首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The polymerisation of a mixture of thiophene and N‐vinylcarbazole was achieved in aqueous suspension in the presence of nanodimensional alumina and FeCl3 as oxidant. The resultant composite was found to contain both polythiophene (PTP) and poly(N‐vinylcarbazole) (PNVC) components even after reflux in benzene, which would remove any PNVC homopolymer. The presence of the individual polymer components was endorsed by FTIR spectroscopic analyses. Thermogravimetric analyses showed that the overall stabilities of the composite and the corresponding homopolymers were in the order: PTP–Al2O3 > PTP > PTP–PNVC–Al2O3 > PNVC. Differential thermal analyses studies showed the manifestation of two different exotherms corresponding to the presence of two different polymeric constituents in the PTP–PNVC–Al2O3 composite. Differential scanning calorimetry studies revealed two glass‐transition temperatures (Tg) suggesting the presence of two polymeric moieties in the PTP–PNVC composite. Scanning electron micrographs of the PTP–Al2O3 and PTP–PNVC–Al2O3 composites showed distinctive morphological patterns. Transmission electron microscopic images of the composite revealed that the average particle size varied between 20 and 80 nm. DC conductivities of the composites were of the order of 10?6 S cm?1. Copyright © 2003 Society of Chemical Industry  相似文献   

2.
A conducting nanocomposite of crosslinked poly‐N‐vinylcarbazole (CLPNVC) with nanodimensional acetylene black (AB) was prepared by oxidative crosslinking of preformed PNVC through pendant carbazole moieties in presence of anhydrous FeCl3 as an oxidant and AB suspension in CHCl3 medium at 65°C. The incorporation of CLPNVC moieties in the CLPNVC‐AB composite was endorsed by Fourier transform infrared analysis. Scanning electron microscopic analysis showed formation of lumpy aggregates with average sizes in the 130–330 nm ranges. The thermal stability of the CLPNVC‐AB composite was appreciably higher than that of the PNVC‐AB composite. The direct current conductivities of the composites were significantly enhanced relative to that of the PNVC homopolymer (10?12–10?16 S/cm) and varied in the range of 10?4–10?2 S/cm depending on the amount of AB loading in the CLPNVC‐AB composite. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 819–824, 2006  相似文献   

3.
A poly(N‐vinylcarbazole) (PNVC)–formalin (FO) resin (PNVC‐FO) was prepared via copolycondensation between N‐vinylcarbazole (NVC) and FO in the presence of dry HCl gas in toluene medium at 110°C. A highly conducting composite of PNVC‐FO resin with nanodimensional acetylene black (AB) was prepared by carrying out the polycondensation reaction in presence of a suspension of acetylene black (AB) in toluene. The inclusion of PNVC in the PNVC‐FO‐AB composite was confirmed by FT‐IR analysis. Scanning electron microscopic analyses of PNVC‐FO resin and PNVC‐FO‐AB composite revealed formation of spherical particles and aggregates of irregular shapes respectively. Thermogravimetric analyses revealed the overall stability order as: AB > PNVC‐FO‐AB composite > PNVC‐FO resin > PNVC homopolymer. In sharp contrast to PNVC and PNVC‐FO resin, which were both nonconducting (10?12 to 10?16 S/cm), the conductivity of the composites reached values between 0.75 S/cm and 6.54 S/cm corresponding to AB loading of 28–49 wt % respectively. Temperature versus conductivity studies revealed an initial increase in conductivity upto 200°C and current–voltage characteristics of the PNVC‐FO‐AB composite showed a linear trend consistent with Ohmic behavior. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3837–3843, 2007  相似文献   

4.
We successfully synthesized 13X zeolite using a hydrothermal method. Then, composites of polyaniline (PANI) with 13X zeolite and PANI–13X with platinum were prepared by chemical oxidative polymerization and chemical reduction, respectively. Field emission scanning electron microscopy, X‐ray diffraction, Raman spectroscopy and Brunauer–Emmett–Teller techniques were used to characterize the PANI–Pt and PANI–Pt–13X composites. Further, the electrocatalytic activity towards methanol oxidation of the synthesized catalysts was explored using cyclic voltammetry in 1 mol L?1 CH3OH + 0.5 mol L?1 H2SO4 solution. From the obtained results, PANI–Pt–13X shows superior performance compared to PANI–Pt towards methanol oxidation and electrical conductivity. Hence, the 13X zeolite‐incorporated PANI–Pt composite could be an efficient catalyst for direct methanol fuel cell applications. © 2019 Society of Chemical Industry  相似文献   

5.
A nanocomposite of poly(N‐vinylcarbazole) (PNVC) and Al2O3 was prepared by precipitation of a preformed PNVC in a tetrahydrofuran solution onto an aqueous suspension of nanodimensional Al2O3. Prolonged extraction of a PNVC–Al2O3 composite by benzene failed to extract the loaded PNVC from the Al2O3, as shown by Fourier transform infrared studies. Scanning electron microscopy analyses revealed distinct morphological features of the composite, and transmission electron microscopy analyses confirmed that the particle sizes were in the range of 120–240 nm. Thermogravimetric analyses demonstrated the enhanced stability of the nanocomposite relative to the base polymer. Direct current conductivity of the PNVC–Al2O3 composites was found to be about 0.14 × 10?6 S/cm. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2233–2237, 2003  相似文献   

6.
N‐vinylcarbazole (NVC) was polymerized in bulk or in toluene in presence of multiwalled carbon nanotube (MWCNT) without any extraneous catalyst. The formation of polyN‐vinylcarbazole (PNVC) was endorsed by striking agreement of FTIR, fluorescence and UV‐visible spectroscopic, thermogravimetric stability, differential scanning calorimetry, and dielectric characteristics of this polymer with the corresponding literature data for authentic PNVC samples prepared by free radical or carbocationic initiation. The polymerization was supposed to be initiated by a single electron transfer between N lone pair of NVC and the electron deficient MWCNT moieties. While PNVC homopolymer is nonconducting (10?12 to 10?16 S/cm), a composite of PNVC with MWCNT isolated from the polymerization system showed high dc conductivity varying from 1.3 to 33 S/cm depending upon the extent of MWCNT loading in the composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 4121–4126, 2007  相似文献   

7.
Water‐dispersible conducting nanocomposites were prepared by precipitating polyaniline (PANI)/polypyrrole (PPY) in an aqueous suspension of polyacrylonitrile–SiO2 (PAN–SiO2) via K2CrO4–NaAsO2 redox polymerization. Incorporation of PANI and PPY in the composites was confirmed by the FTIR spectrum. Scanning electron microscopic analyses for the PANI–(PAN–SiO2) and PPY–(PAN–SiO2) composites indicated formation of lumpy aggregates with irregular sizes. TEM analyses revealed formation of spherical particles with size ranging between 80 and 150 nm for PANI–(PAN–SiO2) nanocomposite and 75–150 nm for PPY‐(PAN‐SiO2) nanocomposites, respectively. Thermal stabilities of the PANI–(PAN–SiO2) and PPY–(PAN–SiO2) nanocomposites were higher than those of the individual base polymers. Conductivity values of PANI–(PAN–SiO2) nanocomposite (10?3 S cm?1) and PPY–(PAN–SiO2) nanocomposite (10?4 S cm?1) were remarkably improved relative to that for PAN homopolymer (>10?11 S cm?1). Both of these composites produced a permanently stable aqueous suspension when the polymerization was conducted in presence of nanodimensional SiO2 as a particulate dispersant. Copyright © 2004 Society of Chemical Industry  相似文献   

8.
Poly‐N‐vinylcarbazole–polyaniline (PANI) composites were synthesized using different loading concentration of aniline (0.025–0.1 M) for their microwave absorption characteristics. The obtained composites were studied by Fourier transform infrared spectroscopy, thermogravimetric analysis technique, and atomic force microscope for their chemical structure, thermal stability, and the surface modifications, respectively. The conductivity increased much with the increase of aniline concentration in the composites. The composite sheets exhibited a strong microwave absorption in the microwave range of 1–10 GHz and achieved a maximum absorption value of 33 dB. The position of absorbing peak shows a mixed trend moving from lower to higher and again to lower with an increasing the concentration of aniline in the poly‐N‐vinylcarbazole–PANI. The new polymer composite exhibited an appreciable electromagnetic interference shielding efficiency compared with the previously reported PANI composites. POLYM. ENG. SCI., 2011. © 2010 Society of Plastics Engineers  相似文献   

9.
Polyaniline (PANI) molecular composites were synthesized by chemical oxidative polymerization of the aniline and aniline dimer, N‐phenyl‐1,4‐phenylendiamine, in the presence of a macrocycle, calix[8]arene p‐octasulfonic acid (C8S), using ammonium peroxidisulfate as oxidant. The macrocycle has acted both as acid dopant and surfactant to obtain processable PANI‐ES. The PANI/calix[8]arene p‐octasulfonic acid composite was also obtained by a simple doping of PANI emeraldine base form with calix[8]arene sulfonic acid. The structure of materials was confirmed by Fourier transform infrared, UV–vis and nuclear magnetic resonance spectroscopy. All synthesized composite materials are amorphous and soluble in chloroform, dimethylsulfoxide, NMP, showing excellent solution‐processing properties combined with electrical conductivity. Cyclic voltammetry evidenced a good electroactivity for the composite films. Dielectric properties (dielectric constant and dielectric losses) were determined and are comparable with those of other PANI/ionic acid polymer composites. Preliminary studies have evidenced a high dielectric constant (104 at 100 Hz) and electrical conductivity of 6 × 10?3 S/cm for PANI composites. From sulfur elemental analysis of the PANI/calixarene, it results that the content in macrocycle is ~30% (weight). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

10.
Optimizing the synthesis parameters of polyaniline/graphite nanoplate (PANI/GNP) composite is essential to the final electrochemical performance. Herein, the electrochemical properties of PANI/GNP composites, prepared by in situ chemical polymerization using varying amounts of different oxidants, with or without the addition of 4‐dodecylbenzenesulfonic acid (DBSA) as dopant, were investigated. Cyclic voltammetric results suggested that a stoichiometric amount of the oxidant iron chloride (FeCl3) was beneficial to the electrochemical properties of the composites. The use of ammonium persulfate (APS) instead of FeCl3 as oxidant largely increased the actual PANI content, conductivity and specific capacitance of the PANI/GNP composites. The dopant DBSA increased the conductivity of the PANI/GNP composites but did not show a positive effect on the electrochemical behavior. The cyclic voltammograms of the PANI/GNP composites indicated that the pseudocapacitance of PANI contributes more than the electrical double‐layer capacitance of GNP to the capacitance of the composites, while the presence of GNP plays an essential role in the rate capability of the composites. In this study, PANI/GNP (1:1) composite synthesized with an APS to aniline molar ratio of 1 showed a balanced combination of high specific capacitance (180.5 F g?1 at 20 mV s?1) and good rate capability (78% retention at 100 mV s?1). © 2018 Society of Chemical Industry  相似文献   

11.
Polyaniline/nano‐titanium dioxide composites (PANI/n‐TiO2) were prepared using α‐dextrose as surfactant and ammonium per sulfate as oxidant. The PANI/n‐TiO2 composite is characterized by Fourier transform infrared spectra and confirmed the presence of benzenoid and qunoide ring structures and also formation of free ions. The transmission electron microscopy study reveals that the size of TiO2 is in the order of 7 nm where as the composite size is of the order of 13 nm; further, it is observed that the TiO2 particles are intercalated to form a core shell of PANI. The X‐ray diffraction (XRD) studies show that the monoclinic structure of the composites. ac Conductivity, permittivity, and tangent loss studies on these samples suggest that these composites may be well suited for gas sensor. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
Composites of polyaniline in its emeraldine base form (PANI‐EB) and photo‐acid generators (PAG) show an increase in conductivity upon photo‐irradiation due to the protonation of PANI‐EB. Such materials may be utilized to fabricate conducting patterns by photo‐irradiation. However, the conductivity obtained by direct irradiation of PANI‐EB/PAG composites was normally quite low (<10?3 S/cm) due to aggregation of highly loaded PAG. In this work, poly(ethylene glycol) (PEG), which is a proton transfer polymer, was added to PANI‐EB/PAG. Results showed that addition of low Mw (550) PEG significantly enhance the photo‐induced conductivity. Conductivities as high as 10?1–100 S/cm were observed after photo‐irradiation. This conductivity is comparable to that of PANI‐salt synthesized by oxidizing aniline in the presence of an acid. High Mw (8000) PEG is much less effective than PEG 550, which is attributed to its lower compatibility with PANI. PEG‐grafted PANI (N‐PEG‐PANI) was also studied as an additive. Composites of PANI‐EB and N‐PEG‐PANI showed conductivity as high as 102 S/cm after treatment with HCl vapor. The photo‐induced conductivity of the N‐PEG‐PANI/PANI‐EB/PAG composite reached 10?2–10?1 S/cm. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The polymerization of aniline (ANI) in aqueous medium in the presence of (NH4)2S2O8 and montmorillonite (MMT) resulted in the formation of a nanocomposite (PANI–MMT). The inclusion of PANI in the composite was confirmed by FTIR studies. The extent of PANI loading in the composite increased with ANI concentration at a fixed oxidant/MMT amount and with the oxidant amount at a fixed ANI and MMT weight, but decreased with an MMT amount at a fixed ANI and oxidant level. TGA revealed a higher stability for the PANI–MMT composite relative to PANI and confirmed a PANI loading of ca. 51% in the composite. The conductivity increased in all the cases. XRD analysis revealed no expansion of the d001 spacing at 9.8 Å, implying no intercalation of PANI within the MMT layers. Scanning electron micrography studies revealed interesting morphological features for the composites. Transmission electron micrography analysis revealed distinctive features and confirmed the formation of PANI–MMT composite particles of diameters in the 300‐ to 400‐nm range. These composites could be obtained as stable colloids in the presence of poly (N‐vinyl pyrrolidone) under selective conditions. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 2948–2956, 2000  相似文献   

14.
Polyaniline–polypyrrole (PANI‐PPy) composite was prepared by in situ polymerization of pyrrole in PANI dispersion using FeCl3·6H2O as oxidant and sodium dodecyl benzene sulfonate (SDBS) as surfactant. Different synthesis conditions of PANI dispersion including the relative concentration of aniline and SDBS and the amount of acid (HCl) on the morphology and conductivity of the resulting composites were investigated. Fourier transformation infrared (FTIR) spectra, X‐ray photoelectron spectroscopy (XPS), thermal gravimetric analysis (TGA), X‐ray diffraction (XRD) patterns, and contact angles of the composites showed there existed certain interaction between PANI (or PANI‐SDBS) and PPy. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 104: 3523–3529, 2007  相似文献   

15.
Nanocomposites of iron oxide (Fe3O4) with a sulfonated polyaniline, poly(aniline‐co‐aminonaphthalenesulfonic acid) [SPAN(ANSA)], were synthesized through chemical oxidative copolymerization of aniline and 5‐amino‐2‐naphthalenesulfonic acid/1‐amino‐5‐naphthalenesulfonic acid in the presence of Fe3O4 nanoparticles. The nanocomposites [Fe3O4/SPAN(ANSA)‐NCs] were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X‐ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, elemental analysis, UV–visible spectroscopy, thermogravimetric analysis (TGA), superconductor quantum interference device (SQUID), and electrical conductivity measurements. The TEM images reveal that nanocrystalline Fe3O4 particles were homogeneously incorporated within the polymer matrix with the sizes in the range of 10–15 nm. XRD pattern reveals that pure Fe3O4 particles are having spinel structure, and nanocomposites are more crystalline in comparison to pristine polymers. Differential thermogravimetric (DTG) curves obtained through TGA informs that polymer chains in the composites have better thermal stability than that of the pristine copolymers. FTIR spectra provide information on the structure of the composites. The conductivity of the nanocomposites (~ 0.5 S cm?1) is higher than that of pristine PANI (~ 10?3 S cm?1). The charge transport behavior of the composites is explained through temperature difference of conductivity. The temperature dependence of conductivity fits with the quasi‐1D variable range hopping (quasi‐1D VRH) model. SQUID analysis reveals that the composites show ferromagnetic behavior at room temperature. The maximum saturation magnetization of the composite is 9.7 emu g?1. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

16.
In the present study, ionic polymer metal composite (IPMC) membrane actuator based on triple‐layered thorium(IV) phosphate/polyaniline/Pt (ThP‐PANI‐Pt) was prepared via consecutive solution recasting and electroless plating methods. The triple‐layered membrane is composed of thorium(IV) phosphate (ThP) inorganic cation exchanger layer in the middle section, two layers of polyaniline deposited through in situ polymerization and finally Pt electrode layers on both the surfaces on the outer section. The water uptake capacity of the ThP‐PANI composite polymer membrane was found to be 95.40% at 45ºC for 10 h of immersion time. The ion exchange capacity and proton conductivity was found to be 1.6 meq g?1of dry membrane and 1.12 × 10?3 S cm?1, respectively. Maximum water loss from IPMC was 38% at 4 V for a time period of 12 min. Scanning electron micrographs shows the smooth and uniform coating of Pt on both side of composite polymer membrane surfaces. Cyclic voltammetry, linear sweep voltammetry, transmission electron microscopy, Fourier transforms infrared spectroscopy, thermal gravimetric analysis, X‐ray diffraction, and tip displacement of ThP‐PANI‐Pt IPMC membrane actuator was also examined. POLYM. ENG. SCI., 57:258–267, 2017. © 2016 Society of Plastics Engineers  相似文献   

17.
Lignosulfonate‐polypyrrole (LS‐PPY) composite nanospheres were prepared facilely via an in situ polymerization of pyrrole monomers in the presence of lignosulfonate as a dispersant and ammonium persulfate as an oxidant. The LS‐PPY composite was characterized with Fourier Transform infrared spectroscopy (FTIR), thermogravimetric analysis, wide‐angle X‐ray diffraction (XRD), scanning electron microscopy (SEM), field‐emission SEM, and transmission electron microscopy. Uniform LS‐PPY solid composite nanospheres with an average diameter of 154 nm were obtained. The LS‐PPY composite nanospheres were applied to adsorption of Ag(I) and Pb(II) ions from aqueous solutions. Maximum adsorption capacities of Ag(I) and Pb(II) were up to 759.3 mg g−1 and 207.5 mg g−1, respectively. Furthermore, the silver ions can be reduced to metallic silver nanowires through a redox reaction between the LS‐PPY composite nanospheres and the silver ions. A productive no‐template route to fabrication of LS‐PPY composite nanospheres with controllable size and heavy‐metal‐ion adsorption ability was achieved. POLYM. COMPOS., 36:1546–1556, 2015. © 2014 Society of Plastics Engineers  相似文献   

18.
In this study, copper chloride (CuCl2)‐doped polyaniline (PANI)/multiwalled carbon nanotubes (MWCNTs) nanocomposite (PANI C2 CNT), CuCl2‐doped PANI (PANI C2) and pure PANI was synthesized by in situ oxidative polymerization method, using ammonium peroxodisulfate as oxidant in HCl medium. These composites were investigated as electrode materials for supercapacitors. The interaction of metal cation (Cu2+) with PANI was confirmed by Fourier transform infrared spectroscopy. The morphology of the composites was characterized by field‐emission scanning electron microscopy and high‐resolution transmission electron microscopy analysis. Electrochemical characterizations of the materials were carried out by three electrode probe method, where platinum and saturated standard calomel electrode were used as counter and reference electrode, respectively. 1 M KCl solution was used as electrolyte for all the electrochemical characterizations. The transition metal ion doping enhanced the electrochemical properties of the conducting polymer. Among all the composites, CuCl2‐doped PANI/MWCNT showed highest specific capacitance value of 724 F/g at 10 mV s−1 scan rate. The Nyquist plot of the polymeric materials showed low equivalent series resistance of the electrode materials. Thermal stability of the composites was examined by thermogravimetric analysis.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers  相似文献   

19.
Polyaniline (PANI) composites containing poly(3‐hydroxybutyric acid) (PHB) were synthesized via in situ deposition technique. The oxidative polymerization of aniline hydrochloride was carried out by dissolving different weight percentages (10 wt%, 20 wt%, 30 wt%, 40 wt%, and 50 wt%) of PHB using ammonium persulfate as an oxidant. The as‐synthesized composites were characterized using Fourier‐transform infrared spectroscopy and X‐ray diffraction pattern. The surface morphology of the resulting composites was studied using transmission electron microscopy. The temperature‐dependent direct current conductivity of the synthesized composite films was measured, and the activation energy responsible for the conductivity was examined. Incorporation of the biodegradable polymer, PHB, during the preparation of new PANI composites significantly increased the conductivity of the resulting composites. POLYM. COMPOS., 34:1655–1662, 2013. © 2013 Society of Plastics Engineers  相似文献   

20.
Conducting polyaniline (PANI)/titanium dioxide (TiO2) composite nanofibres with an average diameter of 80–100 nm were prepared by one‐step in situ polymerization method in the presence of anatase nano‐TiO2 particles, and were characterized via Fourier‐transform infrared spectra, UV/vis spectra, wide‐angle X‐ray diffraction, thermogravimetric analysis, and transmission electron microscopy, as well as conductivity and cyclic voltammetry. The formation mechanism of PANI/TiO2 composite nanofibres was also discussed. This composite contained ~ 65% conducting PANI by mass, with a conductivity of 1.42 S cm?1 at 25°C, and the conductivity of control PANI was 2.4 S cm?1 at 25°C. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号