate that nitrogenoxide reservoir species (mainly HNO3) determinethe availability of NOx (=NO + NO2) andtherefore largely control the total net O3production in the lower kilometers of thestratosphere. Model simulations, applying additionalNOx perturbations from aircraft, show that theO3 production efficiency of NOx is smallerthan previously assumed, under conditions withrelatively high HNO3 mixing ratios, as observedduring STREAM II. The model simulations furthersuggest a relatively high O3 productionefficiency from CO oxidation, as a result of therelatively high ambient HNO3 and NOxconcentrations, implying that upward transport of COrich air enhances O3 production in the lowermoststratosphere. Analysis of the measurements and themodel calculations suggest that the lowermoststratosphere is a transition region in which thechemistry deviates from both the upper troposphere andlower stratosphere.  相似文献   

16.
Eleven vertical profiles of stratospheric NO3 have been obtained since 1992 using the AMON and SALOMON balloon-borne UV-visible spectrometers. The measurements are compared to the SLIMCAT 3D model and calculations based on the steady-state hypothesis for NO3. The calculations cannot reproduce some parts of the profiles which exhibit strong concentration fluctuations over few kilometres, as a consequence of the dependence of NO3 on local temperature variations. A statistical use of the data allows us to estimate the influence of the temperature dependence of the absorption cross-section on the data analysis, and the validity of the recommended reaction rates available in the literature. Discrepancies exist between the model based on recommended kinetics and observations at warmer temperatures. Nevertheless, the analysis is biased by local temperature inhomogeneities, and only a low-resolution vertical shape of the NO3 profiles can be retrieved.  相似文献   

17.
Ground-based visible differential absorption spectrometry during twilight has been used for NO2 total column observations at the Antarctica Peninsula, Marambio Base (64S, 56W), during the austral spring of 1989 (9 September to 25 November).Results show moderate NO2 vertical column levels of 1.5 to 2.5×1015 molec cm-2 in the morning and 2 to 3×1015 molec cm-2 in the evening until middle October, highly modulated by planetary wave activity. From that date until the end of the period, a steady increase occurs which is associated with the rising of lower stratosphere temperature as the vortex weakens, reaching values of 5×1015 molec cm-2 in late November, with small a.m.-p.m. differences. NO2 is found to be positively correlated to both total ozone and 50 hPa temperature during the entire spring. However, when analyzing the departures from linear trends, a highly negative correlation has been observed from day 301 onwards.  相似文献   

18.
The set of high-resolution infrared solar observations made with the Atmospheric Trace Molecule Spectroscopy (ATMOS)-Fourier transform spectrometer from onboard Spacelab 3 (30 April-1 May 1985) has been used to evaluate the total budgets of the odd chlorine and fluorine chemical families in the stratosphere. These budgets are based on volume mixing ratio profiles measured for HCl, HF, CH3Cl, ClONO2, CCl4, CCl2F2, CCl3F, CHClF2, CF4, COF2, and SF6 near 30° north latitude. When including realistic concentrations for species not measured by ATMOS, i.e., the source gases CH3CCl3 and C2F3Cl3 below 25 km, and the reservoirs ClO, HOCl and COFCl between 15 and 40 km (five gases actually measured by other techniques), the 30° N zonal 1985 mean total mixing ratio of chlorine, Cl, was found to be equal to (2.58±0.10) ppbv (parts per billion by volume) throughout the stratosphere, with no significant decrease near the stratopause. The results for total fluorine indicate a slight, but steady, decrease of its volume mixing ratio with increasing altitude, around a mean stratospheric value of (1.15±0.12) ppbv. Both uncertainties correspond to one standard deviation. These mean springtime 1985 stratospheric budgets are commensurate with values reported for the tropospheric Cl and F concentrations in the early 1980s, when allowance is made for the growth rates of their source gases at the ground and the time required for tropospheric air to be transported into the stratosphere. The results are discussed with emphasis on conservation of fluorine and chlorine and the partitioning among source, sink, and reservoir gases throughout the stratosphere.  相似文献   

19.
Four case studies are described, from a three-site field experiment in October/November 1991 using the Great Dun Fell flow-through reactor hill cap cloud in rural Northern England. Measurements of total odd-nitrogen nitrogen oxides (NO y ) made on either side of the hill, before and after the air flowed through the cloud, showed that 10 to 50% of the NO y , called NO z , was neither NO nor NO2. This NO z failed to exhibit a diurnal variation and was often higher after passage through cloud than before. No evidence of conversion of NO z to NO3 - in cloud was found. A simple box model of gas-phase chemistry in air before it reached the cloud, including scavenging of NO3 and N2O5 by aerosol of surface area proportional to the NO2 mixing ratio, shows that NO3 and N2O5 may build up in the boundary layer by night only if stable stratification insulates the air from emissions of NO. This may explain the lack of evidence for N2O5 forming NO3 - in cloud under well-mixed conditions in 1991, in contrast with observations under stably stratified conditions during previous experiments when evidence of N2O5 was found. Inside the cloud, some variations in the calculated total atmospheric loading of HNO2 and the cloud liquid water content were related to each other. Also, indications of conversion of NO x to NO z were found. To explain these observations, scavenging of NO x and HNO2 by cloud droplets and/or aqueous-phase oxidation of NO2 - by nitrate radicals are considered. When cloud acidity was being produced by aqueous-phase oxidation of NO x or SO2, NO3 - which had entered the cloud as aerosol particles was liberated as HNO3 vapour. When no aqueous-phase production of acidity was occurring, the reverse, conversion of scavenged HNO3 to particulate NO3 -, was observed.  相似文献   

20.
We have used a two dimensional radiative-chemical-transport model of the stratosphere to investigate the sensitivity of trace gas distributions to absorption of oxygen in the wavelength region 175–210 nm. Two different formulations for the Herzberg continuum absorption cross sections are used. The calculated transmission of ultra-violet light in the stratosphere is lower and higher than observed, depending on the choice of absorption cross section. For the higher transmission O3, ClO, and HO2 are found to be significantly increased in the lower stratosphere. Calculated O3 in the upper stratosphere, chlorofluorocarbons, N2O and odd-nitrogen are lower. The photolysis of oxygen is considerably faster at high latitudes implying that the photochemical recovery of depleted polar ozone is faster than currently assumed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号