首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 93 毫秒
1.
利用硼酸、有机硅预聚物对酚醛树脂进行改性,同时引入活性单体间苯二酚,制得了可中温固化的耐高温改性酚醛树脂。采用FTIR对改性酚醛树脂的结构进行了表征;通过DSC,TGA考察了固化行为和耐热性能;通过SEM考察了固化物的微观形态,并结合EDAX能谱仪对其元素成分进行了分析。将改性酚醛树脂与无机组合填料及多聚甲醛混合制得了耐高温酚醛胶黏剂,经过100℃固化后测试了胶黏剂的粘接强度和耐温性。结果表明,胶黏剂可在中温固化并具有良好的耐高温和粘接性能,1000℃下试样剪切强度可达1.7MPa。  相似文献   

2.
酚醛树脂/木粉复合体系的固化动力学   总被引:2,自引:0,他引:2  
采用非等温DSC技术研究了不同升温速率下热固性酚醛树脂/木粉复合体系的固化行为。用Kissinger法进行DSC数据处理,获得了其固化反应动力学参数,并建立了酚醛树脂/木粉复合体系的固化动力学模型。结果表明:木粉的加入加速了酚醛树脂固化反应,同时也降低了酚醛树脂固化反应活化能。酚醛树脂/木粉复合体系固化动力学模型为合理研究该体系固化工艺参数提供了依据。  相似文献   

3.
浸渍酚醛树脂/层状硅酸盐固化活化能的研究   总被引:1,自引:0,他引:1  
通过DSC方法探讨了层状硅酸盐对低分子量酚醛树脂固化活化能的影响,研究了不同升温速率下浸渍酚醛树脂/层状硅酸盐的固化行为.用Kissinger和Ozawa方法进行DSC数据处理,获得固化活化能.结果表明,层状硅酸盐的加入,提高了酚醛树脂的活化能,用Kissinger方法计算得到的活化能从8.23kJ/mol变化到10.43kJ/tool,用Ozawa方法计算得到的活化能从10.52kJ/mol变化到12.30kJ/mol,两种处理数据方法的理论虽然存在差异,但活化能的变化趋势相互一致,表明层状硅酸盐的加入对酚醛树脂固化有阻碍作用.  相似文献   

4.
苯并口恶嗪/环氧树脂/酚醛树脂三元共混体系在一定程度上克服了苯并口恶嗪树脂固化温度高、固化时间长这一缺点,且具有优异的耐热性、介电性能、尺寸稳定性和低吸湿性等综合性能。基于苯并口恶嗪的一元、二元催化固化体系是研究其三元共混体系的理论基础,文中除了重点讲述苯并口恶嗪/环氧树脂/酚醛树脂三元共混体系的催化与固化行为,还对苯并口恶嗪及其与环氧树脂、酚醛树脂的二元共混体系的催化固化行为进行了简要的概述。  相似文献   

5.
采用非等温DSC法探讨了酚醛树脂与双马来酰亚胺体系的固化反应,在30 ℃~400 ℃范围内以不同升温速率(5 ℃/min、10 ℃/min、15 ℃/min、20 ℃/min)进行动态固化行为分析.应用Kissinger、Crane和Ozawa法求得了固化反应的表观活化能、固化反应级数、凝胶温度和固化温度等动力学参数.结果表明,固化体系的平均表观活化能为109 kJ/mol,反应级数为0.94,凝胶温度Tgel为79.68 ℃,固化温度Tcure为121.93 ℃,表观活化能E是固化度α的增函数.  相似文献   

6.
李萍  张源  吴义强  袁光明  李贤军  左迎峰 《材料导报》2021,35(22):22193-22199
以苯酚、甲醛和氢氧化钠为改性剂,通过原位浸渍法对杉木木材进行了改性研究.探讨了浸渍压力、浸渍温度、浸渍时间和原位固化温度对改性杉木木材浸渍效果、强化效果和尺寸稳定效果的影响,并对改性杉木木材的化学结构、内部形貌、结晶结构和耐热性能进行了表征.结果表明,浸渍压力为0.5 MPa、浸渍温度为50℃、浸渍时间为32 h和原位固化温度为80℃时,改性杉木木材的浸渍效果、强化效果和尺寸稳定效果最佳.苯酚与甲醛在杉木木材中发生原位反应,既填充了杉木木材内部纹孔、细胞腔和细胞间隙,又与杉木木材中反应性羟基形成了氢键和化学键结合,从而有效提高了杉木木材的力学性能和耐水性能.酚醛树脂的浸入扰乱了杉木木材中纤维素结晶区定向排序良好的微纤丝,减弱了纤维素分子链的分子间作用,导致杉木木材中纤维素结晶度有一定程度降低.经过酚醛树脂原位浸渍改性后,改性杉木木材的耐热性能显著提高,可显著提高杉木制品的使用安全性.  相似文献   

7.
合成了不同硼含量的改性酚醛树脂(硼酚醛树脂),并分别用红外光谱(FT-IR)、动态力学分析(DMA)和热重分析(TGA)方法对其结构和性能进行了分析。结果表明,165℃时的固化物具有两个玻璃化温度,表明该固化物中同时存在交联和线型两种不同结构的酚醛树脂。固化物的残炭率随硼含量的增加而增加,说明硼的加入使硼酚醛树脂的耐热性得到提高,800℃的残炭率最高可达74.9%,对硼酚醛树脂进行后固化处理可进一步提高其耐热性。  相似文献   

8.
利用差示扫描量热(DSC)分析技术研究了不同邻对位比值(O/P值)的酚醛树脂的固化活化能及固化进程。采用Ozawa模型求解了不同O/P值酚醛树脂的固化活化能及固化动力学参数,结果表明,酚醛树脂的固化活化能随其O/P值的增加而降低,固化进程变得更加容易。固化反应过程中的Ozawa反应指数n0随着固化反应温度的升高而下降,并且随着树脂O/P值的增加,n0出现在更低的温度区间内。Ozawa反应速度常数k0在固化反应初期随温度的升高而增加,在反应后期则随着温度的升高而下降,并且随着树脂O/P值的增加,k0出现峰值对应的温度降低,表明固化先后经历了微凝胶增长与扩散反应控制两个阶段,树脂O/P值的增加加快了微凝胶的增长进程。  相似文献   

9.
合成了高固体含量(>85%)的线性酚醛树脂,经凝胶渗透色谱/多角度激光光散射(SEC/MALLS)联用仪测定其数均分子量为1577,且分子量分布范围较窄,-Mw/-Mn仅为1.127。采用差示扫描量热(DSC)分析技术在50℃~300℃温度范围内,以不同的升温速率(2.5℃/min、5℃/min、7.5℃/min和10℃/min)研究了该酚醛树脂的固化反应过程。结果表明,该高固体含量线性酚醛树脂的凝胶化温度Tgel=110.61℃,固化温度Tcure=129.14℃,后处理温度Ttreat=146.96℃;根据Kissinger方程、Ozawa方程和Crane方程以及n级动力学模型确定该树脂的固化动力学方程为dα(t)/dt=2.09×1017(1-α)0.95exp(-2.10235×104/T)。  相似文献   

10.
硼改性酚醛树脂的固化及裂解   总被引:2,自引:0,他引:2  
采用DSC、Ozawa法、固态13C核磁共振(13C NMR)、红外光谱(IR)、裂解-气相色谱(Py-GC)和XRD研究了硼改性酚醛树脂的固化动力学、固化机制和裂解行为。结果表明: 硼改性酚醛树脂的近似凝胶温度、固化温度和后处理温度分别为350.0 K、386.2 K和433.3 K, 固化反应峰顶的活化能为152.4 kJ/mol; 硼改性酚醛树脂的固化反应主要包括PhCH2—OH之间的反应、PhCH2—OH与B—OH之间的反应、PhCH2—OH与酚环上活泼氢之间的反应, 以及醚键的歧化反应。硼改性酚醛树脂的剧烈分解温度为500~800 ℃, 失重为14.9%; 裂解生成的挥发物有CO、CO2、H2O、苯和甲苯等; 在1000 ℃时的残碳率为67.2%; 硼改性酚醛树脂在1000 ℃高温裂解30 min后生成了玻璃碳。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号