共查询到20条相似文献,搜索用时 52 毫秒
1.
为解决传统粒子群算法收敛精度低、收敛速度慢和易陷入局部最优的问题,提出了一种多策略融合的改进粒子群算法。首先,设计了一种基于中垂线算法的游离粒子位置更新方法,加快了游离粒子的收敛速度;其次,设计了一种在最优粒子附近生成爆炸粒子的策略,以增强算法的寻优精度和寻优速度,为适应前两个策略,还设计了一种仅依靠全局最优粒子位置的粒子速度更新策略;最后,将基于概率分层的简化粒子群优化算法的惯性权重和粒子位置更新方法用于本算法。与其他五种改进粒子群算法进行了对比实验,结果表明提出的改进算法无论是处理低维问题还是高维问题表现均具有较大优势,性能更优越。 相似文献
2.
提出一种基于粒子群优化的多特征融合的商标图像检索方法,该方法可自动优化多特征融合的权重,提高图像检索系统的自适应性,解决了多特征商标图像检索中的权重分配问题。在1 000幅图像构成的商标图像库进行检索实验,实验结果表明,与基于单一特征的检索方法和一些多特征融合的检索方法相比,提出方法的检索性能最优。 相似文献
3.
结合动态概率粒子群优化算法(DPPSO)特点,针对传统的单种群粒子群优化算法易陷入局部最优、收敛速度较慢的缺点,文中提出一种基于异构多种群策略的DPPSO.该算法在进化过程中保持多个子种群,每个子种群以不同的DPPSO变体进行进化,子种群之间根据一定规律进行通信,从而保持整个种群内部的信息交流,进而协调DPPSO的勘探和开采能力.通过典型的Benchmark函数优化问题测试并分析基于异构多种群策略的DPPSO性能,结果显示,使用该策略的算法收敛速度较快,稳定性有较显著提高,具有较强的全局搜索能力. 相似文献
4.
5.
针对粒子群算法和混合蛙跳算法在复杂函数寻优上易于陷入局部最优值的缺点,提出一种新的粒子群与混合蛙跳融合算法.算法采用多种群粒子群方法,每次进化后,将各子群中的最优粒子组成新的群体,采用混合蛙跳模式进化,以提高种群的多样性.粒子群各子群的进化模式中,除考虑本子群最好的粒子外,还考虑整合群体最好的粒子.相对于其它一些改进的粒子群或混合蛙跳算法,融合算法概念简单,易于实现,具有良好的全局搜索能力和较快的收敛速度.基准测试函数的仿真结果表明,本文算法优于目前一些常见的改进粒子群算法. 相似文献
6.
粒子群优化算法又称微粒群算法,是-种智能优化算法,主要用于优化函数、训练神经网络,以及其他进化算法的应用领域。本文简介了粒子群优化算法的发展历史及现状、主要分类,并以国内外专利申请数据为分析样本,从专利逐年变化的申请量和申请人分布等角度进行了分析和研究。 相似文献
7.
针对维度学习策略(dimensional learning strategy,DLS)中存在的过度开发问题,提出了一种综合维度学习的多群协作粒子群优化算法(CDL-MCPSO)。为提高种群搜索效率,采用基于主从范式的集群结构,将种群划分为一个主群和四个从群,主群执行综合学习策略在搜索空间进行大范围探索,从群执行综合维度学习策略(comprehensive dimensional learning,CDL)在局部最优解附近进行高精度的开发,主从群通过执行具有不同职能的算法能够有效实现其在勘探和开发之间的平衡;同时为保持种群多样性,提出了一种新的解交换机制(SEM)用于在主从群独立运行各自算法若干代之后进行信息的交流与协作,以指导粒子后期进行更准确的搜索;最后,针对初始化过程随机性过高,运用拉丁超立方体采样方法对算法重建输入分布。为验证CDL-MCPSO的有效性,将其与五种粒子群算法变体在10个测试函数上进行实验对比,结果表明该算法总是可以找到优于或相当于对比算法的解,在求解复杂函数时具有可行性和高效性。 相似文献
8.
本文介绍了粒子群优化算法PSO中的多目标优化的粒子群算法及其应用,并将其运用在防守对方多个前锋球员的进攻威胁,以粒子群算法随机性来适应不断变化的形势。 相似文献
9.
在多目标进化算法中,近年的研究倾向于基于Pareto支配的最优化方法.针对传统的基于Pareto支配在排序效率上过低的问题,提出了一种基于网格排序的框架,利用网格同时表征收敛性与分布性的特性,结合粒子群算法,提出了一种基于网格排序的多目标粒子群优化算法.与个体两两进行比较的基于Pareto支配的策略不同,基于网格排序的机制融合了整个解空间中个体的占优信息,并利用占优信息进行排序,从而高效地得到个体在种群中的优劣关系;结合粒子到近似最优边界的距离,进一步加强了粒子在解空间中优劣关系的判别.对比实验分析表明:所提算法不论是在收敛性还是分布性上都具有较好的优势.在此基础上,讨论了网格划分数对算法效率的影响,从另一方面验证了算法的效率. 相似文献
10.
针对大规模的未知环境,对一种SA-PSO(Simulated Annealing-Particle Swarm Optimization)算法的多机器人构建地图方法进行研究。多机器人构建地图,即将多个机器人建立的局部地图融合成全局地图,可以更加高效地完成环境地图的绘制。利用粒子群优化(PSO)算法搜索局部地图之间的最优转换矩阵来进行地图配准;再根据局部地图重叠区域匹配的成功率设计自适应概率函数,即重新进行地图配准的概率;最后将配准后的局部地图融合成全局地图。该方法有效解决了PSO算法易陷入局部最优引起的地图融合失败问题,提高了地图融合的成功率。 相似文献
11.
该文研究了基于二维模糊信息熵的图像分割方法,针对二维模糊信息熵图像分割方法求取阈值时存在的计算复杂、时间长、实用性差等问题,提出了基于优化微粒群算法的二维最大熵图像分割方法。DPSO算法对图像的二维阈值空间进行全局搜索,并将搜索得到的二维熵最大值所对应的点灰度-区域灰度均值作为阈值进行图像分割。同时,为了避免该算法收敛到局部最优解的问题,在算法中引入了变异策略。通过实验显示了该算法在收敛性和计算效率上较QPSO在内其它优化算法具有更好的优越性。 相似文献
12.
属性选择是一种有效的数据预处理方法,可同时保留多变量时间序列重要变量的时序关系及其实际物理意义。针对很多实际数据无类别信息的问题,文中提出一种无监督属性选择算法并分析其复杂度。首先设计一种无需进行相空间重构的多变量时间序列分形维数计算方法,并将分形维数视为其本质维,利用属性子集的分形维数及其属性数目的变化作为子集优劣的评价标准。再优化离散粒子群算法以解决高维属性空间搜索的“组合爆炸”问题。最后利用典型混沌动力学系统所产生的多变量时间序列和UCI数据库的5组数据集进行仿真计算,结果表明该算法可在较短时间内找到较优的属性子集,具有较优的整体性能。 相似文献
13.
离散粒子群算法能充分利用粒子的局部极值和全局极值信息,但收敛速度慢、精度低;Inver-Over算子收敛速度快、精度高,但学习具有盲目性。结合二者优点,文中提出一种基于Inver-Over算子的改进离散粒子群优化算法。为防止早熟收敛,引入局部最优子群的概念,使粒子向局部最优子群中粒子学习而不是向个体局部最优学习。引入3个参数:学习选择概率用以确定粒子的学习对象,代数阈值确定何时向全局最优粒子学习,局部最优子群比决定最优子群的规模。讨论这些参数的选择原则,并给出相应参考选择范围。研究表明,文中算法与普通离散粒子群优化算法和郭涛算法相比,收敛速度和求解精度都有较大提高。 相似文献
14.
15.
基于遗传粒子群算法的DNA编码优化 总被引:2,自引:0,他引:2
DNA编码序列的设计是影响DNA计算可靠性的重要手段,该文从DNA编码设计应满足的多约束条件中选取适当的约束条件,针对这些约束条件提出每个DNA个体应满足的评估公式,采用遗传粒子群算法解决该多目标优化问题,并在不同的约束准则下将计算得到的序列与已有的DNA序列进行了对比。仿真结果证明了该方法的有效性。 相似文献
16.
17.
新的仿生算法:蟑螂算法 总被引:2,自引:0,他引:2
程乐 《计算机工程与应用》2008,44(34):44-46
通过模拟蟑螂的觅食行为,提出蟑螂算法(Cockroach Swarm Optimization,CSO)。算法充分利用了蟑螂社会的平等特性和群体智慧。食物再分配、回巢等策略的使用使算法具有较强的全局搜索和局部搜索能力。以TSP问题为例对算法进行仿真测试,实验证明算法有效且优于存在的离散粒子群算法(Discrete Particle Swarm Optimization,PSO)。 相似文献
18.
基于PSO的软件结构测试数据自动生成方法 总被引:5,自引:0,他引:5
测试数据自动生成是软件测试过程中一个关键的问题。现有的结构测试数据自动生成,多采用基于遗传算法的方法。这些方法存在算法复杂、参数不易设置问题。该文提出一种基于粒子群算法的软件结构测试数据自动生成方法,以分支函数叠加法作为适应值函数。针对三角形判别程序的结构测试数据生成实验结果表明,与基于遗传算法的方法相比,可以更高效地生成测试数据,在粒子数目与种群个数相同的情况下,生成所需测试数据的迭代次数仅是遗传算法的1/16左右。 相似文献
19.
20.
混合量子算法及其在flow shop问题中的应用 总被引:2,自引:0,他引:2
量子进化算法(QEA)是目前较为独特的优化算法,它的理论基础是量子计算。算法充分借鉴了量子比特的干涉性、并行性,使得QEA求解组合优化问题具备了可行性。由于在求解排序问题中,算法本身存在收敛慢,没有利用其它未成熟个体等缺陷,将微粒群算法(PSO)及进化计算思想融入QEA中,构成了混合量子算法(HQA)。采用flow shop经典问题对算法进行了测试,结果证明混合算法克服了QEA的缺陷,对于求解排序问题具有一定的普适性。 相似文献