首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Catalytic Performance of Ce/Zr Oxides Catalysts for Soot Combustion   总被引:2,自引:0,他引:2  
Catalytic performances of a series Ce/Zr oxides(CexZr1-xO2 )for soot combustion were investigated. The catalytic activities for soot combustion were affected by both the Ce/Zr ratio and the oxygen storageinvestigated. Thecapability of Ce/Zr oxides. O2-TPD and TG-DTA results indicate that CexZr1-xO2 can release its lattice oxygen continuously and promote soot combustion even no oxygen occurs in the reaction atmosphere. Among these Ce/Zr oxides, Ce0.5Zr0.5O2 has the best catalytic activity, and the ignition temperature of soot combustion was about 410℃, which is close to the practical exhaust temperature of the diesel engine.  相似文献   

2.
The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5-xZr0.5-xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Catalytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy/Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.  相似文献   

3.
Ce0.67Zr0.33O2-Al2O3 solid solution was prepared by the co-precipitation method. Fe2O3-based catalysts supported on the solid solution were obtained by the impregnation method. The article revealed that the optimal loading amount of Fe2O3 on Ce0.67Zr0.33 O2-Al2O3 in our experimental condition for catalytic combustion of methane was 8% ( mass fraction). The prepared catalysts were characterized by BET, TPR, XRD analyses, and their catalytic activity was investigated after being calcined at 873 K and after being aged in water gas at 1273 K. When the loading amount of Fe203 was 8% ( mass fraction), the catalyst held the highest activity, and the best temperature speciality and thermal stability. The complete-conversion temperature of methane for fresh and aged sample was 788 and 838 K, respectively. The range between the light-off temperature and the complete-conversion temperature was only 15 K. The characterization results of XRD indicated that Fe2O3 was well dispersed on the Ce0.67Zr0.33O2-Al2O3 matrix. The results of BET and TPR were in good harmony with the catalytic activity results.  相似文献   

4.
The Ce0.7Zr0.3O2 solid solution and CeO2 were prepared using the sol-gel method. The phase structure, crystallite sizes and the reducibility of the catalysts were characterized by XRD and H2-TPR techniques. XRD results indicated that Zr^4+ had replaced part of Ce^4+ to form a fluorite-like solid solution, which was favorable to obtain ultrafine nanoparticles. The ratio of main HE consumption for Ce0.7Zr0.3O2:CeO2 was 4.4:1.0, implying that the solid solution could improve the reducibility compared to the single CeO2. The Ce0.7Zr0.3O2 solid solution catalyst showed a sharp combustion peak at 397 ℃, which was 200 ℃ lower than that of the single soot. The good catalytic activity of the Ce0.7Zr0.3O2 was attributed to the formation of nano-CeO2-based solid solution, which enhanced the reducibility and then improved the combustion activity. As Ce0.7Zr0.3O2 could be easily reduced to Ce0.7Zr0.3O2-x meanwhile, after oxygenation, the Ce0.7Zr0.3O2.x was recovered to Ce0.7Zr0.3O2 completely. A catalytic combustion reaction mechanism was proposed: the Ce0.7Zr0.3O2 was reduced to Ce0.7Zr0.3O2-x by the reaction with carbon and then it was recovered to Ce0.7Zr0.3O2-x by the interaction with O2.  相似文献   

5.
A series of Ce1-xFexO2 (x=0, 0.2, 0.4, 0.6, 0.8, 1) complex oxide catalysts were prepared using the coprecipitation method. The catalysts were characterized by means of XRD and H2-TPR. The reactions between methane and lattice oxygen from the complex oxides were investigated. The characteristic results revealed that the combination of Ce and Fe oxide in the catalysts could lower the temperature necessary to reduce the cerium oxide. The catalytic activity for selective CH4 oxidation was strongly influenced by dropped Fe species. Adding the appropriate amount of Fe2O3 to CeO2 could promote the action between CH4 and CeO2. Dispersed Fe2O3 first returned to the original state and would then virtually form the Fe species on the catalyst, which could be considered as the active site for selective CH4 oxidation. The appearance of carbon formation was significant and the oxidation of carbon appeared to be the rate-determining step; the amounts of surface reducible oxygen species in CeO2 were also relevant to the activity. Among all the catalysts, Ce0.6Fe0.402 exhibited the best activity, which converted 94.52% of CH4 at 900 ℃.  相似文献   

6.
We employed modified substrates as outer heterogeneous catalysts to reduce the soot originating from the incomplete diesel combustion. Here, we proposed that ceria(CeO2)-based catalysts could lower the temperature at which soot combustion occurred from 610 oC to values included in the operation range of diesel exhausts(270–400 oC). Here, we used the sol-gel method to synthesize catalysts based on mixed oxides(ZnO:CeO2) deposited on cordierite substrates, and modified by ruthenium nanoparticles. The presence of ZnO in these mixed oxides produced defects associated with oxygen vacancies, improving thermal stability, redox potential, sulfur resistance, and oxygen storage. We evaluated the morphological and structural properties of the material by X-ray diffraction(XRD), Brumauer-emmett-teller method(BET), temperature programmed reduction(H2-TPR), scanning electron microscopy(SEM), and transmission electron microscopy(TEM). We investigated how the addition of Ru(0.5 wt.%) affected the catalytic activity of ZnO:CeO2 in terms of soot combustion. Thermogravimetric analysis(TG/DTA) revealed that presence of the catalyst decreased the soot combustion temperature by 250 oC, indicating that the oxygen species arose at low temperatures, which was the main reason for the high reactivity of the oxidation reactions. Comparative analysis of soot emission by diffuse reflectance spectroscopy(DRS) showed that the catalyst containing Ru on the mixed oxide-impregnated cordierite samples efficiently oxidized soot in a diesel stationary motor: soot emission decreased 80%.  相似文献   

7.
A series of MnMgAlO samples with different amounts of Ce doping were facilely prepared using coprecipitation method and their catalytic soot combustion activity was evaluated by temperature programmed oxidation reaction(TPO).The methods of X-ray diffraction(XRD),Brumauer-Emmett-Teller(BET),H2-TPR,NO-TPO and in situ IR were used to characterize the physiochemical properties of these samples.Dopant Ce improved the soot combustion performance of MnMgAlO catalyst due to the enhanced redox ability.Introduction of NOx led to the further increase of catalytic soot oxidation activity on these samples.Over Ce-containing samples,the catalytic activity was slightly decreased as the amount of dopant Ce increased in O2.Differently,in NO+O2,a certain amount of dopant Ce was much more favorable and excess amount of Ce resulted in a sharp drop of the catalytic soot combustion activity.Both NO2 and nitrates were found to have great contributions to the effects of NOx on the soot combustion activity of Ce-doped catalysts.More NO2 was generated as dopant Ce increased.When appropriate amount of Ce was introduced,the as-formed NO2 was stored as bridging bidentate nitrate on Mn-Ce site,which was confirmed to have higher reactivity with soot than nitrite or monodentate nitrate on Mn and/or Ce sites.Overall,Mn0.5Mg2.5Ce0.1Al0.9O was considered as the most potential catalyst for soot combustion.  相似文献   

8.
The ultrafine Ce-based oxide nanoparticles with different element dopings (Zr, Y) were synthesized by the method of mi- cropores-diffused coprecipitation (MDC) using ammonia solution as the precipitation agent. The activities of the catalysts for soot oxidation were evaluated by the temperature-programmed oxidation (TPO) reaction. Ce-based oxides prepared in this study exhibited high catalytic activity for soot oxidation under tile condition of loose contact between soot particles and catalysts, and the catalytic ac- tivity ofultrafine Ce0.gZr0 iO2 nanoparticle for soot combustion was the highest, whose/"10, Ts0 and Sco2m was 364, 442 ~C and 98.3%, respectively. All catalysts were systematically characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brumauer-Emett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR) and UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS). It was indicated that the MDC method could prepare the ultrafine Ce-bascd oxide nanoparticles whose the crystal lattice were perfect, and the BET surface area and average crystal size of the ultrafine nanoparticles changed with the different element dopings (Zr, Y). The H2-TPR measurements showed that the ultrafine Ce-based ox- ide nanoparticles with the doping-Zr cation could be favorable for improving the redox property of the catalysts.  相似文献   

9.
A series of MnMgA10 samples with different amounts of Ce doping were facilely prepared using coprecipitation method and their catalytic soot combustion activity was evaluated by temperature programmed oxidation reaction (TPO). The methods of X-ray diffraction (XRD), Brumauer-Emmett-Teller (BET), H2-TPR, NO-TPO and in situ 1R were used to characterize the physio- chemical properties of these samples. Dopant Ce improved the soot combustion performance of MnMgA10 catalyst due to the en- hanced redox ability. Introduction of NOx led to the further increase of catalytic soot oxidation activity on these samples. Over Ce-containing samples, the catalytic activity was slightly decreased as the amount of dopant Ce increased in 02. Diftbrently, in NO+O2, a certain amount of dopant Ce was much more favorable and excess amount of Ce resulted in a sharp drop of the catalytic soot combustion activity. Both NO: and nitrates were found to have great contributions to the effects of NOx on the soot combustion activity of Ce-doped catalysts. More NO2 was generated as dopant Ce increased. When appropriate amount of Ce was introduced, the as-formed NO2 was stored as bridging bidentate nitrate on Mn-Ce site, which was confirmed to have higher reactivity with soot than nitrite or monodentate nitrate on Mn and/or Ce sites. Overall, Mno.sMg2.sCeo.lAlo.90 was considered as the most potential catalyst for soot combustion.  相似文献   

10.
A facile procedure was carried out to prepare macroporous perovskite-type complex oxide catalysts of La1-xKxCo1-yFeyO3(x=0,0.1,y=0,0.1) by using the combined method of organic ligation and solution combustion.This method could ensure the formation of the desired macroporous structures and the desired crystal phases of the prepared catalysts.It was found that the macroporous catalysts showed higher catalytic activities for soot combustion than that of the corresponding nanometric samples,and the macroporous ...  相似文献   

11.
The research investigated the effect of doping two metals separately or together into Ce0.5Zr0.5O2 on the catalytic activity of MnOx/Ce0.5–xZr0.5–xM0.2xOy/Al2O3 (M=Y, Mn, Y and Mn) for catalytic combustion of benzene. The prepared catalysts were characterized by X-ray diffraction (XRD), surface area analysis, oxygen storage capacity (OSC), and H2-temperature programmed reduction (H2-TPR). Cata-lytic test was performed on a conventional fixed bed flow reactor. The characterization results revealed that Y and Mn ions entered into the ceria-zirconia mixed oxides framework, which improved the textural properties and greatly promoted the MnOx dispersion on the support surface. The complete conversion temperature of benzene on MnOx/Ce0.4Zr0.4Y0.1Mn0.1Oy /Al2O3 was 563 K, and the selectivity of carbon dioxides was 99%. This catalyst could be applied in a wide range of GHSV and wide concentration condition, showing great potential for application.  相似文献   

12.
Pure nanocrystalline La2O3 powders were successfully prepared by the combustion method.The effect of ethanolamine-to-nitrate ratio on phase composition and crystallite size of the combustion products was systematically investigated.Pure hexagonal La2O3 powders were almost formed in stoichiometric reaction(ψ=1.15),while metallic La phase was obtained in fuel-rich conditions(ψ≥3.0).The as-synthesized hexagonal La2O3 was found to be chemically unstable in ambient air since a complete transformation to hexagonal La(OH)3 was detected after 24 h exposure to air.The resulting hexagonal La(OH)3 showed an excellent ability to remove water pollutant and could nearly remove 100% of the Congo red at room temperature with a removal capacity of 143.5 mg Congo red/g.The phosphate adsorption data on hexagonal La(OH)3 agreed well with the Langmuir model with the estimated maximum adsorption capacity of 57.8 mg/g.  相似文献   

13.
Recently,researchonmagnetocaloriceffect(MCE)hasattractedagreatdealofinterestinrare earth(RE)basedcompoundsbecauseoftheirenergy efficiencyandenvironmentalsafetyformagneticrefrig eration.Afirst ordermagneticphasetransitionwas foundintheintermetalliccompoundsRECo2(RE=Er,Ho,Dy)withMgCu2typestructure[1,2],leadingtoa largemagneticentropychangeforthesecompounds,whereasasecond ordertransitionwasfoundinTbCo2andGdCo2.IntheintermetalliccompoundsRECo2,theloweringofd electronconcentrationbythesubst…  相似文献   

14.
This article showed that the catalytic activity of MnOx/γ-Al2O3/Ce0.5Zr0.5O2 monolithic catalyst toward the catalytic combustion of ethanol in a fixed bed reactor could be greatly improved by doping three metal oxides into Ce0.5Zr0.5O2. The catalytic activity of MnOx/γ-Al2O3/Ce0.45Zr0.45M0.1 Ox (M = Y, La, Mn) is better than that of MnOx/γ-Al2O3/Ce0.5 Zr0.5O2. The order of activity of the catalysts is as follows: MnOx/γ-Al2O3/Ce0.45Zr0.45Y0.1Ox 〉 MnOc/γ-Al2O3/Ce0.45 Zr0.45La0.1Ox 〉 MnOx/γT-Al2O3/Ce0.45Zr0.45Mn0.1Ox 〉 MnOx/y-Al2O3/Ce0.5Zr0.5O2. The influence of the loading amount of manganese oxide in enhancing the catalytic activity of MnOx/γ-Al2O3/Ce0.45Zr0.45Y0.1 Ox was investigated. The results showed that when MnO2 loading amount was 10% (mass fraction), the MnOx/Al2O3/Ce0.45Zr0.45Y0.1Ox catalyst recorded the highest activity.  相似文献   

15.
Perovskite typeoxides (generalformulaABO3 )havebeenattractingmuchattentionformorethantwodecadesduetotheirpotentialcommercialapplicationsascatalystsforvariousreactions :oxidationofCO[1~ 3 ] andlighthy drocarbons[4~ 7] ,combustionofnaturalgasorCH4 [8~ 1 1 ] (tocontrolN…  相似文献   

16.
RE-doped Ni-based catalysts were prepared by sol-gel method.These catalysts were applied to the reaction of CO2 reforming CH4 to syngas.The studies reveal that RE-doped ( RE = La, Ce, Sm, Yb) Ni-based catalysts show higher catalytic activity than undoped Ni-based catalyst, and with the increasing of RE-doped quantity, the catalytic activity of catalysts exhibits regular changes.When RE-doped quantity is 0.2% ( molar ratio), the catalysts show the best catalytic activity.  相似文献   

17.
A novel catalytic material Lao.9Sr0.1MnO3 and tourmaline compound catalytic material was synthesized in the base of traditional catalytic material La0.9Sr0.1MnO3 which exhibited excellent catalytic activity for methane combustion. Different contents of toumaaline were added to give a series ofLa0.9Sr0.1MnO3 and tourmaline catalytic material through a sol-gel method. Samples above were characterized and analyzed by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller method (BET), temperaalre programmed reduction (TPR), catalytic activity test and contact angle test. The as-prepared sample with 2% (m/m) tourmaline showed good homogeneity surface morphology and displayed the optimal catalytic activity. The light-off temperature reduced by 10 ℃ and the T90 decreased by 15 ℃. In addition, the mechanism of the reinforcement of catalytic activity was explored.  相似文献   

18.
La1-x Cax MnO3 (x=0-0.3) perovskite-type oxides were synthesized by citrate sol-gel method. The physical and chemical properties were characterized by X-ray diffraction (XRD), Brumauer-Emmett-Teller method (BET), X-ray photoelectron spectroscopy (XPS), NO+O2 -TPD (temperature-programmed desorption), activated oxygen evaluation and H2 -TPR (temperature-programmed reduction) technologies. The results showed that NO catalytic oxidation activity was significantly improved by Ca substitution, especially for lower temperature activity. The La0.9 Ca0.1 MnO 3 sample showed the maximum conversion of 82% at 300 oC. The monodentate nitrates played a crucial role for the formation of NO2 . The reducibility of Mn 4+ ions and reactivity of activated oxygen were favorable for the catalytic performances of NO oxidation.  相似文献   

19.
Constructing cerium and manganese bimetallic catalysts with excellent catalytic performance for soot combustion is the research frontier at present. In order to find out the key factors for catalytic soot combustion of Ce–Mn–O catalysts, a series of Ce–Mn–O catalysts with different Ce/Mn proportions were prepared by co-precipitation method. The activity test results show that it increases first and then decreases with the increase of Mn content. The best catalytic activity is obtained for Ce0.64Mn0.36 catalyst, which shows a maximum rate temperature (Tm) at 306 °C for CO2 production in TPO curve. Compared with non-catalytic soot combustion, the Tm decreases by more than 270 °C. Systematical characterization results suggest that when the adsorbed surface oxygen, lattice oxygen, specific surface area and total reduction amount of the catalysts reach a certain value, the key factors leading to the difference of catalytic activity become the readily reducible and highly dispersed surface manganese oxide species and contact performance of the external surface. The surface manganese oxide species is beneficial to improving the low-temperature reducibility of catalysts and the porous surface is conducive to the contact between catalyst and soot. Furthermore, for the soot combustion reaction containing only O2, the promoting effect of Mn4+ is not obvious.  相似文献   

20.
La2(Zr0.7Ce0.3)2O7 (LZ7C3) ceramic was synthesized by solid state reaction with La2O3, ZrO2 and CeO2 as starting materials. The synthesis kinetics, phase structure, mass loss and microstructure were studied by thermo gravimetric-different thermal analyzer (TG-DTA), X-ray difference (XRD) and scanning electron microscopy (SEM). The thermal conductivity and thermal expansion coefficient were measured by laser-flash method and pushing-rod method, respectively. XRD results showed that LZ7C3 was a mixture of La2Zr2O7 (LZ, pyro- chlore) and La2Ce2O7 (LC, fluorite). The lowest synthesis temperature and time of LZ7C3 were 1400 oC and 5 h. There were no peaks of La2O3 when the powder granularity was about 0.82 μm in the synthesis process. The atom ratio La:Zr:Ce of prepared LZ7C3 powder was very close to 10:7:3 which was the theory value of LZ7C3. The thermal conductivity of LZ7C3 decreased gradually with the temperature increased up to 1200 oC, and was located within 0.79 to 1.02 W/(m·K), which was almost 50% lower than that of LZ, whereas its thermal expansion coefficient was larger and the value was 11.6×10-6 K-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号