首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The present studies were to determine whether the multi-kinase inhibitor pazopanib interacted with histone deacetylase inhibitors (HDACI: valproate, vorinostat) to kill sarcoma cells. In multiple sarcoma cell lines, at clinically achievable doses, pazopanib and HDACI interacted in an additive to greater than additive fashion to cause tumor cell death. The drug combination increased the numbers of LC3-GFP and LC3-RFP vesicles. Knockdown of Beclin1 or ATG5 significantly suppressed drug combination lethality. Expression of c-FLIP-s, and to a lesser extent BCL-XL or dominant negative caspase 9 reduced drug combination toxicity; knock down of FADD or CD95 was protective. Expression of both activated AKT and activated MEK1 was required to strongly suppress drug combination lethality. The drug combination inactivated mTOR and expression of activated mTOR strongly suppressed drug combination lethality. Treatment of animals carrying sarcoma tumors with pazopanib and valproate resulted in a greater than additive reduction in tumor volume compared with either drug individually. As both pazopanib and HDACIs are FDA-approved agents, our data argue for further determination as to whether this drug combination is a useful sarcoma therapy in the clinic.  相似文献   

2.
The present studies were designed to determine whether the multi-kinase inhibitor sorafenib (Nexavar) interacted with histone deacetylase inhibitors to kill glioblastoma and medulloblastoma cells. In a dose-dependent fashion sorafenib lethality was enhanced in multiple genetically disparate primary human glioblastoma isolates by the HDAC inhibitor sodium valproate (Depakote). Drug exposure reduced phosphorylation of p70 S6K and of mTOR. Similar data to that with valproate were also obtained using the HDAC inhibitor vorinostat (Zolinza). Sorafenib and valproate also interacted to kill medulloblastoma and PNET cell lines. Treatment with sorafenib and HDAC inhibitors radio-sensitized both GBM and medulloblastoma cell lines. Knock down of death receptor (CD95) expression protected GBM cells from the drug combination, as did overexpression of c-FLIP-s, BCL-XL and dominant negative caspase 9. Knock down of PDGFRα recapitulated the effect of sorafenib in combination with HDAC inhibitors. Collectively, our data demonstrate that the combination of sorafenib and HDAC inhibitors kills through activation of the extrinsic pathway, and could represent a useful approach to treat CNS-derived tumors.  相似文献   

3.
The present studies have examined approaches to suppress MCL-1 function in breast cancer cells, as a means to promote tumor cell death. Treatment of breast cancer cells with CDK inhibitors (flavopiridol; roscovitine) enhanced the lethality of the ERBB1 inhibitor lapatinib in a synergistic fashion. CDK inhibitors interacted with lapatinib to reduce MCL-1 expression and overexpression of MCL-1 or knock down of BAX and BAK suppressed drug combination lethality. Lapatinib-mediated inhibition of ERK1/2 and to a lesser extent AKT facilitated CDK inhibitor-induced suppression of MCL-1 levels. Treatment of cells with the BH3 domain/MCL-1 inhibitor obatoclax enhanced the lethality of lapatinib in a synergistic fashion. Knock out of MCL-1 and BCL-XL enhanced lapatinib toxicity to a similar extent as obatoclax and suppressed the ability of obatoclax to promote lapatinib lethality. Pre-treatment of cells with lapatinib or with obatoclax enhanced basal levels of BAX and BAK activity and further enhanced drug combination toxicity. In vivo tumor growth data in xenograft and syngeneic model systems confirmed our in vitro findings. Treatment of cells with CDK inhibitors enhanced the lethality of obatoclax in a synergistic fashion. Overexpression of MCL-1 or knock down of BAX and BAK suppressed the toxic interaction between CDK inhibitors and obatoclax. Obatoclax and lapatinib treatment or obatoclax and CDK inhibitor treatment or lapatinib and CDK inhibitor treatment radiosensitized breast cancer cells. Lapatinib and obatoclax interacted to suppress mammary tumor growth in vivo. Collectively our data demonstrate that manipulation of MCL-1 protein expression by CDK inhibition or inhibition of MCL-1 sequestering function by Obatoclax renders breast cancer cells more susceptible to BAX/BAK-dependent mitochondrial dysfunction and tumor cell death.Key words: MCL-1, Lapatinib, Obatoclax, Flavopiridol, Roscovitine, CDK inhibitor, RTK inhibitor, BCL-2 inhibitor, BAK  相似文献   

4.
Inhibitors of PARP1 are approved therapeutic agents in ovarian carcinomas. We determined whether the novel clinically relevant CHK1 inhibitor SRA737 interacted with PARP1 inhibitors to kill carcinoma cells. In multiple mammary and ovarian cancer lines SRA737 synergized with the PARP1 inhibitors olaparib and niraparib to cause cell death. The [SRA737 + niraparib] drug combination activated an ATM-AMPK-ULK1-mTOR pathway which resulted in the formation of autophagosomes, temporally followed by autolysosome formation. Phosphorylation of ULK1 S317 was essential for kinase activation against ATG13. The drug combination elevated eIF2α phosphorylation which was causal at increasing Beclin1 and ATG5 expression, reducing MCL-1 and BCL-XL levels, and causing CD95 activation. Knock down of CD95, eIF2α, ATM, AMPKα, ULK1, Beclin1 or ATG5 reduced drug combination lethality. Blockade of either caspase 9 function or that of AIF each partially prevented cell death. Expression of activated mTOR or of c-FLIP-s or of BCL-XL reduced cell killing. In vivo, SRA737 and niraparib interacted in an additive fashion to suppress the growth of mammary tumors. Multiplex analyses revealed that drug combination treated tumors had reduced their plasma levels of sERBB1, sERBB2, sVEGFR1, sVEGFR2, sIL-6R, HGF, PDGFAB/BB and CXCL16 and enhanced the levels of CCL26, IL-8 and MIF. Surviving tumors had activated ERK1/2 and AKT. This finding argues that IL-8/ERK/AKT signaling may be an evolutionary survival response to [SRA737 + niraparib].  相似文献   

5.
The present studies determined whether the antibiotic salinomycin interacted with HDAC inhibitors to kill primary human GBM cells. Regardless of PTEN, ERBB1, or p53 mutational status salinomycin interacted with HDAC inhibitors in a synergistic fashion to kill GBM cells. Inhibition of CD95/Caspase 8 or of CD95/RIP-1/AIF signaling suppressed killing by the drug combination. Salinomycin increased the levels of autophagosomes that correlated with increased p62 and LC3II levels; valproate co-treatment correlated with reduced LC3II and p62 expression, and increased caspase 3 cleavage. Molecular inhibition of autophagosome formation was protective against drug exposure. The drug combination enhanced eIF2α phosphorylation and decreased expression of MCL-1 and phosphorylation of mTOR and p70 S6K. Activation of p70 S6K or mTOR promoted cell survival in the face of combined drug exposure. Overexpression of BCL-XL or c-FLIP-s was protective. Collectively our data demonstrate that the lethality of low nanomolar concentrations of salinomycin are enhanced by HDAC inhibitors in GBM cells and that increased death receptor signaling together with reduced mitochondrial function are causal in the combinatorial drug necro-apoptotic killing effect.  相似文献   

6.
Cancers expressing mutant RAS are associated with a weaker response to chemotherapy and a shorter overall patient survival. We have demonstrated that the irreversible inhibitor of ERBB1/2/4, neratinib, inhibits ERBB1/2/4 and causes their internalization and autolysosomal degradation. Fellow-traveler membrane proteins with RTKs, including mutant K-/N-RAS, were also degraded. We discovered that the CDK4/6 inhibitor palbociclib increased autophagosome and then autolysosome levels in a time dependent fashion, did not reduce mTOR activity, and interacted with temsirolimus to kill. Neratinib and palbociclib interacted in a greater than additive manner to increase autophagosome and then autolysosome levels in a time dependent fashion, and to cause tumor cell killing. Killing required the expression of ATM and AMPKα, Beclin1 and ATG5, BAX and BAK and of AIF, but not of caspase 9. In some cells over-expression of BCL-XL was protective whereas in others it was ineffective. The lethality of [neratinib + palbociclib] was modestly enhanced by the PDE5 inhibitor sildenafil and strongly enhanced by the HDAC inhibitor sodium valproate. This was associated with K-RAS degradation and a greater than additive increase in autophagosome and autolysosome levels. Killing by the three-drug combination required ATM and AMPKα, and, to a greater extent, Beclin1 and ATG5. In vivo, [valproate + palbociclib] and [neratinib + valproate + palbociclib] interacted to suppress the growth of a carboplatin/paclitaxel resistant PDX ovarian tumors that express a mutant N-RAS. Our data support performing a future three-drug trial with these agents.  相似文献   

7.
The aim of this study is to clarify the benefit of combination chemotherapy in gastric cancer based on a cell-signal inhibitor and an anticancer drug. Two scirrhous gastric cancer cell lines and two non-scirrhous gastric cancer cell lines were used. Five anticancer drugs (5-fluorouracil [5FU], paclitaxel, oxaliplatin, irinotecan, and gemcitabine) and four cell-signal inhibitors, mammalian target of rapamycin (mTOR) inhibitor, glycogen synthase kinase 3β, p38αβMAPK, and cyclin-dependent kinase, were used. The proliferation of cancer cells was examined by MTT assay and in vivo study. The apoptosis of cancer cells and the expression of apoptosis-related molecules were examined by flow cytometry, real-time PCR, and immunostaining. mTOR inhibitors with 5FU showed a synergistic antiproliferative effect in scirrhous gastric cancer, whereas the other signal inhibitors showed no synergistic effect with any anticancer drugs. mTOR inhibitor decreased the IC50 of 5FU and increased the apoptosis rate in scirrhous gastric cancer cells, but not in non-scirrhous gastric cancer cells. The pan-caspase inhibitor, zVAD-fmk, inhibits apoptosis induced in combination with 5FU and mTOR inhibitor. mTOR inhibitor decreased dihydropyrimidine dehydrogenase , thymidylatesynthase , and bcl-2 expression, and increased caspase-3 and p21 expression of scirrhous gastric cancer cells, but did not affect those of non-scirrhous gastric cancer cells. In an in vivo study, mTOR inhibitor significantly enhanced the therapeutic efficacy of S1, an analog of 5FU. These findings suggest that mTOR inhibitor interacts with 5FU in a synergistic manner in scirrhous gastric cancer cells by the activation of the apoptosis signal. Therefore, mTOR inhibitor is a promising therapeutic agent in combination with 5FU in scirrhous gastric cancer. ( Cancer Sci 2009; 100: 2402–2410)  相似文献   

8.
Taxol (paclitaxel) and Taxotere (docetaxel) are considered as two of the most important anti-cancer chemotherapy drugs. The cytotoxic action of these drugs has been linked to their ability to inhibit microtubule depolymerization, causing growth arrest and subsequent cell death. Studies by a number of laboratories have also linked suppression of MEK1/2 signaling to enhanced Taxol toxicity in vitro and in vivo. The present study examined the interactions of the semi-synthetic taxane Taxotere with MEK1/2 inhibitors in epithelial tumor cells. In vitro colony formation studies demonstrated that Taxotere and the MEK1/2 inhibitor PD184352 interacted in a sequence dependent fashion to synergistically kill human mammary carcinoma cells (MDA-MB-231, MCF7) as well as in other tumor cell types; e.g. prostate and renal cell carcinoma. Athymic mice were implanted in the rear flank with either MDA-MB-231 or MCF7 cells and tumors permitted to form to a volume of approximately 100 mm3 prior to a two day exposure of either Vehicle, PD184352 (25 mg/kg), Taxotere (15 mg/kg) or the drug combination. Tumor volume was measured every other day and tumor growth determined over the following approximately 30 days. Transient exposure of MDA-MB-231 tumors or MCF7 tumors to PD184352 did not significantly alter tumor growth rate or the mean tumor volume in vivo approximately 15-30 days after drug administration. Transient Taxotere exposure of MDA-MB-231 or to a lesser extent MCF7, tumors modestly reduced the mean tumor volume in vivo approximately 15-30 days after drug administration. In contrast, combined treatment with PD184352 and Taxotere significantly reduced MDA-MB-231 and MCF7 tumor growth. The tumor control values for MDA-MB-231 cells and MCF7 cells were 0.43 and 0.71, respectively. Fractionated irradiation of MDA-MB-231 tumors during drug exposure or single dose irradiation prior to drug administration did not significantly further suppress tumor growth beyond that of cells exposed to Taxotere and MEK1/2 inhibitor. Single dose irradiation of tumors after drug exposure, however, caused a significant further suppression of tumor growth below that caused by drug exposure. These findings were also reflected in ex vivo colony formation analyses of isolated tumor cells. Collectively, these findings argue that Taxotere and MEK1/2 inhibitors have the potential to suppress mammary tumor growth in vivo which is enhanced by sequence-dependent exposure to ionizing radiation. Based on the cell lines used in these studies, our findings argue that the interaction of Taxotere and PD184352 is independent of p53 status, estrogen dependency, caspase 3 levels or oncogenic K-RAS expression.  相似文献   

9.
The present studies examined viability and DNA damage levels in mammary carcinoma cells following PARP1 and CHK1 inhibitor drug combination exposure. PARP1 inhibitors [AZD2281 ; ABT888 ; NU1025 ; AG014699] interacted with CHK1 inhibitors [UCN-01 ; AZD7762 ; LY2603618] to kill mammary carcinoma cells. PARP1 and CHK1 inhibitors interacted to increase both single strand and double strand DNA breaks that correlated with increased γH2AX phosphorylation. Treatment of cells with CHK1 inhibitors increased the phosphorylation of CHK1 and ERK1/2. Knock down of ATM suppressed the drug-induced increases in CHK1 and ERK1/2 phosphorylation and enhanced tumor cell killing by PARP1 and CHK1 inhibitors. Expression of dominant negative MEK1 enhanced drug-induced DNA damage whereas expression of activated MEK1 suppressed both the DNA damage response and tumor cell killing. Collectively our data demonstrate that PARP1 and CHK1 inhibitors interact to kill mammary carcinoma cells and that increased DNA damage is a surrogate marker for the response of cells to this drug combination.  相似文献   

10.
The combination of 5-fluorouracil-folinic acid and oxaliplatin has led to a significant improvement of chemotherapy efficacy in advanced pretreated colorectal cancer. The objective of the present study was, considering the oxaplatin-5-fluorouracil-folinic acid combination, to examine the impact of one given drug on the cellular determinants of cytotoxic activity of the other drug. These cellular factors were analysed on the human colon cancer cell line WiDr in clinically relevant conditions of drug exposure ('De Gramont' schedule) with oxaliplatin-folinic acid during 2 h followed by 5-fluorouracil 48 h. The DNA binding of oxaliplatin was significantly reduced by the presence of 5-fluorouracil but this effect was time-dependent and after 50 h the platinum incorporated into DNA was identical in controls and in the drug combination. In the presence of oxaliplatin, there was less formation of FUH(2) which is the first catabolite produced in the cascade of 5-fluorouracil metabolic degradation. The effects of drugs on cell cycle were quite different from one drug to the other with oxaliplatin inducing a shift towards G(2) accumulation and 5-fluorouracil-folinic acid to a greater proportion of cells in G(1)-S. When oxaliplatin and 5-fluorouracil-folinic acid were combined the cell cycle effects were very similar to that of the 5-fluorouracil-folinic acid sequence alone. Oxaliplatin was able to reduce thymidylate synthase activity with a marked impact 28 h after the beginning of cell exposure to the drug. The 5-fluorouracil-folinic acid drug sequence led to a profound reduction in thymidylate synthase activity and this decrease was not markedly enhanced by the presence of oxaliplatin. Regarding apoptosis, changes in mitochondrial membrane permeability were observed in the presence of the tested drugs and the impact of 5-fluorouracil-folinic acid was greater than that of oxaliplatin. The addition of oxaliplatin did not amplify the action of 5-fluorouracil-folinic acid upon mitochondrial membrane permeability change. The presence of oxaliplatin itself did not modify the intracellular concentration of total reduced folates. The fact that oxaliplatin may reduce 5-fluorouracil catabolism could be central in explaining the supra-additive interaction between these drugs.  相似文献   

11.
The irreversible ERBB1/2/4 inhibitor, neratinib, down-regulates the expression of ERBB1/2/4 as well as the levels of MCL-1 and BCL-XL. Venetoclax (ABT199) is a BCL-2 inhibitor. At physiologic concentrations neratinib interacted in a synergistic fashion with venetoclax to kill HER2 + and TNBC mammary carcinoma cells. This was associated with the drug-combination: reducing the expression and phosphorylation of ERBB1/2/3; in an eIF2α-dependent fashion reducing the expression of MCL-1 and BCL-XL and increasing the expression of Beclin1 and ATG5; and increasing the activity of the ATM-AMPKα-ULK1 S317 pathway which was causal in the formation of toxic autophagosomes. Although knock down of BAX or BAK reduced drug combination lethality, knock down of BAX and BAK did not prevent the drug combination from increasing autophagosome and autolysosome formation. Knock down of ATM, AMPKα, Beclin1 or over-expression of activated mTOR prevented the induction of autophagy and in parallel suppressed tumor cell killing. Knock down of ATM, AMPKα, Beclin1 or cathepsin B prevented the drug-induced activation of BAX and BAK whereas knock down of BID was only partially inhibitory. A 3-day transient exposure of established estrogen-independent HER2 + BT474 mammary tumors to neratinib or venetoclax did not significantly alter tumor growth whereas exposure to [neratinib + venetoclax] caused a significant 7-day suppression of growth by day 19. The drug combination neither altered animal body mass nor behavior. We conclude that venetoclax enhances neratinib lethality by facilitating toxic BH3 domain protein activation via autophagy which enhances the efficacy of neratinib to promote greater levels of cell killing.  相似文献   

12.
PARP1 inhibitors are approved therapeutic agents in ovarian carcinomas, and have clinical activity in some breast cancers. As a single agent, niraparib killed ovarian and mammary tumor cells via an ATM-AMPK-ULK1 pathway which resulted in mTOR inactivation and the formation of autophagosomes, temporally followed by autolysosome formation. In parallel, niraparib activated a CD95-FADD-caspase 8 pathway, and collectively these signals caused tumor cell death that was suppressed by knock down of Beclin1, ATG5, CD95, FADD or AIF; or by expression of c-FLIP-s, BCL-XL or dominant negative caspase 9. The HDAC inhibitors AR42 and sodium valproate enhanced niraparib lethality in a greater than additive fashion. HDAC inhibitors enhanced niraparib lethality by increasing activation of the ATM-AMPK-ULK1-autophagy and CD95-FADD-caspase 8 pathways. Knock down of eIF2α, ATM, AMPKα, ULK1, Beclin1 or ATG5 reduced tumor cell killing by the niraparib plus HDAC inhibitor combination. Blockade of either caspase 9 function or that of cathepsin B partially prevented cell death. As a single agent niraparib delayed tumor growth, but did not significantly alter the tumor control rate. Tumors previously exposed to niraparib had activated the ERK1/2 and AKT-mTOR pathways that correlated with increased plasma levels of IL-8, MIF, EGF, uPA and IL-12. Collectively our findings argue that the addition of HDAC inhibitors to niraparib enhances the anti-cancer activity of the PARP1 inhibitor niraparib.  相似文献   

13.
PURPOSE: cAMP phosphodiesterase (PDE) 4 is a family of enzymes the inhibition of which induces chronic lymphocytic leukemia (CLL) apoptosis. However, leukemic cells from a subset of CLL patients are relatively resistant to treatment with the PDE4 inhibitor rolipram, particularly when this drug is used in the absence of an adenylate cyclase stimulus such as forskolin. Elevated cAMP levels induce compensatory up-regulation of several cyclic nucleotide PDE families in other model systems. We here examine the hypothesis that CLL cells that survive treatment with rolipram do so as a result of residual PDE activity that is not inhibited by this drug. EXPERIMENTAL DESIGN: We examined by Western analysis the effect of rolipram treatment on CLL expression of PDE3B, PDE4A, PDE4B, PDE4D, and PDE7A. We also examined the ability of rolipram (PDE4 inhibitor) or cilostamide (PDE3 inhibitor), alone or together, to induce apoptosis or elevate cyclic AMP in leukemic cells from patients with CLL. RESULTS: Rolipram increased levels of PDE4B and, to a variable extent, PDE4D. When combined with forskolin, rolipram also increased levels of a second family of PDEs, PDE3B. Addition of the specific PDE3 inhibitor, cilostamide, modestly augmented rolipram-induced apoptosis in five of seven "rolipram-resistant" CLL samples. CONCLUSIONS: Although this work confirms that PDE4 appears to be the most important PDE target for induction of apoptosis in CLL, combination therapy with PDE3 and PDE4 inhibitors or use of dual-selective drugs may be of benefit in a subset of relatively PDE4-inhibitor resistant CLL patients.  相似文献   

14.
Medulloblastoma is the most common brain tumor in children. Here, we report that bortezomib, a proteasome inhibitor, induced apoptosis and inhibited cell proliferation in two established cell lines and a primary culture of human medulloblastomas. Bortezomib increased the release of cytochrome c to cytosol and activated caspase-9 and caspase-3, resulting in cleavage of PARP. Caspase inhibitor (Z-VAD-FMK) could rescue medulloblastoma cells from the cytotoxicity of bortezomib. Phosphorylation of AKT and its upstream regulator mTOR were reduced by bortezomib treatment in medulloblastoma cells. Bortezomib increased the expression of Bad and Bak, pro-apoptotic proteins, and p21Cip1 and p27Kip1, negative regulators of cell cycle progression, which are associated with the growth suppression and induction of apoptosis in these tumor cells. Bortezomib also increased the accumulation of phosphorylated IĸBα, and decreased nuclear translocation of NF-ĸB. Thus, NF-ĸB signaling and activation of its downstream targets are suppressed. Moreover, ERK inhibitors or downregulating ERK with ERK siRNA synergized with bortezomib on anticancer effects in medulloblastoma cells. Bortezomib also inhibited the growth of human medulloblastoma cells in a mouse xenograft model. These findings suggest that proteasome inhibitors are potentially promising drugs for treatment of pediatric medulloblastomas.  相似文献   

15.
Histone deacetylase inhibitors (HDIs) are a promising new class of antineoplastic agents with the ability to induce apoptosis and growth arrest of cancer cells. In addition, HDIs have been suggested to enhance the anticancer efficacy of other therapeutic regimens, such as ionizing radiation (IR) or chemotherapy. The objective of this study was to evaluate the activity of HDIs against medulloblastoma cells when applied either as single agents or in combination with IR, cytostatics, or TRAIL. The HDIs, suberoyl anilide hydroxamic acid (SAHA), sodium butyrate, and trichostatin A, were examined for their effects on the medulloblastoma cell lines, DAOY and UW228-2. We found that treatment with HDIs induced the dissipation of mitochondrial membrane potential, activation of caspase-9 and -3 and, consequently, apoptotic cell death. Moreover, all three HDIs significantly enhanced the cytotoxic effects of IR in DAOY cells. Likewise, treatment with SAHA markedly augmented the cytotoxicity of etoposide, while it had no effect on vincristine-mediated cell death. HDIs also potently increased the killing efficiency of TRAIL. TRAIL-induced, but not SAHA-induced, cell killing could be prevented by the caspase-8 inhibitor, z-IEDT-fmk. We conclude that HDIs may be useful for the treatment of medulloblastoma as monotherapy and particularly when given in combination with IR, appropriate cytostatics, or TRAIL.  相似文献   

16.
The purpose of this study was to determine whether phosphatidylinositol 3-kinase (PI 3-K) inhibitors could modulate the apoptotic activity of the anticancer drugs cisplatin, 5-fluorouracil or docetaxel in an oral squamous cell carcinoma (OSCC) cell line, HSC-2. In preliminary experiments, cisplatin, 5-fluorouracil and docetaxel inhibited the proliferation of OSCC cells in a dose-dependent manner. We found that two PI 3-K inhibitors, wortmannin and LY294002, markedly suppressed the phosphorylation of Akt in OSCC cells. Treatment of OSCC cells with PI 3-K inhibitors significantly enhanced cisplatin-, 5-fluorouracil- or docetaxel-induced apoptosis. Caspase-3 and -9 inhibitors, but not a caspase-8 inhibitor, reduced anticancer drug-mediated apoptosis in PI 3-K inhibitor-treated OSCC cells, suggesting that the apoptotic pathway induced by the combination of anticancer drug therapy and PI 3-K inhibition may be functionally related to the intrinsic apoptotic pathway in OSCC cells. Expression of Bcl-2, cellular inhibitor of apoptosis protein-1 (cIAP-1), and X-linked IAP was down-regulated, and expression of Bax was up-regulated by PI 3-K inhibitors, while that of Bcl-xL, Bak and cIAP-2 was not attenuated. We also found that Bad phosphorylation was down-regulated by PI 3-K inhibitors. These results suggested that inhibition of PI 3-K enhances the susceptibility of OSCC cells to anticancer drug-mediated apoptosis through regulation of expression and post-translational modification of both pro- and anti-apoptotic proteins. These findings could potentially lead to new strategies for improving the efficacy of anticancer drugs in OSCC cells.  相似文献   

17.
Several autocrine soluble factors, including macrophage inflammatory protein-1α and tumour necrosis factor-alpha (TNF-α), promote the survival and growth of multiple myeloma (MM) cells. We hypothesised that inhibition of the TNF-α autocrine loop may enhance the cytotoxic effect of anticancer drugs in MM cell lines. In the present study, a TNF-α-neutralizing antibody suppressed cell proliferation and enhanced the cytotoxic effect of anticancer drugs on MM cells. In addition, combination treatment with the TNF-α-neutralizing antibody and the chemotherapy agent melphalan inhibited nuclear factor κB (NF-κB) p65 nuclear translocation and mammalian target of rapamycin (mTOR) activation and upregulated the expression of Bax and Bim. Treatment of ARH-77 cells with the NF-κB inhibitor dimethyl fumarate or the mTOR inhibitor rapamycin suppressed NF-κB p65 nuclear translocation and enhanced the cytotoxic effect of melphalan. Furthermore, infliximab, a monoclonal antibody against TNF-α, also enhanced the cytotoxic effect of anticancer drugs in ARH-77 cells. These results indicated that TNF-α-neutralizing antibodies or infliximab enhanced the cytotoxic effect of anticancer drugs by suppressing the TNF receptor/mTOR/NF-κB pathways. The inhibition of TNF-α may thus provide a new therapeutic approach to control tumour progression and bone destruction in MM patients.  相似文献   

18.
The present studies sought to determine whether the anti-folate pemetrexed (Alimta) and the sphingosine-1-phosphate receptor modulator FTY720 (Fingolimod, Gilenya) interacted to kill tumor cells. FTY720 and pemetrexed interacted in a greater than additive fashion to kill breast, brain and colorectal cancer cells. Loss of p53 function weakly enhanced the toxicity of FTY720 whereas deletion of activated RAS strongly or expression of catalytically inactive AKT facilitated killing. Combined drug exposure reduced the activity of AKT, p70 S6K and mTOR and activated JNK and p38 MAPK. Expression of activated forms of AKT, p70 S6K and mTOR or inhibition of JNK and p38 MAPK suppressed the interaction between FTY720 and pemetrexed. Treatment of cells with FTY720 and pemetrexed increased the numbers of early autophagosomes but not autolysosomes, which correlated with increased LC3II processing and increased p62 levels, suggestive of stalled autophagic flux. Knock down of ATG5 or Beclin1 suppressed autophagosome formation and cell killing. Knock down of ceramide synthase 6 suppressed autophagosome production and cell killing whereas knock down of ceramide synthase 2 enhanced vesicle formation and facilitated death. Collectively our findings argue that pemetrexed and FTY720 could be a novel adjunct modality for breast cancer treatment.  相似文献   

19.
One of the emerging problems concerning the use of antiangiogenic drugs, when used in combination with certain chemotherapy regimens, is enhanced rates and severity of adverse clotting events. For as yet unknown reasons, certain drugs and particular combinations can induce an elevated incidence of thromboembolic events in treated cancer patients [e.g., SU5416, a vascular endothelial cell growth factor receptor-2 (VEGFR-2) antagonist, when combined with gemcitabine and cisplatin (CDDP)]. Such results highlight the need to develop assays capturing the essence of enhanced clot formation under such combination treatment and which may have predictive potential as well. Here, we report the possibility of such an assay (i.e., the ratio of tissue factor over tissue factor pathway inhibitor expression or activity in cultured human endothelial cells calculated as a coagulation index). A marked increase in coagulation index was observed after exposure to SU5416 and the CDDP/gemcitabine chemotherapy combination in contrast to either of these treatments used alone. Substitution of SU5416 with any one of ZD6474, SU6668, IMC-1121, a monoclonal antibody to VEGFR-2, or an antibody to VEGF (bevacizumab) did not cause a marked increase in the coagulation index, nor did the combination of SU5416 with 5-fluorouracil and leucovorin. Finally, we noted that reducing the concentrations of gemcitabine and CDDP (i.e., use of "metronomic dosing" in vitro) significantly attenuated the coagulation index increase induced by these drugs, suggesting that use of low-dose chemotherapy regimens might be an approach to consider for reducing the incidence of adverse clotting events associated with chemotherapy alone or in conjunction with antiangiogenic drug combination therapies.  相似文献   

20.
Although DNA-damaging agents are among the most effective anticancer drugs in clinical use, their overall effectiveness is limited by the development of cross-resistance to these drugs. Given that histone deacetylase (HDAC) inhibitors increase the acetylation of core histones, resulting in an open chromatin configuration that is more accessible to DNA-targeting agents, we examined whether HDAC inhibitors might enhance the cytotoxicity of DNA-damaging drugs in six human ovarian tumor cell lines that exhibit different cisplatin sensitivities. Low concentrations of HDAC inhibitors, which alone exhibited little cytotoxicity, markedly enhanced the induction of apoptotic cell death not only by cisplatin but also by a wide variety of DNA-targeting anticancer drugs in these tumor cell lines, irrespective of their sensitivities to the respective drugs. In contrast, HDAC inhibitors did not increase the cytotoxicity of metabolic antagonists or microtubule-targeting agents. HDAC inhibitors potentiated both the phosphorylation of histone H2AX on serine-139 (a marker of DNA double-strand breaks) as well as the accumulation of reactive oxygen species induced by DNA-damaging agents in tumor cells. The enhanced generation of reactive oxygen species appeared to be responsible for the enhanced apoptotic cell death induced by the combination of these drugs. These results indicate that the combination of an HDAC inhibitor with a wide variety of DNA-damaging agents is a promising chemotherapeutic strategy for the eradication of tumor cells, regardless of whether the cells are sensitive or resistant to the DNA-damaging anticancer drugs. ( Cancer Sci 2008; 99: 376–384)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号