首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
对喷气增焓及喷液冷却式空气源热泵进行了热力学分析,并在低环境温度下对其制热性能进行了数据测试及对比研究,结果表明,随着室外环境温度在10℃~30℃之间下降时,两款热泵耗电量都在逐渐增加,制热量逐渐降低,喷气增焓空气源热泵机组相较喷液冷却式空气源热泵机组的COP下降有变缓趋势,当室外环境温度为-5℃时,喷气增焓热泵的COP为3.03,而喷液冷却式热泵降至2.66;在-20℃时,喷气增焓式热泵COP为2.15,喷液冷却式热泵COP已降至1.88;喷气增焓空气源热泵比喷液冷却式热泵性能提高大概13%左右。喷气增焓空气源热泵机组在低温环境下效率更高。  相似文献   

2.
针对寒冷区域的供热需求,结合喷气增焓技术,研发一款在低环境温度下高制热能力输出的轻型商用变频空气源热泵。测试该系统在低环境温度工况下的性能,并与传统制热循环进行比较。测试结果表明,制热时喷气增焓系统存在最佳中间压力并实现制热时最大能力输出;在室外环境温度为-25~7℃时,喷气增焓系统比原系统在制热能力上均有较大的提高,有效拓展了系统的低温运行范围;在室外干/湿球温度-15℃/-16℃条件下,喷气增焓系统制热能力可达到系统额定制热能力的100%,在压缩机运行频率为100 Hz时,喷气增焓系统的COP可达到2.07,较对应工况下无补气系统COP提升10.5%;在室外环境温度为-20℃且压缩机运行频率为100 Hz时,喷气增焓系统COP较原系统提升6.2%;喷气增焓系统排气温度比原系统低,系统低频运行时排气温度差值较大。  相似文献   

3.
将太阳能热泵和空气源热泵结合起来,搭建了直膨式太阳能空气源热泵实验台,分别在太阳能单一热源和太阳能/空气双热源模式下对系统进行实际测试.测试结果发现,单一热源时晴天工况平均制热COP达到3.4,阴天平均制热COP为2.35;双热源系统在晴天和阴天时,制热COP最高分别为4.3和3.5.  相似文献   

4.
吴琦琦  郭宪民  丁明青 《制冷学报》2020,41(5):124-129+152
空气源热泵-冷柜双联机将热泵系统部分制冷剂用于对冷柜制冷系统进行机械过冷,可提高系统整体性能。本文将空气源热泵室外机与冷柜冷凝器设计成一体式换热器,在冬季工况下可利用冷柜制冷系统的冷凝热延缓空气源热泵室外机结霜。实验研究了结霜工况下空气源热泵-冷柜双联机性能,将热泵-冷柜联合运行工况下的性能与热泵单独运行工况下的性能进行了对比,并分析了不同冷流比条件下热泵系统、冷柜系统性能及热泵室外换热器表面结霜性能。实验结果表明,在室外换热器严重结霜工况下,相比于空气源热泵单独运行,双联机联合运行使结霜周期延长为原来的2.17倍,热泵系统平均制热量及平均COP分别提高了约5%及4.8%。随着冷流比增大,冷柜系统平均制冷量和平均COP均增大。而空气源热泵在冷流比为0~12%范围内,结霜周期、平均制热量及平均COP均变化较小,当冷流比大于12%时,随着冷流比增大,结霜周期缩短,平均制热量及平均COP呈下降趋势。  相似文献   

5.
一种用于低温环境下新型空气源热泵循环研究   总被引:12,自引:0,他引:12  
王林  陈光明  陈斌  王勤 《制冷学报》2005,26(2):34-38
提出了一种在低温环境下能扩大制热能力空气源热泵装置,既可按传统单级空气源热泵方式运行,又可按复叠循环方式运行.在低温环境下对两种空气源热泵循环特性进行模拟比较.模拟结果表明,在环境温度很低条件下,该热泵仍可获得较大制热量和较高COP值,并具有较小压缩比和较低压缩机排气温度.热泵制热应在最佳节能控制条件下运行以实现最大限度节能.它为解决热泵的低温适用范围和低温条件下节能等问题提供了一条可取的途径.  相似文献   

6.
为解决夏热冬冷地区冬季供暖问题,本文设计了空气源热泵结合小温差换热风机盘管末端的分布式空调系统。实验研究表明:在冬季典型工况下采用35℃左右的热水供暖,系统制热性能系数(COP)可达3.0;在夏季典型工况下采用10℃左右的冷水制冷,系统制冷COP也在3.0以上。结果表明通过使用小温差换热末端降低了机组设定出水温度,改善了机组的运行工况,提升系统的能效比。系统解决了目前空气源热泵在冬季低温工况下供暖能效低、舒适性差等问题,为解决我国南方冬季供暖问题提供了可行方案。  相似文献   

7.
空气源热泵热水器具有节能环保的优点,是一种非常好的热水技术。但是由于压缩机可靠性和制热量衰减的原因,空气源热泵热水器在低温区域的应用受到限制。本文主要阐述了变频双级增焓热泵技术及其关键技术的应用效果。通过将双级压缩增焓和变频技术有机结合,提出一种适用于寒冷地区的变频双级增焓空气源热泵热水器系统。采用该系统的空气源热泵热水器,制热效率和制热量得到了提高,可靠性得到增强;在国标名义工况下性能系数(COP)达到5.0以上,并获得了-25℃环境温度下制取55℃热水的良好运行效果。该系统能够很好地解决空气源热泵热水器在低温地区的适用性问题。  相似文献   

8.
低温空气源热泵(冷水)机组名义工况的确定研究   总被引:1,自引:0,他引:1  
对低环境温度空气源热泵(冷水)机组(简称低温热泵)标准中的名义制热工况确定问题进行了研究.通过对我国寒冷地区典型城市供热季节的室外干球温度及其对应湿球温度的分布进行统计分析,确定出低温热泵空气侧的名义制热工况条件为-12℃/-13.5℃;通过对典型房间分别采用风机盘管和辐射地板进行供热时,保证室内舒适性要求的空调末端出水温度的研究,给出了水侧的名义制热工况为回水温度38℃.上述结论可为商用和户用低环境温度空气源热泵(冷水)机组的标准制定提供参考.  相似文献   

9.
补气增焓与喷液冷却是低环境温度空气源热泵机组采用的2种主要的技术方案。本文分别采用这2种方案设计R410A低环境温度空气源热泵机组,并对二者的性能进行对比试验研究。结果表明:在制热名义工况下,2种机型的COP均在2.3以上,补气增焓型机组COP高于喷液冷却型机组约6%。变工况制热条件下,当环境温度高于7℃时,喷液冷却型机组制热量高于补气增焓型机组,在环境温度为21℃时,前者高出后者约8%;当环境温度在-10~7℃范围内时,二者制热量差异不明显;当环境温度低于-10℃时,补气增焓型机组制热量高于喷液冷却型机组。环境温度在-25~21℃范围内时,补气增焓型机组制热COP均高于喷液冷却型机组。  相似文献   

10.
冬季我国北方室外环境蕴含大量天然冷源,热力学分析表明热泵工质过冷释放的热量可以在蒸发器的等温吸热过程中获得补偿。为了研究大气自然冷源对热泵制热性能的影响,增设室外过冷器,搭建利用自然冷源过冷的空气源热泵实验装置。实验结果表明:当室外环境温度大于0 ℃,冷凝温度小于45 ℃的条件下,自然冷源过冷对热泵制热量与制热COP影响均较小,系统制热量维持在6.22 ~ 6.70 kW,制热COP维持在3.03,压缩机排气温度维持在103 ℃以下;当室外环境温度小于 -10 ℃,冷凝温度大于50 ℃时,随过冷度的增加,压缩机功率增加、排气温度显著增高,系统制热量呈先缓慢增加后减小趋势,制热COP降至2.3。基于上述研究提出一种空气源热泵过冷融霜新型除霜方式,融霜同时不停止制热。  相似文献   

11.
为保证复合热源热泵系统在复杂工况下的稳定运行和进一步优化系统各组件之间合理、高效的能量匹配,本文设计并搭建了基于微热管阵列的太阳能-空气复合热源热泵系统,采用集中参数法建立系统数学模型,分别从系统的发电效率、集热效率、制热功率和性能系数(COP)4个方面基于实验数据进行模型验证与分析,利用控制变量法研究了太阳辐照度和环境温度等参数对热泵系统在光伏/光热-水&空气源热泵运行模式下系统性能的影响,并对其运行特性进行综合评价。结果表明:所建数学模型具有较好的准确性,模拟值与实验值的相对误差均在±15%之间。光伏/光热-水&空气源热泵系统运行模式下发电效率和集热效率均值分别为13.91%和41.14%,COP均值为2.29。此外,当辐照度和环境温度分别以500 W/m2和15℃为单一变量时,系统COP分别提升21.0%和29.8%。  相似文献   

12.
介绍带经济器的低温空气源热泵技术,通过对低温空气源热泵机组与普通空气源热泵机组的制冷量、制热量和能效比等参数进行测试及对比,探讨低温空气源热泵技术的应用优势。试验结果表明:与普通机组相比,低温机组在名义制冷和名义制热工况下冷热量和能效均有所提升;在-10~-15℃的环境中,普通机组制热量严重衰减使其不适用于此温度区间,低温机组制热量虽然也在减少,但其COP仍可达2.0,且排气温度相对较低;在-15~-20℃超低温环境中,低温机组仍可稳定运行,且能效比在2.0左右。  相似文献   

13.
在低温环境下,为提高R410A/R410A复叠热泵的制热性能,通过试验调节水流量改变热泵冷凝侧进出水温差,分析在不同工况下各个参数随冷凝侧进出水温差的变化规律。结果表明:复叠热泵在低蒸发温度下能够稳定运行,蒸发温度为-33℃、-30℃、-27℃、-24℃、-21℃时,进水温度33℃,进出水温差由8℃降至2℃时,COP增长率分别为13.1%、17.2%、19.0%、19.7%、20.1%,制热量增长率为7.0%、9.4%、11.6%、13.1%、15.6%,降低冷凝侧进出水温差能够在一定程度上减缓蒸发温度下降对热泵系统COP和制热量的不利影响。在同一进出水温差下,在蒸发温度为-30℃,出水温度为35℃时,其COP可达2.34,随着出水温度上升,制热系数及制热量均下降,对于采用R410A制冷剂的热泵更适合用于中温水工况。  相似文献   

14.
CO2空气源热泵因其优秀的环保和热工性能,具有广阔的应用前景。本文以CO2复叠式空气源热泵分布式集中供暖系统为研究对象,依据JGJ/T 177—2009《公共建筑节能检测标准》和JGJ/T 132—2009《居住建筑节能检测标准》对秦皇岛某公共建筑和石家庄某居住建筑的CO2复叠式空气源热泵供暖系统开展运行测试研究,探究在低温环境下系统运行过程中检测不确定度及实际运行效果。通过不确定度分析,秦皇岛项目2#机组和石家庄项目2#机组制热性能COP在不同运行环境温度下相对合成标准不确定度范围分别为4.27%~5.87%及1.90%~4.36%,测试结果可信度高。测试结果表明:秦皇岛项目在室外日均温度-10.9~2.5℃的工况下,1#和2#机组实测日均COP范围分别为2.75~3.09和2.76~3.15。在室外最低温度-18℃时,1#和2#机组热COP仍可达到2.19及2.88。石家庄项目在室外日均温度-6.6~12.5℃的工况下,1#和2#机组实测日均COP范围分别为2.32~3.38和2.21~3.06;分析两个项目的检测结...  相似文献   

15.
本文将中间补气涡旋式压缩机应用于地暖制热系统,以解决地暖制热系统在低温环境下制热性能不佳、机组运行不稳定等问题,并建立补气地暖样机实验系统,研究了在不同运行工况下中间补气地暖系统的压缩机排气温度、制热量、功耗及制热COP等参数,分析了中间补气地暖系统制热性能与常规热泵制热性能之间的关系。实验结果表明:当环境温度处于-20~7℃之间时,带中间补气系统的地暖机组的制热量相比于普通热泵平均提升约26.2%,制热COP平均提升约为8.7%,功耗仅平均增加约16%;当室外环境温度为-20℃时,压缩机排气温度降低了12℃。可见采用中间补气技术的地暖系统在低能耗的条件下更能满足低环境温度的需求。  相似文献   

16.
建立空气源-水环热泵联合系统的模型,通过改变空气源-水环热泵联合系统的空气源热泵冷凝温度及蒸发温度,得到联合系统不同工况下的最佳性能系数。研究结果表明:在供水温度分别为45℃和50℃时,系统性能系数均在空气源热泵冷凝温度16℃时达到最大值,分别为2.128和1.954,供水温度为55℃时,系统性能系数在空气源热泵冷凝温度18℃时达到最大值1.805;供水温度分别为45℃,50℃和55℃时,单级系统(仅运行空气源热泵系统)、双级系统(空气源-水环热泵联合系统)相互切换的最佳蒸发温度分别为-2℃,-13℃和-23℃。指出根据不同工况及时调整热泵系统的运行方式能够提高系统能效。  相似文献   

17.
提出一种带有平行流换热器的闪发器热泵系统,在高温工况下利用平行流换热器对系统的控制电路板进行冷却。通过标准焓差实验室对不同工况下系统的性能进行测试,结果表明:在制热工况下,系统的制热量、功耗和制热COP分别对应一个最佳中间压力;随着环境温度的升高,其制热COP逐渐增大,但与常规热泵系统相比,其增加的幅度逐渐减小;当室外环境温度高于7℃时,其COP反而比常规热泵系统低,由此可见,该系统在低温环境下具有更优的制热性能;在高温制冷工况下,采用平行流换热器冷却控制电路板,可以使压缩机频率降低的幅度减小,从而间接增加制冷量,但压缩机的不可逆损失增大,造成系统的功耗增加,制冷EER减小,排气温度上升。  相似文献   

18.
两级压缩空气源热泵热水器实验研究   总被引:3,自引:0,他引:3  
空气源热泵热水器是一种消耗少量电能驱动热泵从空气中吸取热量加热热水的装置,但普通单级空气源热泵热水器在低温环境下运行中存在压缩比过大、制热量不足和制热效率低等问题.采用两级压缩制冷循环用于空气源热泵热水器,则可以解决空气源热泵热水器低温适应性的问题.设计出具有单双级两种循环模式的两级压缩空气源热泵热水器系统,并搭建了实验台进行了实验研究.实验表明:低温环境下,双级压缩循环压缩比低于普通单级压缩循环压缩比;系统制热量始终大于单级压缩循环制热量;系统能效比(COP)在-20℃环境温度下依然能够保持在1.5左右.  相似文献   

19.
杨忠诚  苏林  于荣  方奕栋  李康  穆文杰 《制冷学报》2021,42(1):53-59+81
为研究低温时电动汽车热泵空调系统的制热性能,本文通过搭建空气源热泵空调系统实验台,实验研究了电动汽车热泵空调系统在环境温度为-10~0℃的低温工况下的制热性能,分析了压缩机转速(2000~5000 r/min)、HVAC总成进风量(300~400 m^3/h)和环境温度对该热泵系统性能的影响,最后通过推导公式,估算电动汽车在使用空调系统后的续航里程。实验结果表明:随着压缩机转速的增加,压缩机排气温度、排气压力和系统制热量均增加,而COP下降;当保持压缩机转速和环境温度不变时,HVAC总成进风量从300 m^3/h增至400 m^3/h,制热量增加约13.3%~26.0%,COP增加约0.03~0.80;在其他条件不变时,当环境温度从-10℃升至0℃,热泵空调系统的制热量增加约60.9%~71.0%,COP增加约0.51~0.63;通过公式进行计算,当环境温度为-10~0℃时,在达到相同制热量条件下,热泵空调系统可在PTC加热器的基础上使续航里程提高13.5%~20.8%。  相似文献   

20.
在低环境温度工况下,分别对6 kW和9 kW名义制热量的低环境温度空气源热泵热风机的性能进行试验。结果表明:低环境温度空气源热泵热风机在-20℃环境温度下具有稳定的制热能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号