首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 187 毫秒
1.
为了明确纳米铝粉从低浓度到高浓度变化对液体碳氢燃料着火燃烧特性的影响,采用液滴悬挂法研究了不同温度下(700~800℃)乙醇液滴和添加不同浓度(2.5wt%, 10wt%, 15wt%和20wt%)纳米铝粉的铝/乙醇基纳米浆体燃料液滴的着火燃烧特性。利用高速摄影系统捕捉了液滴整个燃烧过程,分析了其液滴寿命。通过热电偶对液滴附近气相温度的测量,获得了其着火性能参数。结果表明,添加纳米铝粉可以改善乙醇液滴的着火性能。不同铝粉浓度改善效果不同,低浓度时效果较好,着火延迟时间显著缩短,点火温度明显降低。随温度升高,乙醇及添加纳米铝粉的铝/乙醇基纳米浆体燃料液滴着火延迟时间及着火温度均明显降低。纳米铝粉(S2)对乙醇(S1)着火延迟时间和液滴寿命的降幅在750℃最大,其降幅分别达42.20%和18.43%。纳米铝粉(S3)着火温度降低,其最大降低幅度也出现在750℃,相对于乙醇(S1)降低幅度达28.57%。一定铝粉浓度范围内,液滴微爆炸程度和微爆炸时长随铝粉浓度升高而增大,但铝粉浓度超过10wt%后趋势变得平稳。  相似文献   

2.
采用挂滴法研究了纳米铝粉及表面活性剂(油酸)浓度对正庚烷基纳米流体燃料着火特性的影响,用热电偶测量了管式电阻炉内温度为500℃时液滴及其附近的气相温度随时间的变化. 结果表明,随油酸浓度增加,纳米流体燃料的着火温度显著升高;随纳米铝粉浓度增加,纳米流体着火温度明显降低.  相似文献   

3.
用微米铝粉逐级取代部分纳米铝粉制备铝/冰燃料,采用表面接触法和高速摄影技术研究了不同粒度铝粉改善铝/冰燃料燃烧特性的效果. 结果表明,随微米铝粉取代量增加,铝/冰燃料燃烧反应速率和剧烈程度均先提高后降低,微米铝粉取代量为30%(w)时,铝/冰燃料最高升温速率达6062.24℃/s,是纯纳米铝/冰燃料的3.8倍. 用微米铝粉取代部分纳米铝粉均不同程度提高铝/冰燃料的燃面传播速率,微米铝粉取代量约为20%(w)时燃烧性能最佳,燃面传播速率较纯纳米铝/冰燃料提高57.8%. 在分析实验结果的基础上,建立了铝/冰燃料的燃烧火焰模型.  相似文献   

4.
生物质燃料是替代化石燃料的重要能源,在燃煤机组上掺烧生物质是当下生物质能利用的主要途径。由于煤和生物质耦合燃烧过程中存在协同效应,生物质燃料与煤耦合燃烧性能与二者单独燃烧的燃烧性能差异无法通过化学成分或相关性质算术平均来确定,与此同时,生物质中富含的碱金属K也会加重受热面结渣倾向。为研究煤与生物质混合燃烧过程中协同效应,选取神府烟煤与板栗壳作为试验样品,通过混合、研磨与压制,制备成圆饼形颗粒并在Hencken平焰燃烧器上进行燃烧试验。利用高速摄像机结合图像处理技术计算着火延迟时间,利用光谱仪结合自发辐射理论测量燃烧过程中火焰温度、气相K浓度。探讨耦合燃烧着火特性、燃烧特性与气相碱金属释放特性协同效应及其原因。最后,结合灰分分析结果计算各工况结渣指数,获得燃烧气相碱金属释放量与结渣指数相关性关系。结果表明:煤与生物质耦合燃烧着火延迟时间低于理论值,证明耦合燃烧着火存在协同效应,表现为促进着火。受纤维素热解与碱金属元素催化共同影响,生物质质量分数为50%时,着火延迟时间与理论值之差达到最大1.91 s,协同效应最大;耦合燃烧释放的碱金属低于理论值,说明耦合燃烧气相碱金属释放协同效应表现为抑...  相似文献   

5.
KF对微米铝粉在水蒸气中着火燃烧特性的影响   总被引:1,自引:0,他引:1  
为改善微米铝粉在水蒸气中的着火特性和燃烧效率,采用自行设计的管式炉实验平台研究了KF对30 ?m铝粉在1000℃水蒸气中着火燃烧特性的影响。用高速摄影系统记录了样品着火燃烧过程,并通过X射线衍射、扫描电镜技术和化学分析方法分析了产物组分、形貌和燃烧效率。结果表明,加入KF可显著降低30 ?m铝粉的点火延迟时间,与加入5wt% (0.003 g) KF相比,加入15wt% (0.009 g) KF后,样品的点火延迟时间减少了47.58 s;微米铝粉在1000℃水蒸气中不能着火,加入KF后能着火,这是因为KF与水蒸气反应生成KOH,KOH与Al2O3反应会破坏铝粉的氧化壳,加快铝与水蒸气的反应,促进铝粉着火。随KF加入量提高,样品的燃烧效率显著上升,最高为82.24%,比未添加KF样品的燃烧效率提升了38.75%。提高KF加入量,可产生更多的KOH,对氧化壳的破坏效果更显著,进一步促进铝与水蒸气反应,提高铝粉燃烧效率。  相似文献   

6.
<正>铝粉是推进剂中应用最为广泛的金属燃料,其燃烧时伴随的熔融团聚、不完全燃烧和二相流损失等现象,直接影响武器系统的安全性和有效射程。因此,铝基燃料的高效燃烧对于火炸药综合性能优化具有重要意义。近年来,燃烧与爆炸技术重点实验室纳米材料应用基础研究专业组开展了多类铝基燃料的高效燃烧技术研究,旨在持续提升含铝推进剂的释能水平。铝-金属核壳燃料的高效燃烧表面包覆改性是改善铝粉点火性能的重要策略。  相似文献   

7.
为了使Al/AP双组元粉末火箭发动机密度比冲最大化,将燃烧室特征长度由2.31 m增至 12.62 m进行了Al/AP粉末火箭发动机点火测试.采用光谱仪、CCD 相机、CO2 激光点火器等对 Al/AP 混合物在 1.0132 5 × 105 Pa的氮气环境中的点火延迟、燃烧时间、燃烧平稳性等燃烧性能进行了研究.测量了Al颗粒的表观堆积密度.作为一种替代燃料,对镁颗粒也进行了研究.结果表明,增加燃烧室特征长度至 12.62 m 时,可以得到最大燃烧室压强振荡幅度±2 .43%的平稳燃烧性能.含粒径 1μm 铝粉的 Al/AP 混合物其燃烧过程的光强远大于含粒径10μm铝粉的样品,并且其在波长 568 nm 发射光谱的光子数强度超过了光谱仪检测上限(65 000 数).而含粒径10μm铝粉样品燃烧过程的568 nm发射光谱信号出现间断且其全程强度低于 19 036 数.粒径 10μm 铝粉点火延迟时间为粒径1μm铝粉点火延迟时间的3.65 倍,燃烧时间为3.03 倍以上,最大RAlO却比 1μm铝粉少 14.3%,密度低21 .3%,说明粒度小的铝粉具有更好的燃烧性能,但是其堆积密度也更低.虽然Mg/AP的理论比冲为Al/AP的95.6%,但是其堆积密度比粒径1μm铝粉高8%,其点火延迟时间比粒径10μm铝粉短 90.3%.火焰照片也表明镁粉可在很大程度上减少凝相沉积.  相似文献   

8.
褐煤高水分和高挥发分不利于运输和储存,且会降低锅炉燃烧效率,低温烘焙提质作为一种褐煤提质常用技术,能有效降低燃料中水分并提升燃料品质,显著改变褐煤燃烧特性。为研究低温烘焙提质对褐煤着火特性的影响,利用平面火焰燃烧系统并结合CMOS相机研究了不同热协流温度(1 473、1 673和1 873 K)和O2体积分数(5%、10%和20%)下低温烘焙预处理(200、250和300℃)对褐煤着火燃烧特性的影响,并分析低温烘焙提质对着火延迟距离和火焰亮度的影响。结果表明,经低温烘焙预处理的褐煤颗粒在相同热协流温度和O2浓度条件下的着火延迟距离稍大于原始褐煤颗粒;O2体积分数为5%时,200℃烘焙褐煤的着火延迟距离在热协流温度1 473、1 673和1 873 K时较原始褐煤颗粒分别增加了0.24、0.28和0.13 cm;此外,不同烘焙温度下煤粉颗粒的着火位置较褐煤均有所延迟,且升高烘焙温度会降低褐煤着火距离,在1 673 K、O2体积分数5%下,烘焙温度200、250和300℃时对应的着火延迟距离较褐煤的增加...  相似文献   

9.
在氮气气氛下,采用全氟十四酸(FS)对纳米铝粉(nmAl)进行了表面包覆,采用扫描电镜(SEM)、X射线衍射(XRD)和傅里叶变换红外(FT-IR)光谱对其形貌和结构进行了表征.用激光点火装置和低压火药燃烧测试装置对表面处理前后纳米铝粉的点火燃烧性能进行了研究.结果表明,全氟十四酸包覆的纳米铝粉(nmAl/FS),其分散性提高,颗粒分布更均匀;全氟十四酸羧基中的两个氧原子与纳米铝粉表面的A1原子以桥接的方式相结合;与未处理的纳米铝粉相比,在激光热流密度较低时,nmAl/FS的点火延迟时间短;在激光点火燃烧过程中,nmAl/FS的燃烧反应较剧烈,火焰亮度高,在低压火药燃烧测试装置中燃烧时,其燃烧火焰更集中,火焰亮度更高,燃烧更充分.  相似文献   

10.
利用激波管与CHEMKIN软件研究了不同初始条件下乙烷和丙烷的掺混对甲烷着火延迟时间的影响规律,并从化学动力学角度分析了掺混乙烷和丙烷对甲烷着火延迟时间造成影响的原因。实验与模拟研究表明乙烷和丙烷的掺混会造成甲烷着火延迟时间的大幅度缩短,但随着温度的升高,其对甲烷着火延迟时间的影响逐渐变小。通过敏感性分析发现无论是甲烷/乙烷混合燃料还是甲烷/丙烷混合燃料,对着火促进最大的基元反应都是H+O2=O+OH(R1),在甲烷/乙烷和甲烷/丙烷混合燃料的着火反应中对着火抑制最大的两个基元反应是CH4+H=CH3+H2(R128)和CH4+OH=CH3+H2O(R129)。通过路径分析发现在甲烷/乙烷与甲烷/丙烷混合燃料中,随着混合燃料中乙烷与丙烷比例的增加,甲烷的主要反应路径基本不发生变化,主要影响了CH3的消耗速率。  相似文献   

11.
Organic gel propellants are promising candidates for a variety of rocket motor and scramjet applications, since they are intrinsically safe and provide high performance. It is well known that organic gel fuel droplets exhibit distinct combustion characteristics compared with conventional liquid fuel droplets, and furthermore an understanding of the ignition delay and lifetime of these droplets is critical to the improvement of combustor design. In this work, investigations of the combustion of unsymmetrical dimethylhydrazine (UDMH) organic gel droplets in different nitrogen tetroxide (NTO) oxidizing atmospheres were conducted using two sets of experimental apparatus. The combustion characteristics under different conditions of temperature and pressure were compared and analyzed based on the flame shapes observed during experimentation. From these trials, an unsteady combustion model was developed and used for the numerical simulation of spray‐sized UDMH organic gel droplet combustion in an NTO atmosphere. The hypergolic ignition and burning characteristics of the organic gel droplets under conditions simulating either engine startup or steady state combustion were compared, and changes in ignition delay and droplet lifetime with ambient temperature and pressure were analyzed. The experimental and numerical results show that the UDMH organic gel droplets exhibit periodic swell‐burst behavior following the formation of an elastic film at the droplet surface. Each droplet burst results in fuel vapor ejection and flame distortion, the intensity of which declines with increasing ambient pressure. However, the swell‐burst period is extended with increasing ambient pressure, which results in potential flameout. Under conditions of low temperature and pressure similar to those at engine startup, the ignition delay and lifetime of spray‐sized gel droplets decrease with increasing temperature or pressure, although there is a sharp increase in droplet lifetime when the ambient pressure reaches a critical value associated with flameout. The ignition delay was found to be a rate‐limited phenomenon linked to the droplet heating rate. The proportion of ignition delay and droplet lifetime due to droplet heating‐up decreased with increasing temperature or decreasing pressure. Conversely, at high temperatures and pressures simulating the engine’s steady state operating conditions, the droplets were observed to flameout after several swell‐burst periods and both ignition delay and lifetime decreased monotonically with increasing temperature or pressure. The ignition delay time was determined to be rate‐limited by gas phase chemical reactions and contributed very little to the overall droplet lifetime compared with the engine startup condition.  相似文献   

12.
The ignition of individual droplets (radius 0.5–1.5 mm) of water–coal fuel based on water of different quality (industrial-grade, tap, and distilled water) in a flux of heated oxidant (at 700–1000 K) is studied experimentally. The influence of water quality on the ignition time and the time for complete combustion of the fuel droplet and also on the maximum combustion temperature is investigated. Experimental data are presented regarding the influence of the concentration of the different water samples in the fuel on its ignition. The delay of fuel ignition does not depend greatly on the water quality. (For industrial-grade, tap, and distilled water, the difference is no more than 10–15%.)  相似文献   

13.
To permit expansion of the resource base and utilize industrial waste, coal–water–oil fuels may be prepared on the basis of coke and semicoke, as well as common petroleum derivatives (fuel oil and spent compressor, turbine, and transformer oils). The minimal oxidant temperature corresponding to stable ignition of coal–water–oil slurries is established. Typical variation in fuel temperature in the course of reaction is determined, as well as the delay time of ignition and the total combustion time for individual droplets of such fuel suspensions. For droplets of initial size 0.5–1.5 mm, the influence of the various factors (droplet size, oxidant temperature, and concentration of the components) on the threshold (minimum) temperature and inertia of ignition is studied. It is shown that stable ignition of coke and semicoke in such fuel is possible at moderate oxidant temperatures: 700–1000 K.  相似文献   

14.
I.N.G. Wardana 《Fuel》2010,89(3):659-664
Jatropha oil which is a large, branched triglycerides type vegetable oil has good potential as an alternative diesel fuel. Its combustion characteristics have been observed experimentally by igniting the oil droplet of various diameters and temperatures on a junction of a thermocouple. The combustion characteristics are identified from flame image and temperature signal in the center of the droplet. The results show that the jatropha oil droplet performs two steps combustion. Fatty acid burned in the first step and glycerol does in the second step. The onset of micro-explosion occurs shortly before the second step combustion and it becomes more frequent as the oil temperature is increased.  相似文献   

15.
Coal–water slurry containing petrochemicals is of increasing interest as a fuel. In the present work, the ignition and combustion of such fuel based on spent turbine oil and mixtures of flotation waste from coal enrichment (filter cakes containing D, K, SS, and T coal) are experimentally studied. The ignition delay time, complete combustion time, and minimum ignition temperature are determined as a function of the concentration of fuel components, the oxidant temperature, and the size of the droplets held stationary in the oxidant flux at the junction of a low-inertia thermocouple. Variation in the proportions of components within the filter- cake mixture changes the ignition characteristics of the slurry (the complete combustion time and ignition delay time). The metamorphic development of the coal present in the filter cakes significantly affects the ignition and combustion of such coal–water–oil slurry.  相似文献   

16.
The ignition and evaporation of spherical cloud of droplets in a hot quiescent atmosphere is examined numerically using transient group combustion analysis. Ignition delay times are calculated as a function of cloud radius, ambient temperature, drop size and droplet number density. The ignition temperature for a cloud of drops was found to be less than that obtained from a single drop. The results indicated an interaction between chemical and physical effects resulting in the possibility of an optimal interdrop spacing for ignition of a fuel with a high boiling point. The model results indicate that for interdrop spacing to radius ratio of less than 5, the ignition and evaporation of a cloud of drops is confined to a thin layer at the surface of the cloud. For drops spaced farther apart thermal penetration from the hot ambient is possible resulting in vaporization within the cloud.  相似文献   

17.
M. Ikegami  G. Xu  S. Honma  D.L. Dietrich 《Fuel》2003,82(3):293-304
This report presents an investigation on the combustion of single droplets comprised of heavy oil and oil mixtures blending diesel light oil (LO) and a heavy oil residue (HOR). The tests were conducted in a microgravity facility that offered 10 s of free-fall time. Fine wire thermocouples supported the droplets, resulting in a measurement of droplet temperature history. Additional data were the droplet and flame size history. The results identified four distinctive burning stages between ignition and extinction for heavy oil (C class) and HOR-LO blends. They are, in succession, the start-up, inner evaporation, thermal decomposition (pyrolysis) and polymerization stages. The start-up stage denoted an initial transient period, where the LO components burned from the droplet surface and the droplet temperature increased rapidly. The latter three stages featured pronounced droplet swellings and contractions caused by fuel evaporation and decomposition inside the droplet. An evaporation temperature demarcated the start-up stage from the inner evaporation stage, and this temperature corresponded to a plateau in the temperature history of the droplet. Two additional temperatures, termed the decomposition and polymerization temperatures, indicated the ends of the evaporation and decomposition stages. These temperatures were similarly identified by plateaus or inflection points in the time-temperature diagram. The evaporation temperature gradually decreased with increasing the initial LO mass fraction in the droplet, whereas the other two temperatures were almost independent of the oil composition. All three temperatures increased with decreasing initial droplet diameter, but the dependence was very slight. Based on the results, the combustion of heavy oil droplets appears to be dominated by a distillation-like vaporization mechanism, because of the rapid mass transport within the droplets caused by the disruptive burning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号