首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The fatty acid distribution of triacylglycerols (TAG) and major phospholipids (PL) within soybean seeds (Glycine max L.) was investigated in relation to their tocopherol contents. The lipids extracted from four cultivars were separated by thin‐layer chromatography into seven fractions. Tocopherols were predominantly detected in the axis, followed by cotyledons and seed coat. The major lipid components were TAG and PL, while hydrocarbons, steryl esters, free fatty acids and diacylglycerols (sn‐1,3 and sn‐1,2) were also present in minor proportions. With a few exceptions, the dominant PL components were phosphatidylcholine, followed by phosphatidylethanolamine or phosphatidylinositiol. Significant differences (p <0.05) in fatty acid distribution existed when different soybean cultivars were examined. However, the principal characteristics of the fatty acid distribution in the TAG were evident among four cultivars; unsaturated fatty acids were predominantly concentrated in the sn‐2 position, and saturated fatty acids primarily occupied the sn‐1 or sn‐3 position in the oils of the soybeans.  相似文献   

2.
Phospholipids (PLs) and cholesterol in human milk (HM) are affected by lactation, and differential lipids are closely related to maternal diet. The contents of PLs and cholesterol in Chinese HM are quantified by gas chromatography and high performance liquid chromatography, respectively, and the relationship between differential lipids and the maternal diet is obtained by Pearson. The result shows that SFA, MUFA, and polyunsaturated fatty acid (PUFA) are not affected by lactation and geography for total fatty acids, but almost all sn‐2 fatty acids are influenced by geography and remain unchanged during lactation. Most SFAs show absolute sn‐2 selectivity and the majority of MUFAs and PUFAs are esterified at the sn‐1 position. Cholesterol (13.8–22.6 mg per 100 g milk) and 25‐hydroxycholesterol (0.45–1.01 mg per 100 g milk) increase significantly and remain constant during lactation, respectively, and they are affected by regions. In addition, the differential lipids (22:1n‐9, C9:0, trans‐PUFA, 22:4n‐6, etc.) of PLs are closely related to the maternal diet. PLs and cholesterol content differ from western research and infant formula, which will help to design an infant formula that is more suitable for Chinese babies in the future. Practical Application: Compared with PLs and cholesterol in western countries and infant formula, the specificity of Chinese HM can more accurately target the development of formulas suitable for the growth of Chinese infants. At the same time, according to the influence of the mother?s diet on the composition of HM, it is more reasonable to guide the diet of the mother.  相似文献   

3.
Zhao  Yadong  Wang  Miao  Lindström  Mikael E.  Li  Jiebing 《Lipids》2015,50(10):1009-1027
In order to establish Ciona intestinalis as a new bioresource for n‐3 fatty acids‐rich marine lipids, the animal was fractionated into tunic and inner body tissues prior to lipid extraction. The lipids obtained were further classified into neutral lipids (NL), glycolipids (GL) and phospholipids (PL) followed by qualitative and quantitative analysis using GC‐FID, GC–MS, 1H NMR, 2D NMR, MALDI‐TOF‐MS and LC–ESI–MS methods. It was found that the tunic and inner body tissues contained 3.42–4.08 % and 15.9–23.4 % of lipids respectively. PL was the dominant lipid class (42–60 %) irrespective of the anatomic fractions. From all lipid fractions and classes, the major fatty acids were 16:0, 18:1n‐9, C20:1n‐9, C20:5n‐3 (EPA) and C22:6n‐3 (DHA). The highest amounts of long chain n‐3 fatty acids, mainly EPA and DHA, were located in PL from both body fractions. Cholestanol and cholesterol were the dominant sterols together with noticeable amounts of stellasterol, 22 (Z)‐dehydrocholesterol and lathosterol. Several other identified and two yet unidentified sterols were observed for the first time from C. intestinalis. Different molecular species of phosphatidylcholine (34 species), sphingomyelin (2 species), phosphatidylethanolamine (2 species), phosphatidylserine (10 species), phosphatidylglycerol (9 species), ceramide (38 species) and lysophospholipid (5 species) were identified, representing the most systematic PL profiling knowledge so far for the animal. It could be concluded that C. intestinalis lipids should be a good alternative for fish oil with high contents of n‐3 fatty acids. The lipids would be more bioavailable due to the presence of the fatty acids being mainly in the form of PL.  相似文献   

4.
Regiospecific distributions of fatty acids of triacylglycerols (TAG) and phospholipids (PL) separated from broad beans (Vicia faba) of four cultivars (Minpo, Sanuki, Nintoku and Sanren) were investigated. The major lipid components were PL (47.5–50.5 wt‐%) and TAG (47.7–50.1 wt‐%), while steryl esters, hydrocarbons, free fatty acids, diacylglycerols and monoacylglycerols were present in minor proportions (1.6–2.4 wt‐%). The PL components isolated from the four cultivars were phosphatidylcholine (56.4–58.4 wt‐%), phosphatidylethanolamine (20.3–21.7 wt‐%) and phosphatidylinositol (16.6–18.6 wt‐%). Phosphatidylinositol was unique in that it had the highest saturated fatty acid content among these PL. The principal characteristics of the fatty acid distribution in the TAG and PL were evident in the beans: Unsaturated fatty acids were predominantly concentrated in the sn‐2 position while saturated fatty acids primarily occupied the sn‐1 or sn‐3 position in these lipids. The lipid components and fatty acid distributions were almost the same in the four cultivars and were not influenced by genetic variability and planting location. These results could be useful information to both consumers and producers for the manufacture of traditional broad bean foods in Japan.  相似文献   

5.
Seed oils from Acer species are a potential source of the nutraceutical fatty acids, nervonic acid (cis‐15‐tetracosenoic acid, NA), and γ‐linolenic acid (cis‐6,9,12‐octadecatrienoic acid, GLA). To further characterize the genus, seed fatty acid content and composition were determined for 20 species of Acer. Fatty acid content ranged from 8.2% for Acer macrophyllum to over 36% for A. mono and A. negundo. The presence of very‐long‐chain fatty acids (VLCFA), with chain length of 20‐carbons or greater, and GLA were characteristic features of the seed oils. In all species, erucic acid (cis‐13‐docosenoic acid, EA) was the predominant VLCFA with the highest level of NA being only 8.6% in A. olivianum. Regioselective lipase digestion demonstrated that VLCFA are largely absent from the sn‐2 position of seed triacylglycerol, whereas GLA is primarily located at this position. Five Acer species contained low levels (<2%) of cis‐12‐octadecenoic acid and cis‐14‐eicosenoic acid, uncommon n‐6 fatty acids not previously reported from Acer.  相似文献   

6.
The fatty acid distributions of triacylglycerols (TAG) and major phospholipids (PL) obtained from adzuki beans (Vigna angularis) were investigated. The total lipids extracted from the beans were separated by thin‐layer chromatography (TLC) into eight fractions. The major lipid components were PL (63.5 wt‐%), TAG (21.2 wt‐%), steryl esters (7.5 wt‐%) and hydrocarbons (5.1 wt‐%), while free fatty acids, diacylglycerols (1,3‐DAG and 1,2‐DAG) and monoacylglycerols were also present in minor proportions (0.2–1.1 wt‐%). The major PL components isolated from the beans were phosphatidylcholine (45.3 wt‐%), phosphatidylethanolamine (25.8 wt‐%) and phosphatidylinositol (21.5 wt‐%). Phosphatidylinositol was unique in that it had the highest saturated fatty acid content among the three PL. With a few exceptions, however, the principal characteristics of the fatty acid distribution in the TAG and three PL were evident in the beans: Unsaturated fatty acids were predominantly concentrated in the sn‐2 position while saturated fatty acids primary occupied the sn‐1 or sn‐3 position in the oils of the adzuki beans. In general, these results could be useful to both consumers and producers for the manufacture of traditional adzuki foods in Japan.  相似文献   

7.
Phosphatidylglycerol (PG) is a highly functional phospholipid (PL), which has many physiological functions. However, naturally occurring PG binding n‐3 polyunsaturated fatty acid (n‐3 PUFA) is low in content, resulting in a scarcity of industrial bio‐resources of n‐3 PUFA enriched PG. The current study investigates the preparation of salmon roe PG (SRPG) from three types of salmon roe lipids and glycerol via phospholipase D (PLD)‐mediated transphosphatidylation. The yields of SRPG obtained from salmon roe total lipid (SRTL) and salmon roe PL (SRPL) are higher than those obtained from purified salmon roe phosphatidylcholine (SRPC) in aqueous system. Following a 24 h reaction with 0.75 U PLD, SRTL, and SRPL yield up to 96.4 mol% and 96.7 mol% SRPG, respectively. In addition, more fatty acids are released from synthesized SRPG via hydrolysis by pancreatic enzymes than from SRPC and soybean PC in in vitro digestion model. Fatty acids at the sn‐2 position of SRPG are completely liberated by 0.04 U of phospholipase A2 (PLA2) during a 6 h reaction, whereas fatty acids of SRPC are partially unhydrolyzed even after a 24 h reaction. Our results suggest that SRPG converted from salmon lipids by PLD is a functional PL with high bioavailability of n‐3 PUFAs. Practical Applications: Phosphatidylglycerol rich in n‐3 PUFAs is prepared from salmon roe lipids (SRPG) catalyzed by PLD. The SRPG yields reach 96.4 mol% and 96.7 mol% of phosphatidylcholine contained in SRTL and SRPL, respectively, in aqueous reaction system. Fatty acids rich in n‐3 PUFAs at sn‐2 position of prepared SRPG are rapidly liberated by PLA2 in an in vitro digestion model.  相似文献   

8.
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are polyunsaturated fatty acids (PUFA) of the n‐3 series. Fish oil is a classical source of n‐3 PUFA, where they occur in the form of triacylglycerols (TAG). However, new sources of n‐3 PUFA esterified in phospholipids (PL) are emerging. We prepared liposomes from a natural marine lipid extract and examined their behaviour under conditions mimicking that of the gastrointestinal tract. This physicochemical approach proved that liposomes could be used as an effective oral PUFA delivery system. In vivo studies in rats were performed to examine the metabolic fate of EPA (20:5 n‐3) and DHA (22:6 n‐3) delivered either in PL from liposomes or in TAG from oil. Liposome ingestion increased PUFA bioavailability in lymph compared with fish oil. The proportion of n‐3 PUFA esterified in the sn‐2 position of chylomicron TAG depended on the dietary lipid source. Complex time‐course profiles were observed for plasma lipids with liposome supplementation over a 2‐week period, suggesting time‐dependent regulations. Taken together, the type of PUFA, EPA or DHA, as well as its intramolecular distribution in chylomicron TAG seemed to influence the metabolic fate of the fatty acids and their physiological activities.  相似文献   

9.
Liver fatty acid binding protein (Fabp1) and sterol carrier protein‐2/sterol carrier protein‐x (SCP2/SCPx) genes encode proteins that enhance hepatic uptake, cytosolic transport, and peroxisomal oxidation of toxic branched‐chain fatty acids derived from dietary phytol. Since male wild‐type (WT) mice express markedly higher levels of these proteins than females, the impact of ablating both genes (TKO) was examined in phytol‐fed males. In WT males, high phytol diet alone had little impact on whole body weight and did not alter the proportion of lean tissue mass (LTM) versus fat tissue mass (FTM). TKO conferred on dietary phytol the ability to induce weight loss as well as reduce liver weight, FTM, and even more so LTM. Concomitantly TKO induced hepatic lipid accumulation, preferentially threefold increased phospholipid (PL) at the expense of decreased triacylglycerol (TG) and total cholesterol. Increased PL was associated with upregulation of membrane fatty acid transport/translocase proteins (FATP 2,4), cytosolic fatty acid/fatty acyl‐CoA binding proteins (FABP2, ACBP), and the rate limiting enzyme in PL synthesis (Gpam). Decreased TG and cholesterol levels were not attributable to altered levels in respective synthetic enzymes or nuclear receptors. These data suggest that the higher level of Fabp1 and Scp2/Scpx gene products in WT males was protective against deleterious effects of dietary phytol, but TKO significantly exacerbated phytol effects in males.  相似文献   

10.
Background – Since n‐3 fatty acids, abundant in fatty fish, may improve health, we raised the question whether self‐reported intake frequency of fatty fish (FF) might be related to the percentage of n‐3 fatty acids in serum phospholipids (PL‐n‐3), and also to self‐rated health (H). Design – The study followed a cross‐sectional design. Methods – In the cross‐sectional Oslo Health Study, PL‐n‐3 were determined in 121 middle‐aged ethnic Norwegians and 102 immigrants from the Indian subcontinent and correlated with FF and H. Logistic regression was used to study the relationship between PL‐n‐3 and H (dichotomized, i.e. Poor vs. Good health). Results – FF correlated positively with PL20:5n‐3 (PL‐EPA, r = 0.467, p <0.001) and PL22:6n‐3 (PL‐DHA, r = 0.499, p <0.001), and negatively with PL20:4n‐6 (PL‐AA, r = –0.350, p = 0.001). H was positively associated with PL‐EPA (r = 0.321, p <0.001) and PL‐DHA (r = 0.275; p <0.001), but negatively with PL‐AA (r = –0.220, p = 0.001). The odds ratio for reporting Poor vs. Good health was significantly higher in subjects with low levels of PL‐EPA (OR = 1.49; 95% confidence interval = 1.17–1.89, p = 0.001), persisting after adjusting for sex, physical activity, ethnicity and length of education. Conclusion – The intake frequency of fatty fish is related to n‐3 fatty acids in the serum phospholipids, and to self‐rated health.  相似文献   

11.
This work aimed to evaluate the neutral lipid (NL) and phospholipid (PL) classes in tilapia (Oreochromis niloticus) muscle tissue. Tilapias were raised in captivity for a period of 5 months with increasing levels (0, 1.25, 2.50, 3.75, and 5.00%) of flaxseed oil [source of α‐linolenic acid (LNA), 18:3n‐3] in substitution for sunflower oil (control). The NL/PL ratio was 1.9, and 45 fatty acids were determined for both classes of lipid. The class totals of n‐3 acids always increased in all treatments, while the totals for n‐6 acids always decreased (p <0.05). For a given level of flaxseed oil, the LNA contents were consistently higher, including EPA (20:5n‐3) and DHA (22:6n‐3). Arachidonic acid (20:4n‐6) remained high in the PL but was reduced as levels of dietary flaxseed oil were increased. The n‐6/n‐3 ratios decreased significantly with the rise in flaxseed oil content in all treatments, and highly unsaturated fatty acid contents increased with the levels of flaxseed oil. Overall, the influence of flaxseed oil on the fatty acid composition in the contributing NL and PL classes was to increase n‐3 PUFA, thus raising the nutritional value of this freshwater fish meat and, consequently, contributing to the health of consumers.  相似文献   

12.
The seasonal effects on the fatty acid composition of triacylglycerol (TG) and phospholipid (PL) in the gonad and liver of Mastacembelus simack were determined using the gas chromatographic method. The most abundant fatty acids in the investigated seasons and tissues were palmitic acid (C16:0), stearic acid (C18:0), oleic acid (C18:1n‐9), palmitoleic acid (C16:1n‐7), arachidonic acid (C20:4n‐6), eicosapentaenoic acid (C20:5n‐3), and docosahexaenoic acid (C22:6n‐3). The distribution proportions of ∑SFA (saturated fatty acids), ∑MUFA (monounsaturated fatty acids) and ∑PUFA (polyunsaturated fatty acids) were found to be different among PL and TG fractions in all seasons. The total lipid content of gonad and liver were 1.32 (November)–4.90 % (September) and 1.32 (September)–3.94 % (January), respectively. It was shown that the total lipid and fatty acid compositions in the gonad and liver of fish were significantly influenced by seasons.  相似文献   

13.
Freshwater bryozoan Pectinatella magnifica was collected from a sand pit (South Bohemia). The total lipids after extraction from lyophilized bryozoans were analyzed using high‐performance liquid chromatography/high‐resolution negative tandem electrospray mass spectrometry. A total of 19 lipid classes were identified, including N‐acyl‐substituted phospholipids, that is, N‐acylphosphatidylethanolamine and N‐acylphosphatidylserine in their plasmenyl forms. Based on gas chromatography/mass spectrometry of 3‐pyridylcarbonyl (picolinyl) esters, a very unusual fatty acid was identified, namely 24:7n‐3 (all‐cis‐3,6,9,12,15,18,21‐tetracosaheptaenoic acid). The presence of polyunsaturated fatty acids in individual classes is very specific: arachidonic and eicosapentaenoic acids being predominantly bound as amides in N‐acyl phospholipids, that is, diacyl‐N‐acylphosphatidylethanolamines (NAPtdEtn), plasmenyl‐N‐acylphosphatidyl ethanolamines (PlsNAPtdEtn), diacyl‐N‐acylphosphatidylserines (NAPtdSer), and plasmenyl‐N‐acylphosphatidylserines (PlsNAPtdSer). While 24:6n‐3 was identified in the sn‐2 position of several phospholipids, 24:7n‐3 was identified in only two plasmalogens, that is, PlsNAPtdEtn and PlsNAPtdSer. Thanks to the tandem mass spectrometry, we managed to identify the position of all acyl groups in both diacyl‐ and also in alkenyl‐acyl‐(plasmenyl) molecular species of N‐acylphospholipids. The identification of the molecular species of N‐acyl‐substituted phosphatidylethanolamine and phosphatidylserine, including their plasmalogen forms, in the freshwater bryozoan P. magnifica has enabled the identification of endogenous cannabinoid precursors.  相似文献   

14.
Phospholipids (PLs) have many biological and technological functions. Among the main sources of PLs egg yolk is the most attractive because of the high content of phosphatidylcholine (PC). The nutritional value of PLs can be increased by different methods, including enzymatic enrichment with polyunsaturated fatty acids (PUFA). Depending on the enzymes and reaction systems used, a‐linolenic acid (ALA) was introduced into the sn‐1 or sn‐2 position. Useful methods of PL isolation and positional analysis were elaborated.  相似文献   

15.
Fibrates have been reported to elevate the hepatic proportion of oleic acid (18:1n‐9) through inducing stearoyl‐CoA desaturase (SCD). Despite abundant studies on the regulation of SCD in the liver, little is known about this issue in the small intestine. The present study aimed to investigate the effect of clofibric acid on the fatty acid profile, particularly monounsaturated fatty acids (MUFA), and the SCD expression in intestinal mucosa. Treatment of rats with a diet containing 0.5 % (w/w) clofibric acid for 7 days changed the MUFA profile of total lipids in intestinal mucosa; the proportion of 18:1n‐9 was significantly increased, whereas those of palmitoleic (16:1n‐7) and cis‐vaccenic (18:1n‐7) acids were not changed. Upon the treatment with clofibric acid, SCD was induced and the gene expression of SCD1, SCD2, and fatty acid elongase (Elovl) 6 was up‐regulated, but that of Elovl5 was unaffected. Fat‐free diet feeding for 28 days increased the proportions of 16:1n‐7 and 18:1n‐7, but did not effectively change that of 18:1n‐9, in intestinal mucosa. Fat‐free diet feeding up‐regulated the gene expression of SCD1, but not that of SCD2, Elovl6, or Elovl5. These results indicate that intestinal mucosa significantly changes its MUFA profile in response to challenges by clofibric acid and a fat‐free diet and suggest that up‐regulation of the gene expression of SCD along with Elovl6 is indispensable to elevate the proportion of 18:1n‐9 in intestinal mucosa.  相似文献   

16.
Phospholipid (PL) fatty acid composition and stereospecific distribution of 25 genetically modified soybean lines with a wide range of compositions were determined by gas chromatography and phospholipase A2 hydrolysis. Pl contained an average of 55.3% phosphatidylcholine, 26.3% phosphatidylethanolamine, and 18.4% phosphatidylinositol. PL class proportions were affected by changes in overall fatty acid composition. PL fatty acid composition changed with oil fatty acid modification, especially for palmitate, stearate, and linolenate. Stereospecific analysis showed that saturated fatty acids were primarily located at the sn-1 position of all PL, and changes of the saturates in PL were largely reflected on this position. Oleate was distributed relatively equally between the sn-1 and sn-2 positions. Linoleate was much more concentrated on sn-2 than on sn-1 position for all PL. Linolenate was distributed relatively equally at low concentration but preferred sn-2 position at high concentration.  相似文献   

17.
In this study, the proximate and fatty acid compositions of the muscle tissue of 186 samples of fish belonging to fifteen species of freshwater fish harvested in subalpine lakes (bleak, shad, crucian carp, whitefish, common carp, pike, black bullhead, burbot, perch, Italian roach, roach, rudd, wels catfish, chub and tench) were investigated. Most of the fish demonstrated a lipid content in the fillet lower than 2.0 g 100 g?1 wet weight (range 0.6–9.7). A strong relationship between feeding behavior and fatty acid composition of the muscle lipids was observed. Planktivorous fish showed the lowest amounts of n‐3 fatty acids (p < 0.05), but the highest monounsaturated fatty acid (MUFA) contents, in particular 18:1n‐9. Conversely, carnivorous fish showed the highest amounts of saturated fatty acids and n‐3 fatty acids (p < 0.05), but the lowest MUFA contents. Omnivorous fish showed substantial proportions of n‐3 fatty acids and the highest contents of n‐6 fatty acids. Principal component analysis showed a distinct separation between fish species according to their feeding habits and demonstrated that the most contributing trophic markers were 18:1n‐9, 18:3n‐3, 22:6n‐3 and 20:4n‐6. The quantitative amounts n‐3 polyunsaturated fatty acid in muscle tissues varied depending on the fish species, the lipid content and the feeding habits. Some species were very lean, and therefore would be poor choices for human consumption to meet dietary n‐3 fatty acid requirements. Nevertheless, the more frequently consumed and appreciated fish, shad and whitefish, had EPA and DHA contents in the range 900–1,000 mg 100 g?1 fresh fillet.  相似文献   

18.
The present prospective study examines proportions of maternal erythrocyte fatty acids across gestation and their association with cord erythrocyte fatty acids in normotensive control (NC) and preeclamptic pregnancies. We hypothesize that maternal fatty acid status in early pregnancy influences fetal fatty acid stores in preeclampsia. 137 NC women and 58 women with preeclampsia were included in this study. Maternal blood was collected at 3 time points during pregnancy (16–20th weeks, 26–30th weeks and at delivery). Cord blood was collected at delivery. Fatty acids were analyzed using gas chromatography. The proportions of maternal erythrocyte α‐linolenic acid, docosahexaenoic acid, nervonic acid, and monounsaturated fatty acids (MUFA) (p < 0.05 for all) were lower while total n‐6 fatty acids were higher (p < 0.05) at 16–20th weeks of gestation in preeclampsia as compared with NC. Cord 18:3n‐3, 22:6n‐3, 24:1n‐9, MUFA, and total n‐3 fatty acids (p < 0.05 for all) were also lower in preeclampsia as compared with NC. A positive association was observed between maternal erythrocyte 22:6n‐3 and 24:1n‐9 at 16–20th weeks with the same fatty acids in cord erythrocytes (p < 0.05 for both) in preeclampsia. Our study for the first time indicates alteration in maternal erythrocyte fatty acids at 16th weeks of gestation which is further reflected in cord erythrocytes at delivery in preeclampsia.  相似文献   

19.
Tong Wang  Xiaosan Wang  Xingguo Wang 《Lipids》2016,51(10):1115-1126
Interesterification or the randomization reaction changes fatty acid positional distribution and solid fat content of fats, which may consequently affect fat absorption and metabolism. It is well established that saturated fatty acids in the sn‐2 position of triacylglycerols (TAG) have better digestibility and lower postprandial chylomicron clearance compared to those in the sn‐1,3 positions in animal experiments. TAG structure is also shown to affect fasting lipid level and atherosclerosis in animals, but fat interesterification it has been shown to not affect fasting lipid level in human adults. However, its effect on postprandial responses is controversial. In this review, the complex results of studies of interesterification and lipemia were briefly discussed. More importantly, the confounding of two factors that are both changed by interesterification, TAG structure and solid fat content as the main limitation on understanding how interesterification affects lipemia is emphasized. Separation of the two factors is possible using paired fats as demonstrated. This paper also discusses some intriguing effects of fats having saturated fatty acids in the sn‐2 position and the need for future research.  相似文献   

20.
The influence of the distribution of polyunsaturated fatty acids on the glycerol backbone of dietary triacylglycerols on the fatty acid profile of adipose tissue and muscle phospholipids was investigated in growing‐finishing pigs (48) and broiler chicken (84). The animals were fattened on barley/soybean meal diets supplemented with a blend of soybean oil and beef tallow, either in the ratio 3:1 w/w (high‐PUFA) or 1:3 w/w (low‐ PUFA). Part of the high‐ and low‐PUFA blends was chemically interesterified to randomly distribute all fatty acids over the three positions of the glycerol. Thus, two sets of diets of identical overall fatty acid composition, but differing in the distribution of fatty acids in the triacylglycerols, were fed. Growth performance and carcass composition were neither affected by fatty acid composition nor by randomisation of dietary fats in either animal species. Apparent digestibility of energy was slightly lower in pigs fed the low‐PUFA blends. Fatty acid profile of subcutaneous fat of pigs and broilers as well as of internal body fat (lamina subserosa) and muscle phospholipids of pigs varied according to the dietary fatty acid composition but was not affected by randomisation of dietary fats. These findings are explained in terms of the hydrolysis of TAG during transport of lipids from enterocytes to adipose tissue cells and the continuous lipolysis and re‐esterification of fatty acids that take place in adipose tissue cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号