首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(silyl ester)s were synthesized by a new route via the condensation of di‐tert‐butyl ester of dicarboxylic acid with dichlorosilane by the elimination of tert‐butyl chloride as a driving force. Three new poly(silyl ester)s with molecular weights typically ranging from 2000 to 5000 amu were produced by the condensation of di‐tert‐butyl adipate with 1,5‐dichloro‐1,1,5,5‐tetramethyl‐3,3‐diphenyl trisiloxane and di‐tert‐butyl fumarate with 1,5‐dichloro‐1,1,5,5‐tetramethyl‐3,3‐diphenyl trisiloxane or 1,3‐dichlorotetramethyl disiloxane. Each polymer was characterized with infrared, 1H‐NMR, and 13C‐NMR spectroscopy, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. This new approach showed several advantages. First, it did not require a catalyst or solvent. Second, the tert‐butyl chloride byproduct was volatile and was easily eliminated. Third, there was no reaction between the growing poly(silyl ester)s and the condensation byproduct, tert‐butyl chloride. Fourth, the monomers could be readily purified. Finally, the polymerization could be performed at relatively low temperatures and in a short time. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1378–1384, 2006  相似文献   

2.
Two unsaturated poly(silyl ester)s that contained innoxious fumaryloxyl units in the main chain were prepared by the polycondensation reaction of 1,5‐dichloro‐1,1,5,5‐tetramethyl‐3,3‐diphenyltrisiloxane or 1,3‐dichlorotetramethyldisiloxane with di‐tert‐butyl fumarate under nitrogen at 100°C for 1–3 days. To investigate the crosslinking reaction of the unsaturated poly(silyl ester)s, the two unsaturated poly(silyl ester)s were crosslinked in the presence of 2,2′‐azobisisobutyronitrile as a radical initiator. After the crosslinking, the unsaturated poly(silyl ester)s, which were viscous liquids, turned into solid products. The characterization of the two poly(silyl ester)s and the crosslinked products included infrared spectroscopy, 1H‐NMR spectroscopy, differential scanning calorimetry, and thermogravimetric analysis. Comparisons were made between the linear poly(silyl ester)s and the crosslinked poly(silyl ester)s. After the crosslinking, the important resonance signal for ethenylene (C?C) disappeared, and this showed that the crosslinking reaction was carried out progressively. The glass‐transition temperatures of the crosslinked poly(silyl ester)s were higher than those of the uncross‐ linked poly(silyl ester)s, and the thermal stability of the crosslinked poly(silyl ester)s was better than that of uncrosslinked poly(silyl ester)s. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 1221–1225, 2007  相似文献   

3.
The two poly(silyl ester)s containing 2,2‐bis(p‐dimethylsiloxy‐phenyl)propane units in the polymer backbones have been prepared via polycondensation reaction of di‐tert‐butyl adipate and di‐tert‐butyl fumarate with 2,2‐bis(p‐chloro dimethylsiloxy‐phenyl)propane to give tert‐butyl chloride as the condensate. The polymerizations were performed under nitrogen at 110°C for 24 h without addition of solvents and catalysts to obtain the poly(silyl ester)s with weight average molecular weights typically ranging from 5000 to 10,000 g/mol. Characterization of the poly(silyl ester)s included 1H NMR and 13C NMR spectroscopies, infrared spectroscopy, ultraviolet spectroscopy, differential scanning calorimetry, thermogravimetric analysis (TGA), gel permeation chromatography, and Ubbelohde viscometer. The glass transition temperatures (Tg) of the obtained polymers were above zero because of the introducing 2,2‐bis(p‐dimethylsiloxy‐phenyl)propane units in the polymer backbones. The TGA/DTG results showed that the obtained poly(silyl ester)s were stable up to 180°C and the residual weight percent at 800°C were 18 and 9%, respectively. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1937–1942, 2006  相似文献   

4.
Poly(ester‐urethane) was synthesized from poly(ethylene glycol adipate) (PEG) and 2,4‐toluene diisocyanate (TDI) to study the effects of reaction temperature and cure temperature on the crystallization behavior, morphology, and mechanical properties of the semicrystalline polyurethane (PU). PEG as soft segment was first reacted with TDI as hard segment at 90, 100, and 110°C, respectively, to obtain three kinds of PU prepolymers, coded as PEPU‐90, PEPU‐100, and PEPU‐110. Then the PU prepolymers were crosslinked by 1,1,1‐tris (hydroxylmethyl) propane (TMP) and were cured at 18, 25, 40, 60, and 80°C. Their structure and properties were characterized by attenuated total reflection Fourier transform infrared, wide‐angle X‐ray diffraction, scanning electron microscopy, dynamic mechanical analysis, and tensile testing. With an increase of the reaction temperature from 90 to 100°C, the crystallinity degree of soft segment decreased, but interaction between soft and hard segments enhanced, leading to the increase of the glass transition temperature (Tg) of soft domain and tensile strength. When the cure temperature was above 60°C, miscibility between soft and hard segments of the PEPU films was improved, resulting in relatively low crystallinity and elongation at break, but high soft segment Tg and tensile strength. On the whole, all of the PEPU‐90, PEPU‐100, and PEPU‐110 films cured above 60°C possessed higher tensile strength and elongation at break than that of the films cured at other temperatures. The results revealed that the reaction temperature and cure temperature play an important role in the improvement of the crosslinking structure and mechanical properties of the semicrystalline PU. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 708–714, 2006  相似文献   

5.
The synthesis and characterization of a new series of chiral poly(ester‐amide)s are reported. They were prepared by the simple reaction of diacid chlorides with biphenolic azo chromophores and optically active dihydroxy compound (isosorbide) in dimethyl acetamide at 100 °C. The polymers containing isosorbide units were optically active. The polymers showed Tg between 100 and 190 °C and were stable up to 400 °C. These poly(ester‐amide)s showed a positive solvatochromism in UV–visible absorption spectra. Second harmonic generation activities were measured by the powder method. © 2001 Society of Chemical Industry  相似文献   

6.
A series of novel aromatic poly(ester‐ether‐imide)s with inherent viscosity values of 0.44–0.74 dL g?1 were prepared by the diphenylchlorophosphate‐activated direct polycondensation of an imide ring‐containing diacid namely 5‐(4‐trimellitimidophenoxy)‐1‐trimellitimido naphthalene ( 1 ) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. Owing to comparison of the characterization data, an ester‐containing model compound ( 2 ) was also synthesized by the reaction of 1 with phenol. The model compound 2 and the resulted polymers were fully characterized by FT‐IR and NMR spectroscopy. The ultraviolet λmax values of the poly(ester‐ether‐imide)s were also determined. The resulting polymers exhibited an excellent organosolubility in a variety of high polar solvents such as N,N‐dimethylacetamide, N,N‐dimethylformamide, dimethyl sulfoxide, and N‐methyl‐2‐pyrrolidone. They were soluble even in common less polar organic solvents such as pyridine, m‐cresol, and tetrahydrofuran on heating. Crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resulted polymers exhibited nearly an amorphous nature. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 221 and 245°C. Thermal behaviors of the obtained polymers were characterized by thermogravimetric analysis, and the 10% weight loss temperatures of the poly(ester‐ether‐imide)s were found to be over 410°C in nitrogen. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
A series of poly(R‐3‐hydroxybutyrate)/poly(ε‐caprolactone)/1,6‐hexamethylene diisocyanate‐segmented poly(ester‐urethanes), having different compositions and different block lengths, were synthesized by one‐step solution polymerization. The molecular weight of poly(R‐3‐hydroxybutyrate)‐diol, PHB‐diol, hard segments was in the range of 2100–4400 and poly(ε‐caprolactone)‐diol, PCL‐diol, soft segments in the range of 1080–5800. The materials obtained were investigated by using differential scanning calorimetry, wide angle X‐ray diffraction and mechanical measurements. All poly(ester‐urethanes) investigated were semicrystalline with Tm varying within 126–148°C. DSC results showed that Tg are shifted to higher temperature with increasing content of PHB hard segments and decreasing molecular weight of PCL soft segments. This indicates partial compatibility of the two phases. In poly(ester‐urethanes) made from PCL soft segments of molecular weight (Mn ≥ 2200), a PCL crystalline phase, in addition to the PHB crystalline phase, was observed. As for the mechanical tensile properties of poly(ester‐urethane) cast films, it was found that the ultimate strength and the elongation at the breakpoint decrease with increasing PHB hard segment content. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 703–718, 2002  相似文献   

8.
A novel class of wholly aromatic poly(ester‐imide)s, having a biphenylene pendant group, with inherent viscosities of 0.32–0.49 dL g?1 was prepared by the diphenylchlorophosphate‐activated direct polyesterification of the preformed imide‐ring‐containing diacid, 4‐p‐biphenyl‐2,6‐bis(4‐trimellitimidophenyl)pyridine (1) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A reference diacid, 2,6‐bis(trimellitimido)pyridine (2) without a biphenylene pendant group and two phenylene rings in the backbone, was also synthesized for comparison purposes. At first, with due attention to structural similarity and to compare the characterization data, a model compound (3) was synthesized by the reaction of compound 1 with two mole equivalents of phenol. Moreover, the optimum condition of polymerization reactions was obtained via a study of the model compound synthesis. All of the resulting polymers were characterized by Fourier transform infrared and 1H NMR spectroscopy and elemental analysis. The ultraviolet λmax values of the poly(ester‐imide)s were also determined. All of the resulting polymers exhibited excellent solubility in common organic solvents, such as pyridine, chloroform, tetrahydrofuran, and m‐cresol, as well as in polar organic solvents, such as N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide, and dimethyl sulfoxide. The crystalline nature of the polymers obtained was evaluated by means of wide‐angle X‐ray diffraction. The resulting poly(ester‐imide)s showed nearly an amorphous nature, except poly(ester‐imide) derived from 4,4′‐dihydroxy biphenyl. The glass transition temperatures (Tg) of the polymers determined by differential scanning calorimetry thermograms were in the range 298–342 °C. The 10% weight loss temperatures (T10%) from thermogravimetric analysis curves were found to be in the range 433–471 °C in nitrogen. Films of the polymers were also prepared by casting the solutions. Copyright © 2006 Society of Chemical Industry  相似文献   

9.
A series of new alternating aromatic poly(ester‐imide)s were prepared by the polycondensation of the preformed imide ring‐containing diacids, 2,2′‐bis(4‐trimellitimidophenoxy)biphenyl (2a) and 2,2′‐bis(4‐trimellitimidophenoxy)‐1,1′‐binaphthyl (2b) with various aromatic dihydroxy compounds in the presence of pyridine and lithium chloride. A model compound (3) was also prepared by the reaction of 2b with phenol, its synthesis permitting an optimization of polymerization conditions. Poly(ester‐imides) were fully characterized by FTIR, UV‐vis and NMR spectroscopy. Both biphenylene‐ and binaphthylene‐based poly(ester‐imide)s exhibited excellent solubility in common organic solvents such as tetrahydrofuran, m‐cresol, pyridine and dichloromethane. However, binaphthylene‐based poly(ester‐imide)s were more soluble than those of biphenylene‐based polymers in highly polar organic solvents, including N‐methyl‐2‐pyrrolidone, N,N‐dimethylacetamide, N,N‐dimethylformamide and dimethyl sulfoxide. From differential scanning calorimetry thermograms, the polymers showed glass‐transition temperatures between 261 and 315 °C. Thermal behaviour of the polymers obtained was characterized by thermogravimetric analysis, and the 10 % weight loss temperatures of the poly(ester‐imide)s was in the range 449–491 °C in nitrogen. Furthermore, crystallinity of the polymers was estimated by means of wide‐angle X‐ray diffraction. The resultant poly(ester‐imide)s exhibited nearly an amorphous nature, except poly(ester‐imide)s derived from hydroquinone and 4,4′‐dihydroxybiphenyl. In general, polymers containing binaphthyl units showed higher thermal stability but lower crystallinity than polymers containing biphenyl units. Copyright © 2005 Society of Chemical Industry  相似文献   

10.
Two series of thermoplastic poly(ester–siloxane)s, based on poly(dimethylsiloxane) (PDMS) as the soft segment and poly(butylene terephthalate) as the hard segment, were synthesized by two‐step catalyzed transesterification reactions in the melt. Incorporation of soft poly(dimethylsiloxane) segments into the copolyester backbone was accomplished in two different ways. The first series was prepared based on dimethyl terephthalate, 1,4‐butanediol and silanol‐terminated poly(dimethylsiloxane) (PDMS‐OH). For the second series, the PDMS‐OH was replaced by methyl diesters of carboxypropyl‐terminated poly(dimethylsiloxane)s. The syntheses were optimized in terms of both the concentration of catalyst, tetra‐n‐butyl‐titanate (Ti(OBu)4), and stabilizer, N,N′‐diphenyl‐p‐phenylene‐diamine, as well as the reaction time. The reactions were followed by measuring the inherent viscosities of the reaction mixture. The molecular structures of the synthesized poly(ester–siloxane)s were verified by 1H NMR spectroscopy, while their thermal properties were investigated using differential scanning calorimetry. © 2001 Society of Chemical Industry  相似文献   

11.
Cross‐dehydrocoupling reactions of (R)‐methyl(1‐naphthyl)phenylsilane (>99%ee) with (S)‐methyl(1‐naphthyl)phenylsilanol (>99% ee) proceeded with 82–99% retention of configuration of chiral silicon centres in the presence of various Rh‐catalysts. Cross‐dehydrocoupling polymerization of 1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxanediol with 1,3‐dihydro‐1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxane gave poly(methylphenylsiloxane) of moderate molecular weight in toluene at 60 °C in the presence of [RhCl(cod)]2 (5.0 mol%) and triethylamine (1.0 equivalent). Assignment of the triad signals of the resulting polymer was made by 1H NMR spectroscopy of the methyl proton (I = 0.04, H = 0.09 and S = 0.14 ppm) and 13C NMR spectroscopy of the ipso carbon of the phenyl group (S = 136.7, H = 136.9, and I = 137.1 ppm). Although the reaction of optically pure (S,S)‐1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxanediol with 1,3‐dihydro‐1,3‐dimethyl‐1,3‐diphenyl‐1,3‐disiloxane [(S,S):(S,R):(R,R)] = 84:16:0] gave a poly(methylphenylsiloxane) of rather low molecular weight, its triad tacticity was found to be rich in syndiotacticity (S:H:I = 60:32:8) by 13C NMR spectroscopy. © 2001 Society of Chemical Industry  相似文献   

12.
Hydrosilylation of nadic anhydride with tetramethyl disiloxane yielded 5,5′‐(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboxylic anhydride (I), which further reacted with 4‐aminophenol to give N,N′‐bis(4‐hydroxyphenyl)‐5,5′‐bis‐(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboximide (II). Epoxidation of II with excess epichlorohydrin formed a siloxane‐ and imide‐modified epoxy oligomer (ie diglycidyl ether of N,N′‐bis(4‐hydroxyphenyl)‐5,5′‐bis(1,1,3,3‐tetramethyl disiloxane‐1,3‐diyl)‐bis‐norborane‐2,3‐dicarboximide) (III). Equivalent ratios of III/I of 1/1 and 1/0.8 were prepared and cured to produce crosslinked materials. Thermal mechanical and dynamic mechanical properties were investigated by TMA and DMA, respectively. It was noted that each of these two materials showed a glass transition temperature (Tg) higher than 160 °C with moderate moduli. The thermal degradation kinetics was studied with dynamic thermogravimetric analysis (TGA) and the estimated apparent activation energies were 111.4 kJ mol?1 (in N2), 117.1 kJ mol?1 (in air) for III/I = 1/0.8, and 149.2 kJ mol?1 (in N2), 147.6 kJ mol?1 (in air) for III/I = 1/1. The white flaky residue of the TGA char was confirmed to be silicon dioxide, which formed a barrier at the surface of the polymer matrix and, in part, accounted for the unique heat resistance of this material. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
A series of aliphatic poly(ether–ester)s based on flexible poly(tetramethylene oxide) (PTMO) and hard poly (butylene succinate) (PBS) segments were synthesized by the catalyzed two‐step transesterification reaction of dimethyl succinate, 1,4‐butanediol, and α,ω‐hydroxy‐terminated PTMO (Mn = 1000 g/mol) in the bulk. The content of soft PTMO segments in the polymer chains was varied from 10 to 50 mass %. The effect of the introduction of the soft segments on the structure, thermal, and physical properties, as well as on the biodegradation properties was investigated. The composition and structure of the aliphatic segmented copolyesters were determined by 1H NMR spectroscopy. The molecular weights of the polyesters were verified by viscometry of dilute solutions and polymer melts. The thermal properties were investigated using DSC. The degree of crystallinity was determined by means of DSC and WAXS. Biodegradation of the synthesized copolyesters, estimated in enzymatic degradation tests on polymer films in phosphate buffer solution with Candida rugosa lipase at 37°C, was compared with hydrolytic degradation in the buffer solution. Viscosity measurements confirmed that there was no change in molecular weight of the copolyesters leading to the conclusion that the degradation mechanism of poly(ester–ether)s based on PTMO segments occurs through the surface erosion. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

14.
An aromatic bishalide, 5‐tert‐butyl‐1,3‐bis(4‐fluorobenzoyl)benzene ( 2 ) was synthesized in high yield and purity by the reaction of 5‐tert‐butylisophthaloyl chloride ( 1 ) and fluorobenzene and polymerized by nucleophilic substitution reaction with commercially available aromatic bisphenols to prepare a series of high molecular weight poly(arylene ether ketone)s containing pendant tertiary butyl groups. The effect of molecular structure on the physical, thermal, mechanical and adhesion properties of the polymers was investigated.  相似文献   

15.
Epoxy‐terminated siloxane‐contained resin (BCDS/OBBA‐ETS) with high tensile strength and lap shear strength as well as good thermal stability was synthesized and characterized by 1H‐NMR and Fourier transform infrared spectroscopy. Carboxy‐capped disiloxane‐4,4′‐oxybis (benzoic acid) ester oligomer (BCDS/OBBA) was firstly prepared from the reaction between 1,3‐bis(chloromethyl)‐1,1,3,3‐tetramethyl‐disiloxane and 4,4′‐oxybis(benzoic acid) (OBBA) in N,N‐dimethylformamide in the presence of triethylamine. Then, the BCDS/OBBA oligomer was reacted with epichlorohydrin to obtain the title BCDS/OBBA‐ETS resin. Cured with liquid polyamide L‐651, or diethylenetriamine, the mechanical and thermal properties as well as the lap shear strength of the BCDS/OBBA‐ETS resin were evaluated. The results indicated that the BCDS/OBBA‐ETS resin exhibited good thermal stability below 200°C, and the glass transition temperature (Tg) was about 64°C after cured with L‐651. The tensile strength of same cured BCDS/OBBA‐ETS resin was 27.46 MPa with a stain at break of 42.11%, and the lap shear strength for bonding stainless steel was 18.59 MPa. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
Functional poly(carbonate‐b‐ester)s were synthesized in buck by ring‐opening polymerization of the carbonate (TMC, MBC, or BMC) with tert‐butyl N‐(2‐hydroxyethyl) carbamate as an initiator, and then with ε‐CL (or ε‐BCL) comonomer. Subsequently, the PMMC‐b‐PCL with pendent carboxyl groups and the PTMC‐b‐PHCL with pendent hydroxyl groups were obtained by catalytic debenzylation. DSC analysis indicated that only one Tg at an intermediate temperature the Tgs of the two polymer blocks. A decrease Tg was observed when an increase contents of ε‐CL incorporated into the copolymers. In contrast, two increased Tms were observed with increasing PCL content. The block copolymers formed micelle in aqueous phase with critical micelle concentrations (cmcs) in the range of 2.23–14.6 mg/L and with the mean hydrodynamic diameters in the range of 100–280 nm, depending on the composition of copolymers. The drug entrapment efficiency and hydrolytic degradation behavior of micelle were also evaluated. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

17.
A new family of biodegradable amino‐acid‐based poly(ester amide)s (AA–PEAs) and amino‐acid‐based poly(ether ester amide)s (AA–PEEAs) consisting of reactive pendant functional groups (? COOH or ? NH2) were synthesized from unsaturated AA–PEAs and AA–PEEAs via a thiol–ene reaction in the presence of a radical initiator (2,2′‐azobisisobutyronitrile). The synthetic method was a one‐step reaction with near 100% yields under mild reaction conditions. The resulting functional AA–PEA and AA–PEEA polymers were characterized by Fourier transform infrared spectroscopy, NMR, and differential scanning calorimetry. These new functional AA–PEA and AA–PEEA derivatives had lower glass‐transition temperatures than the original unsaturated AA–PEA and AA–PEEA polymers, and their solubility in some organic solvents also improved. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
N‐Methyleneamines, formed by treating 1,3,5‐trimethylhexahydro‐1,3,5‐triazines with Lewis acids, have been shown to be capable initiators in the cationic polymerization of tert‐butyl vinyl ether, yielding polymers with amine functionality at the chain ends. Previous work was limited to titanium(IV) chloride (TiCl4) as the Lewis acid in dichloromethane solvent at 0 °C (with resulting polymers possessing relatively broad polydispersity index (PDI) values near 2), while this contribution details the effect of reaction parameters on the polymeric products; specifically, the role of temperature, solvent, Lewis acid and additives. Ultimately, performing the polymerization at ?78 °C in dichloromethane with TiCl4 as the Lewis acid and tetra‐n‐butylammonium chloride (nBu4NCl) as the additive afforded the best control over the system, with polymers formed possessing low PDI values (<1.2). Dramatic changes in number‐average molecular weight and PDI were observed in polymers formed by initiating systems of Lewis acid‐induced N‐methyleneamines, with temperature, solvent, Lewis acid and additives all playing a role. By varying single parameters, optimization of the system was achieved. Copyright © 2009 Society of Chemical Industry  相似文献   

19.
Calcium‐containing poly(urethane‐ester)s (PUEs) were prepared by reacting diisocyanate (HMDI or TDI) with a mixture of calcium salt of mono(hydroxybutyl)phthalate [Ca(HBP)2] and hydroxyl‐terminated poly(1,4‐butylene glutarate) [HTPBG1000], using di‐n‐butyltin‐dilaurate as catalyst. About six calcium‐containing PUEs having different composition were synthesized by taking the mole ratio of Ca(HBP)2:HTPBG1000:diisocyanate (HMDI or TDI) as 3:1:4, 2:2:4, and 1:3:4. Two blank PUEs were synthesized by the reaction of HTPBG1000 with diisocyanate (HMDI or TDI). The polymers were characterized by IR, 1H NMR, Solid state 13C‐CP‐MAS NMR, TGA, DSC, XRD, solubility, and viscosity studies. The Tg value of PUEs increases with increase in the calcium content and decreases with increase in soft segment content. The viscosity of the calcium‐containing PUEs increases with increase in the soft segment content and decreases with increase in the calcium content. X‐ray diffraction patterns of the polymers show that the HMDI‐based polymers are partially crystalline and TDI‐based polymers are amorphous in nature. The dynamic mechanical analysis of the calcium‐containing PUEs based on HMDI shows that with increase in the calcium content of polymer, modulus (g′ and g″) increases at any given temperature. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 1720–1727, 2006  相似文献   

20.
Controlled radical double ring‐opening polymerization of 2‐methylene‐1,4,6‐trioxaspiro[4,4]nonane (MTN) has been achieved with tert‐butyl perbenzoate (TBPB) as initiator in the presence of 2,2,6,6‐tetramethyl‐1‐piperidinyloxy free radical (TEMPO) at 125 °C. The molecular weight polydispersity of the polymers is obviously lower than that of polymers obtained by conventional procedures. As the [TEMPO]/[TBPB] molar ratio increased, the polydispersity decreased and a polydisperty as low as 1.2 was obtained at high TEMPO concentration. With the conversion of the monomer increasing, the molecular weight of the polymers turned higher and a linear relationship between the Mw and the monomer conversion was observed. The monomer conversion, however, did not exceed 30 %. © 2000 Society of Chemical Industry  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号