首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Polyvinylidene fluoride (PVDF) and its copolymer with trifluoroethylene (P(VDF-TrFE)) are considered as promising biomaterials for supporting nerve regeneration because of their proven biocompatibility and piezoelectric properties that could stimulate cell ingrowth due to their electrical activity upon mechanical deformation. For the first time, this study reports on the comparative analysis of PVDF and P(VDF-TrFE) electrospun scaffolds in terms of structural and piezoelectric properties as well as their in vitro performance. A dynamic impact test machine was developed, validated, and utilised, to evaluate the generation of an electrical voltage upon the application of an impact load (varying load magnitude and frequency) onto the electrospun PVDF (15–20 wt%) and P(VDF-TrFE) (10–20 wt%) scaffolds. The cytotoxicity and in vitro performance of the scaffolds was evaluated with neonatal rat (nrSCs) and adult human Schwann cells (ahSCs). The neurite outgrowth behaviour from sensory rat dorsal root ganglion neurons cultured on the scaffolds was analysed qualitatively. The results showed (i) a significant increase of the β-phase content in the PVDF after electrospinning as well as a zeta potential similar to P(VDF-TrFE), (ii) a non-constant behaviour of the longitudinal piezoelectric strain constant d33, depending on the load and the load frequency, and (iii) biocompatibility with cultured Schwann cells and guiding properties for sensory neurite outgrowth. In summary, the electrospun PVDF-based scaffolds, representing piezoelectric activity, can be considered as promising materials for the development of artificial nerve conduits for the peripheral nerve injury repair.  相似文献   

2.
This article describes a number of potential failure mechanisms for piezoelectric poly(vinylidene fluoride) (PVDF), including decay of piezoelectric properties, film shrinkage at elevated temperatures, electrode erosion due to water, curling and fibrillation of the highly oriented PVDF films, and abrasion or impact damage. Piezoelectric aging and shrinkage are found to be strongly correlated; neither process occurs below 60°C, and both show logarithmic time dependences above that temperature. Thus, shrinkage and piezoelectric aging likely both result from similar mechanisms associated with micro-structural annealing effects at elevated temperatures. The degradation of piezoelectric response observed when PVDF films are exposed to moisture is found to be due primarily to water-induced erosion of the vapor-deposited aluminum electrodes rather than to enhanced piezoelectric decay. Observations of mechanical damage suggest that the susceptibility of PVDF films may be partially due to imperfections introduced during the manufacturing process. One conclusion of this study is that biaxial PVDF offers advantages over uniaxial film, including reduced shrinkage and piezoelectric decay, superior resistance to curling and fibrillation, and lower susceptibility to formation of pinholes and other localized defects.  相似文献   

3.
The well distributed and electroactive polyvinylidene fluoride (PVDF)/magnetite nanocomposites were successfully fabricated using a mixed solvent system (THF/DMF). Dynamic mechanical properties of the fabricated PVDF/magnetite nanocomposites indicate significant enhancements in the storage modulus as compared with that of neat PVDF. By adding 2 wt % magnetite nanoparticles into the PVDF matrix, the thermal stability of nanocomposites could be enhanced about 26°C as compared with that of PVDF. The β‐phase fraction of PVDF is significantly enhanced with increasing the voltage of electric field poling. The piezoelectric responses of PVDF/magnetite films are extensively increased about five times in magnitude with applied strength of electrical field at 35 MV/m. The change of piezoelectric responses during the applied electric field may be due to the relative long arrangement of PVDF units along the direction of electric field poling and thus increases the values of Lp* and lc. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40941.  相似文献   

4.
Bone healing is a complex, well-organized process. Multiple factors regulate this process, including growth factors, hormones, cytokines, mechanical stimulation, and aging. One of the most important signaling pathways that affect bone healing is the Notch signaling pathway. It has a significant role in controlling the differentiation of bone mesenchymal stem cells and forming new bone. Interventions to enhance the healing of critical-sized bone defects are of great importance, and stem cell transplantations are eminent candidates for treating such defects. Understanding how Notch signaling impacts pluripotent stem cell differentiation can significantly enhance osteogenesis and improve the overall healing process upon transplantation. In Rancourt’s lab, mouse embryonic stem cells (ESC) have been successfully differentiated to the osteogenic cell lineage. This study investigates the role of Notch signaling inhibition in the osteogenic differentiation of mouse embryonic and induced pluripotent stem cells (iPS). Our data showed that Notch inhibition greatly enhanced the differentiation of both mouse embryonic and induced pluripotent stem cells.  相似文献   

5.
The β‐phase of polyvinylidene fluoride (PVDF) is well known for its piezoelectric properties. PVDF films have been developed using solvent cast method. The films thus produced are in α‐phase. The α‐phase is transformed to piezoelectric β‐phase when the film is hot‐stretched with various different stretching factors at various different temperatures. The films are then characterized in terms of their mechanical properties and surface morphological changes during the transformation from α‐ to β‐phases by using X‐ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The films showed increased crystallinity with stretching at temperature up to 80°C. The optimum conditions to achieve β‐phase have been discussed in detail. The fabricated PVDF sensors have been tested for free vibration and impact on plate structure, and its response is compared with conventional piezoelectric wafer type sensor. The resonant and antiresonant peaks in the frequency response of PVDF sensor match well with that of lead zirconate titanate wafer sensors. Effective piezoelectric properties and the variations in the frequency response spectra due to free vibration and impact loading conditions are reported. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

6.
Strontium (Sr) ions were added to porous magnesium (Mg) oxide with silicon and fluorine by microarc oxidation (MAO) to improve its osteogenic and pro-angiogenic properties. First, pure Mg was oxidized by MAO, and Sr was added by electrolysis. The surface of the resulting Sr coating was characterized by SEM, EDS, and EDS mapping. The release of Sr ions was monitored by ICP-OES. The antibacterial property of the coating was assessed against Staphylococcus aureus. The effect of Sr coating on osteogenesis was tested in MC3T3-E1 cell line by performing cell adhesion and proliferation tests, alkaline phosphatase (ALP) activity detection, cell morphology characterization, alizarin red staining, and osteogenic-related gene expression analysis. Finally, HUVECs cells were used to test the effect of Sr coating on angiogenesis through cell migration and tube formation assays, VEGF quantification, chicken embryo chorioallantoic membranes (CAM) test, and angiogenic-related gene expression analysis. The results showed that Sr coating had a hierarchical microstructure with a microporous structure evenly covered with nano-grains and that the Sr elements from the coating were released slowly and continuously. Sr coating had effective antibacterial properties and promoted cell adhesion, proliferation, ALP release, calcium nodule formation, and upregulated osteogenic gene expression. Moreover, the coating could promote migration, tube formation, VEGF expression, and angiogenic gene upregulation in endothelial cells. Sr coating also enhanced angiogenesis of CAM. This study supports that Sr coating on Mg- MAO enhances osteogenesis and angiogenesis.  相似文献   

7.
Requirements for an ideal scaffold include biocompatibility, biodegradability, mechanical strength and sufficient porosity and pore dimensions. Beta tricalcium phosphate (β-TCP) has competent biocompatibility and biodegradability, but has low mechanical strength because of its porous structure. Polycaprolactone (PCL) is a biodegradable polymer with elastic characteristics and good biocompatibility. In this study, β-TCP/PCL composites were prepared in different ratio and their morphology, phase content, mechanical properties, biodegradation and biocompatibility were investigated. After coating, surfaces of β-TCP scaffolds were covered with the PCL while some of the pores were partially clogged. The compression and bending strength of β-TCP scaffolds were significantly enhanced by PCL coating. The degradation rate of the scaffold in Tris buffer was reduced with higher content of the PCL coating. MTT and ALP assays showed that the osteoblast cells could proliferate and differentiate on PCL coated scaffolds as well as on bare β-TCP scaffolds. Based on the comprehensive analysis achieved in this study, it is concluded that the β-TCP/PCL composite scaffold fabricated with 40% β-TCP and 5% PCL exhibits optimum properties suitable for dental applications.  相似文献   

8.
《Ceramics International》2023,49(10):15588-15598
Biphasic calcium phosphate (BCP) is a highly study bone defect repair material with adjustable degradation, perfect osteoconduction and good osteoinduction. As one of the essential trace elements, magnesium (Mg) possesses the abilities of pro-osteogenesis and pro-angiogenesis. Therefore, Mg doping may further expand the application of BCP in bone defect repair, but few studies focus on promoting the osteogenesis and angiogenesis of BCP simultaneously by Mg doping, and the optimal doping amount of Mg remains to be explored. In this study, the physicochemical and biological properties of BCP scaffold affected by Mg doping were systematically study. Results showed that Mg doping enhanced the sintering of BCP scaffold, resulting in the decrease of degradation rate at the initial soaking period. However, the introduction of Mg damaged the lattice stability of BCP, leading to the increase of BCP degradation rate at the later soaking period. BCP scaffolds with Mg doping content ≥3 mol.% could achieve a long-term sustained release of Mg. The ion microenvironment created by Mg-doped scaffolds was simultaneously conducive to the osteogenic differentiation of stem cells and the enhanced angiogenic activity of endothelial cells. The scaffold doped with 5 mol.% of Mg (Mg5–S) showed the highest efficiency in promoting osteogenic differentiation. Mg-doped BCP scaffolds with a doping content ≥3 mol.%, especially Mg5–S, significantly improved the proliferation and angiogenic differentiation of endothelial cells. Based on these, we believe that the optimal doping content of Mg in BCP is 5 mol.%, and Mg5–S has great application potential in bone defect repair.  相似文献   

9.
Damping materials are used to control mechanical vibrations, and piezoelectric damping composite is a very promising material due to its unique mechanism. In this study, a potential piezoelectric damping composite was developed by simply melt mixing poly(vinylidene fluoride) (PVDF) with small amounts of organic modified montmorillonite (OMMT) and multi‐walled carbon nanotubes (MWCNTs). The piezoelectric, mechanical and electrical properties were investigated using a dynamic mechanical analyser, direct current electrical resistivity measurements, X‐ray diffraction, Fourier transform infrared spectroscopy and the direct quasi‐static d33 piezoelectric coefficient method. It was found that the damping property of PVDF can be greatly improved by adding both MWCNTs and OMMT, and the composite containing 1.9 wt% of MWCNTs and 3 wt% of OMMT showed the best damping property. A model and an approximate calculation were applied to explain the improved damping property. Moreover, similar mechanical properties of PVDF composites were observed in the tensile testing and dynamic mechanical analyser measurements. Copyright © 2012 Society of Chemical Industry  相似文献   

10.
The multi-sized porous β-tricalcium phosphate scaffolds were fabricated by freeze drying followed by slurry coating using a multi-sized porous sponge as a template. Then, gelatin was dip coated on the multi-sized porous β-tricalcium phosphate scaffolds under vacuum. The mechanical and biological properties of the fabricated scaffolds were evaluated and compared to the uniformly sized porous scaffolds and scaffolds that were not coated by gelatin. The compressive strength was tested by a universal testing machine, and the cell viability and differentiation behavior were measured using a cell counting kit and alkaline phosphatase activity using the MC3T3-E1 cells. In comparison, the gelatin-coated multi-sized porous β-tricalcium phosphate scaffold showed enhanced compressive strength. After 14 days, the multi-sized pores were shown to affect cell differentiation, and gelatin coatings were shown to affect the cell viability and differentiation. The results of this study demonstrated that the multi-sized porous β-tricalcium phosphate scaffold coated by gelatin enhanced the mechanical and biological strengths.  相似文献   

11.
采用多巴胺(DA)和3?氨基丙基?三甲氧基硅烷(APTMS)对碳纳米管(CNTs)进行DA辅助共修饰,并用溶剂浇铸法制备具有优异热性能和力学性能的聚偏氟乙烯(PVDF)复合薄膜;采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、差示扫描量热仪(DSC)、X射线光电子能谱仪(XPS)、热常数分析仪和电子单纱强力仪等对材料的微观形貌、结晶度、导热性能和力学性能进行了表征。结果表明,经DA和APTMS共修饰后的PDA?CNTs?NH2具有良好的分散性能;PDA?CNTs?NH2的加入,有利于改善PVDF复合薄膜的热稳定性;与纯PVDF薄膜和PVDF/CNTs复合薄膜相比,PVDF/PDA?CNTs?NH2复合薄膜的导热性能和力学性能显著增强,在8 %(质量分数,下同) PDA?CNTs?NH2的填料负载下,其热导率达到0.337 9 W/(m·K),是纯PVDF薄膜的1.78倍,其拉伸强度为52.67 MPa,是纯PVDF复合薄膜的1.36倍。  相似文献   

12.
This work aimed towards the study on variations in the percentage of β-phase in Poly vinylidene fluoride (PVDF) thin films deposited by spin coating technique. PVDF is a semi-crystalline polymer which exhibits α, β, γ and δ polymorphs. Among these polymorphs, generally it crystallizes in a non-polar α-phase, which is of little importance as far as its applications are concerned. However, the β-phase, which exhibits spontaneous polarity created tremendous interest and showed a path towards the devices based on its pyro- and piezoelectric properties. Fourier Transform Infrared (FTIR) spectroscopy and XRD techniques were used to study the percentage of formation of β-phase in spin coated PVDF thin films at different processing conditions viz. spin rotation speed (rpm), solution concentration and annealing temperature. We identified the β-phase percentage in PVDF thin films, which are (i) Deposited with different rotation speeds ranging from 1000 to 9000 rpm, (ii) Annealed at different temperatures viz.; room temperature to 100C, and (iii) Deposited at various solution concentrations. It is identified that percentage of formation of β-phase is high in the films deposited with 15(w/v)% solution concentration which is annealed at 100C. The films deposited at higher rpm is showing low enhancement in the β-phase with annealing temperature.  相似文献   

13.
Tissue engineering offers auspicious opportunities in oral and maxillofacial surgery to heal bone defects. For this purpose, the combination of cells with stability-providing scaffolds is required. Jaw periosteal cells (JPCs) are well suited for regenerative therapies, as they are easily accessible and show strong osteogenic potential. In this study, we analyzed the influence of uncoated and polylactic-co-glycolic acid (PLGA)-coated β-tricalcium phosphate (β-TCP) scaffolds on JPC colonization and subsequent osteogenic differentiation. Furthermore, interaction with the human blood was investigated. This study demonstrated that PLGA-coated and uncoated β-TCP scaffolds can be colonized with JPCs and further differentiated into osteogenic cells. On day 15, after cell seeding, JPCs with and without osteogenic differentiation were incubated with fresh human whole blood under dynamic conditions. The activation of coagulation, complement system, inflammation, and blood cells were analyzed using ELISA and scanning electron microscopy (SEM). JPC-seeded scaffolds showed a dense cell layer and osteogenic differentiation capacity on both PLGA-coated and uncoated β-TCP scaffolds. SEM analyses showed no relevant blood cell attachment and ELISA results revealed no significant increase in most of the analyzed cell activation markers (β-thromboglobulin, Sc5B-9, polymorphonuclear (PMN)-elastase). However, a notable increase in thrombin-antithrombin III (TAT) complex levels, as well as fibrin fiber accumulation on JPC-seeded β-TCP scaffolds, was detected compared to the scaffolds without JPCs. Thus, this study demonstrated that besides the scaffold material the cells colonizing the scaffolds can also influence hemostasis, which can influence the regeneration of bone tissue.  相似文献   

14.
《Ceramics International》2022,48(18):26274-26286
Nowadays, the repair of long bone defects remains a clinical challenge mainly due to poor oxygen and nutrients delivery. In this study, β-tricalcium phosphate (β-TCP) porous ceramic scaffolds were prepared by digital light processing (DLP) and gradient sintering process. The functionalization of scaffolds was achieved by loading hyaluronic acid-dopamine (HA-DA) coating or sphingosine 1-phosphate/hyaluronic acid-dopamine (S1P/HA-DA) coating, which solved the problem of oxygen and nutrients delivery to a certain extent by promoting blood vessels growth. Cytocompatibility assay, qRT-PCR, Alkaline phosphatase (ALP) staining and quantitative analysis demonstrated that the S1P/HA-DA/TCP scaffolds significantly promoted the proliferation and osteogenic differentiation of mouse bone marrow mesenchymal stem cells (mBMSCs). Long bone defects (22 mm), rarely reported in previous studies, were constructed on the radius of rabbits. Animal experiments showed excellent early angiogenesis and bone repair in HA-DA/TCP and S1P/HA-DA/TCP groups. In particular, the S1P/HA-DA/TCP scaffolds enhanced bone regeneration and osseointegration. Overall, these functionalized scaffolds had an effective repair on long bone defects that would have great potential for clinical applications.  相似文献   

15.
Polyvinylidene fluoride (PVDF) is a semicrystalline thermoplastic and electroactive polymer with piezoelectric and pyroelectric properties, thermal stability, elasticity, and chemical resistance. PVDF exits in five different phases (α, β, δ, γ, and ε-phase). Unique properties of this polymer enhances its use in chemical, biomedical, and electronic industries such as supercapacitors, transducers, actuators, and batteries. Carbon nanotube (CNT) is used as reinforcement to exploit full potential of PVDF in energy, electronics, and membrane technology. The nanofiller affects morphology, piezoelectric, pyroelectric, electrical, dielectric, thermal, and mechanical properties of PVDF-based nanocomposite. CNT content and chemical modification influence properties as well as application of PVDF.  相似文献   

16.
Composites were prepared by solution blending poly(vinylidene fluoride) (PVDF) and multi‐walled carbon nanotubes (MWNTs). Fourier transform infrared spectroscopy (FTIR) and X‐ray diffraction (XRD) results showed that the crystalline structure of PVDF was changed by the addition of MWNTs and a MWNTs‐induced crystal transformation from α‐phase to β‐phase of PVDF was confirmed. With differential scanning calorimeter (DSC) and dynamic mechanic thermal analysis (DMA) techniques, thermal and mechanical properties of the composite films were examined. As the DSC results showed, addition of MWNTs would lead to the increased cooling crystallization temperature (Tc), implying that MWNTs nanoparticles could act as nucleating agents, which is further proved with the help of polarized optical microphotographs. On the other hand, the decreasing of Dd (degree of crystallinity) implied that the MWNTs networks can confine the crystallization of PVDF. Through the curve analysis of the dynamic mechanical measurements, it was found that the storage modulus (E′) is significantly enhanced, revealing that a strong interaction should exist between PVDF and MWNTs. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers  相似文献   

17.
《Ceramics International》2022,48(5):6461-6469
Native bone is piezoelectric in nature and generates abundant surface charges under mechanical compression, which regulate osteoblast proliferation, differentiation, adhesion, and so on. Poly (vinylidene fluoride) (PVDF) is becoming one of the most popular piezoelectric polymers because of its easy processability and good biocompatibility. Unfortunately, because only the β and γ crystal phases of PVDF have piezoelectricity, post-treatments, for example, polarizing at high temperature, are required to enhance the piezoelectricity of PVDF scaffolds after fabrication. In this study, we reported a phase-separation-hydration method to fabricate a calcium phosphate silicate (CPS)-doped PVDF scaffold. Our method fabricated a better piezoelectric scaffold than native bone without further processing (~ 3 pC/N vs. 0.7 pC/N). In addition, the scaffold was mechanically compatible (~ 7 MPa) with the cancellous bone with sufficient porosity (~ 45%) to facilitate osteoblast infiltration and bone ingrowth. The in vitro biocompatibility analyses proved that the prepared CPS-PVDF scaffold was biocompatible with osteoblast cells and encouraged osteoblast redifferentiation. In conclusion, our results suggest that this CPS-PVDF scaffold is a promising candidate for bone tissue engineering applications.  相似文献   

18.
Piezoelectric polymer composite films have attracted extensive attention due to their comprehensive characteristics such as low cost, good flexibility, mechanical property and excellent processability. Among the known polymers, poly (vinylidene fluoride) (PVDF) is an ideal piezoelectric polymer because the β-crystalline form of PVDF has the highest polarization per unit cell. However, initial PVDF mostly suffers from the lack of a β phase, restricting its potential applications. Few-layer MoS2 is predicted to be strongly piezoelectric owing to the opposite orientations of adjacent atomic layers. In this work, we report an efficient approach to enhance the piezoelectric property of PVDF-based nanocomposites by combining few-layer MoS2 with PVDF. The product yield for few-layer MoS2 reached a value as high as 83.3% via a unique liquid-exfoliation technique. For a few-layer MoS2/PVDF composite film with 1?wt.% few-layer MoS2, a high piezoelectric performance enhancement of 360% was achieved compared with the initial PVDF film. In addition, due to the intrinsic lubrication of MoS2, the highest elongation of the piezoelectric composite film was found to be four times higher than that of the pure PVDF film.  相似文献   

19.
Background: Applying mesenchymal stem cells (MSCs), together with the distraction osteogenesis (DO) process, displayed enhanced bone quality and shorter treatment periods. The DO guides the differentiation of MSCs by providing mechanical clues. However, the underlying key genes and pathways are largely unknown. The aim of this study was to screen and identify hub genes involved in distraction-induced osteogenesis of MSCs and potential molecular mechanisms. Material and Methods: The datasets were downloaded from the ArrayExpress database. Three samples of negative control and two samples subjected to 5% cyclic sinusoidal distraction at 0.25 Hz for 6 h were selected for screening differentially expressed genes (DEGs) and then analysed via bioinformatics methods. The Gene Ontology (GO) terms and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment were investigated. The protein–protein interaction (PPI) network was visualised through the Cytoscape software. Gene set enrichment analysis (GSEA) was conducted to verify the enrichment of a self-defined osteogenic gene sets collection and identify osteogenic hub genes. Results: Three hub genes (IL6, MMP2, and EP300) that were highly associated with distraction-induced osteogenesis of MSCs were identified via the Venn diagram. These hub genes could provide a new understanding of distraction-induced osteogenic differentiation of MSCs and serve as potential gene targets for optimising DO via targeted therapies.  相似文献   

20.
Human adipose-derived stem/stromal cells (hASCs) have been popularly studied as cell-based therapy in the field of regenerative medicine due to their ability to differentiate into several cell types. In this study, in order to improve the mechanical strength and bioactivity of scaffolds for bone tissue engineering, three types of mesoporous bioactive glasses with different shapes and compositions were dispersed in the silk fibroin/chitosan (SF/CS)-based scaffolds, which were fabricated with a combination of freezing and lyophilization. The characteristic and physical properties of these composite scaffolds were evaluated. The biocompatibility was also assessed through hASCs in vitro tests. Both Alamar Blue® and Live/Dead assay® revealed that the spherical mesoporous bioactive glass doped scaffolds enhanced cell viability and proliferation. Furthermore, the addition of spherical mesoporous bioactive glass into SF/CS scaffolds encouraged hASC osteogenic differentiation as well. These results suggested that this composite scaffold can be applicable material for bone regeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号