首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 203 毫秒
1.
采用热重分析法研究了城市污泥(SS)与小麦秸秆(WS)在220℃下共水热炭化(Co-HTC)产物水热炭(Hydrochar)的燃烧特性与反应动力学。对比分析水热炭从室温升至1 000℃的燃烧特性,采用KAS法计算燃烧过程中样品的活化能。结果表明,水热炭化后,污泥和秸秆的着火温度升高、失重率下降。随着混合物中WS质量分数从30%增加到70%,共炭化产物的综合燃烧特性指数从3.47增加到11.35,燃烧性能显著增强,且Ti和Tf之间的温度区间变窄。城市污泥与秸秆混合水热制备的生物质炭燃烧过程中存在协同作用,在320℃时协同作用最强。WS质量分数为50%时,水热炭燃烧的平均活化能达到最小值,为22.55 kJ/mol。  相似文献   

2.
采用热重技术对稻壳(DK)和杨树锯末(JM)燃烧进行分析,考察了不同预处理方式对稻壳燃烧特性的影响,并研究了不同升温速率及稻壳和杨树锯末掺混质量比对掺混燃烧特性及燃烧动力学的影响。结果表明:水洗及酸洗可使稻壳燃烧TG-DTG热重曲线向高温区移动,最大失重速率及对应失重温度升高。水洗使稻壳综合燃烧特性指数提高2.5×10-7~5.9×10-7%/(min2·℃3),而酸洗使稻壳综合燃烧特性指数下降11×10-7~11.9×10-7%/(min2·℃3)。不同预处理后稻壳在挥发分析出燃烧阶段的活化能高于未处理稻壳,酸洗后稻壳焦炭燃烧阶段活化能降低16.94 kJ/mol,而水洗使稻壳焦炭燃烧阶段活化能升高。提高稻壳添加比例,混合燃料着火温度和燃尽温度降低。随着升温速率的提高,混合样品综合燃烧特性指数和残余率升高。70%稻壳和30%杨树锯末混合燃料在升温速率40℃/min下燃烧产生协同效应。  相似文献   

3.
为了掌握固体回收燃料(Solid Recovered Fuel, SRF)掺烧对污泥焚烧处置的热反应特性及烟气环境特性的影响,通过使用德国耐驰公司生产的热综合分析仪、SEM、XRD和GA-21plus烟气分析仪着重解析了不同掺烧比例时SRF与污泥混燃过程的热重规律、综合燃尽特征指数、结渣特性和烟气中NOx排放特性。结果表明:混烧过程存在明显的多峰失重现象,主要集中在192.3~645.3℃;SRF掺烧提高了燃料的失重速率,掺混比11%时,最大失重速率达0.14%/min,显著高于污泥单独焚烧的失重速率。随着SRF掺烧比提高,燃料的着火温度和燃尽温度降低,充分燃烧阶段向低温区域偏移。SRF掺混比为11%时,稳定燃烧性能指数和综合燃烧性能指数分别提升了1.38倍和1.17倍,改善了污泥单独焚烧时的着火特性。另外,SRF掺混后燃料灰熔融温度升高,灰分黏附程度降低,颗粒聚团强度降低,从而减弱了污泥单独焚烧时结渣情况,然而掺混燃烧导致烟气中NOx排放量增加。  相似文献   

4.
将干燥后的上海市生活污水处理厂污泥和蒙西烟煤煤粉分别按照5%∶95%,10%∶90%,30∶70%的质量比掺混,取(6.5±0.5) mg共混物利用热天平进行热重实验,升温速率为30℃/min,终温为800℃。选取干基污泥和干基煤粉质量比为30%∶70%的共混物在热裂解-气相色谱质谱联用仪(Py-GC/MS)上进行快速热解实验,研究了两者协同燃烧中污泥掺混对煤粉热解挥发分释放的影响。结果表明:污泥单独热解挥发分的主要释放峰集中在320℃,440℃与730℃,有别于煤粉单独热解挥发分的主要释放峰位置480℃和635℃。煤粉掺烧10%和30%比例的污泥后,600℃以下热解活化能明显降低;污泥掺烧比例越大,热解活化能降低越多。600℃以上热解活化能变化不大。700℃时掺烧污泥会生成更多的碳数为1~8的小分子气态有机物,这区别于煤粉或污泥单独热解的情况。污泥热解产物富含醇、酸、酯和酮,煤粉热解产物以碳氢化合物为主。掺混热解后,酯类产率降低,酸增多,酚类和烃类平均相对分子质量降低。这与污泥中灰的催化作用以及污泥为反应提供了H·和OH·有关,是600℃下活化能降低的主要原因。  相似文献   

5.
采用热重分析法研究了水稻秸秆(RS)、煤粉(PC)及两者不同掺混比的混合物在不同升温速率下(10, 20, 40℃/min)从室温升至1000℃的燃烧特性,用Kissinger?Akahira?Sunose (KAS)法和Flynn?Wall?Ozawa (FWO)法计算了燃烧过程中的活化能。结果表明,失重速率(DTG)曲线中RS比PC多一个失重峰,且残余质量低。随升温速率增加,所有样品DTG曲线均向高温偏移,产生热滞后现象。RS和PC在混合燃烧过程中存在协同效应,且高温区域内更显著。PC掺混比例为50wt%时,混合物平均活化能的计算值较低,仅为76.0 kJ/mol (KAS)和83.2 kJ/mol (FWO)。  相似文献   

6.
抗生素菌渣与煤混合燃烧特性及其动力学分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以抗生素菌渣、煤为研究对象,利用热重-差示扫描量热仪(TG-DSC)研究两种物质单独以及混合燃烧的燃烧特性,并采用Coats-Redfern法确定混合燃烧的动力学参数。分析菌渣掺混比和粒径对燃烧过程的影响,阐明菌渣与煤混合燃烧的可能以及超细化燃烧的优势。结果表明:抗生素菌渣与煤混合燃烧主要包括3个阶段,添加菌渣能明显改善煤的燃烧特性。随着菌渣掺混比例的增加,着火温度、燃尽温度呈现降低的趋势。超细、非超细混合燃烧燃尽特性指数在菌渣掺混比为30%时最高,分别为5.82×10-3、5.49×10-3。超细混合燃烧活化能均低于非超细混合燃烧,说明超细化燃烧有利于降低活化能。超细、非超细混合燃烧活化能E和指前因子A之间均存在动力学补偿效应。  相似文献   

7.
以抗生素菌渣、煤为研究对象,利用热重-差示扫描量热仪(TG-DSC)研究两种物质单独以及混合燃烧的燃烧特性,并采用Coats-Redfern法确定混合燃烧的动力学参数。分析菌渣掺混比和粒径对燃烧过程的影响,阐明菌渣与煤混合燃烧的可能以及超细化燃烧的优势。结果表明:抗生素菌渣与煤混合燃烧主要包括3个阶段,添加菌渣能明显改善煤的燃烧特性。随着菌渣掺混比例的增加,着火温度、燃尽温度呈现降低的趋势。超细、非超细混合燃烧燃尽特性指数在菌渣掺混比为30%时最高,分别为5.82×10~(-3)、5.49×10~(-3)。超细混合燃烧活化能均低于非超细混合燃烧,说明超细化燃烧有利于降低活化能。超细、非超细混合燃烧活化能E和指前因子A之间均存在动力学补偿效应。  相似文献   

8.
生物质作为可再生能源,具有资源丰富、着火容易、污染物排放低等优点,但存在能量密度低、水分高等缺点。煤粉则具有能量密度高的优点和着火困难、污染物排放高等缺点。将生物质高比例掺混入煤粉(生物质/煤粉质量比大于5∶5),可有效解决生物质利用率低、能量密度低、煤粉着火较难和污染物排放高等问题,提高能源利用率,实现节能减排,该方法已成为一种新型能源利用技术。目前学者研究主要集中低掺混比例(小于5∶5),国内常见生物质与煤粉在高掺混比例下的混燃特性尚有待深入研究。采用热重分析法研究了不同生物质(玉米秸秆、稻杆、玉米芯、棉花及杨木屑)与煤粉在高掺混比例下(0∶10、5∶5、6∶4、7∶3、8∶2、10∶0)的燃烧特性和动力学特性,分析了不同生物质种类及掺混比例对燃料热失重特性、特征温度、反应动力学、燃尽特性及燃烧特性指数等影响,并确定不同生物质的最佳掺混比例。结果表明:混合样品的失重曲线表现为失水、挥发分燃烧、固定碳燃烧3个阶段。最大失重速率在第1阶段变小,第2阶段变大,燃烧整体前移。混合样品的着火温度和燃尽温度分别比煤粉下降约100和40℃,在协同作用下,掺混后杨木屑的着火温度随掺混比例的增加而增...  相似文献   

9.
利用热重分析仪研究生石灰对褐煤燃烧特性的影响,采用了描述煤燃烧着火及燃尽性能的燃烧特性指数S,可燃性指数C和着火稳燃特性综合判别指标Rw,并根据热动力学方法计算各过程的热动力学参数,即活化能E和频率因子A.结果表明,在加入生石灰后,褐煤燃烧明显分为两个阶段,并且随着生石灰混合比例的增加,前期的燃烧强度逐渐减弱,后期的燃烧强度逐渐增强.当生石灰的添加量在20%左右时,试样的活化能较原煤略有降低,且最大燃烧速率比原煤快,但随着生石灰添加量继续增加,燃尽性能变差.  相似文献   

10.
煤粉添加高炉除尘灰混合燃烧特性及动力学研究   总被引:2,自引:0,他引:2  
利用热重分析天平,采用非等温燃烧方法对除尘灰与2种煤粉的混合试样的燃烧特性及其反应动力学参数进行了实验研究. 考察了不同配比的混合试样的着火温度、燃烧速率最大时温度、燃尽温度和最大燃烧速率等燃烧特征参数,计算了反应的动力学参数活化能Ea和指前因子A. 结果表明,两参数均随混煤中除尘灰比例的增加而降低,存在"动力学补偿效应". 煤中掺入除尘灰后,试样燃烧的第一和第二阶段的Ea均呈现下降规律,但对不同煤粉影响效果程度有较大差别. Ea的计算表明,除尘灰的存在有助于改善煤的着火性能,对煤的燃烧有催化促进作用,且5%为最佳掺混比例.  相似文献   

11.
油泥焦与褐煤共燃特性及动力学   总被引:2,自引:0,他引:2       下载免费PDF全文
采用热重分析法研究了不同升温速率下油泥焦、褐煤及其混合物燃烧特性,并利用Kissinger-Akahira-Sunose(KAS)、Flynn-Wall-Ozawa(FWO)和Friedma(FR)等方法计算其燃烧动力学参数。结果表明,油泥焦燃烧主要是固定碳燃烧过程,而褐煤燃烧是挥发分和少量固定碳连续燃烧的过程。褐煤比油泥焦具有更好的燃烧特性,平均活化能更低。油泥焦和褐煤共燃过程中存在明显的协同促进作用,当混合燃料中褐煤占比为75%时协同促进效应达到最强。通过比较KAS、FWO和FR的结果发现,FR法能够更好地体现反应变化的趋势,而KAS法和FWO法的结果具有较高的准确性。通过比较油泥焦和褐煤共燃动力学参数的理论计算值与实验计算值发现,利用热重分析预测混合燃料的燃烧性质具有较高的可靠性,对油泥焦与褐煤共燃技术的应用具有重要的指导作用。  相似文献   

12.
为了研究煤泥与玉米芯的混燃特性,利用热重-质谱(TG-MS)联用技术研究了煤泥、玉米芯单独及混合燃烧的着火、燃尽等特性,在线监测了气体释放物CO_2、SO_2和NO_2,并分析了其变化规律。结果表明,当升温速率为10℃/min时,煤泥中掺烧玉米芯可以使混合样品着火温度降低204.62℃,燃尽温度降低26.52℃,燃烧性能得到明显改善。随着升温速率提高,混合样品在挥发分析出燃烧阶段,以及固定碳燃烧阶段的燃尽温度和最大失重速率都相应提高,而混合样品的着火温度变化不大。各样品燃烧时,CO_2和NO_2释放峰与其燃烧失重峰对应。煤泥中掺混玉米芯燃烧,降低了SO_2气体的排放。  相似文献   

13.
The co-combustion of dried sewage sludge with coal is a promising method to dispose of and treat sewage sludge waste. Because sewage sludge has a different elemental composition than coal, the co-combustion of sewage sludge with coal may have different combustion characteristics than the single combustion of coal. In this study, the co-combustion of dried sewage sludge with coal was tested varying heating rates and mixing ratios of the dried sewage sludge. The results were analyzed using thermogravimetric (TG) and derivative thermogravimetric (DTG) curves and modeled using Ozawa-Flynn-Wall and Vyazovkin models. The mixed samples of coal and dried sewage sludge showed similar TG curves to the coal sample. The co-combustion showed activation energies close to that of the single coal combustion. This suggests that the co-combustion of coal and dried sewage sludge has similar combustion behavior to the single combustion of coal for mixing percentages of dried sewage sludge up to 20%.  相似文献   

14.
The incineration of high-moisture solid residues generated at the recycling paper mills represents an energetically unfavourable method of resource utilization. Alternatively, hydrothermal pre-treatment is considered. In this study, low-value paper sludges from three different recycling streams were hydrothermally carbonized at 205, 225, and 245°C for 3 h. The raw feedstocks and derived hydrochars were analyzed for energy properties, chemical characteristics, surface morphology, functional groups, and combustion performance employing energy densification and mass yield quantification, scanning electron microscopy, elemental analyzer, Fourier-transform infrared spectroscopy, and thermogravimetry. The increase in reaction temperature was reported to cause a decrease in mass yield and an increase in energy densification and calorific values corresponding to 5.98%–49.35% and 10.10%–58.51% for raw fibre rejects and final sludge-derived hydrochar, respectively. Hydrothermal carbonization (HTC) had a non-significant influence on the energy densification of primary clarifier sludge-derived hydrochar. Higher reaction temperatures favoured the rate of dehydration and decarboxylation, leading to hydrochars with lower H/C and O/C ratios, thereby enhancing the overall fuel properties. The low-nitrogen and low-sulphur fuels obtained validated the effectiveness of HTC treatment to produce high-quality cleaner solid fuel. The burnout temperature was mostly reduced with an increase in HTC temperature. At HTC-205 and 225°C, the ignition temperature and the combustion performance increased as a result of the HTC reaction mechanisms. HTC effectively recovered hydrochar with increased carbon content, improved energy densification, and good combustion adequacy. Hydrochar derived from recycling mills may play a role in the energy sector as a substitute for coal or in co-combustion at coal-fired power plants.  相似文献   

15.
In connection to future energy demand and fossil fuel crisis particularly in India, biomass is gaining its importance for possible use as co-fuel. In India varieties of biomass products are available which do have tremendous potentiality for co-combustion with pulverized coal. Based on the emerging need, detailed investigations are felt necessary to examine the compatibility of different kind of biomass with coal and to select suitable blend composition(s) before utilizing those biomass products in utility operation as co-fuels. This study elaborates the lab scale findings of combustion experiments in DSC-TGA apparatus with a typical Indian coal, two biomass samples and low temperature biomass chars (300 and 450 °C) as well as with ‘blends of low temperature chars and coal’. Conventional TGA parameters, activation energy and ignition index of different blends were estimated which provided elaborate information on their basic combustion features. Results of non-isothermal combustion studies in general depict that blends containing less than 50% biomass char are better performing as compared those with higher biomass char content. Lowering of activation energy and improvement of reactivity in major combustion zone were also observed in the coal/biomass-char blends. Improvement of ignition index of the blends of coal with 300 °C chars over expected weighted mean values was noticed. Such attempts may help to identify appropriate biomass-type, blend proportion for a given coal and to derive some specific advantages with respect to particular combustion practice.  相似文献   

16.
为了充分利用劣质燃料油页岩和难以利用的高硫石油焦,以煤、劣质燃料油页岩及高硫燃料石油焦的混合燃料为研究对象,采用热重-差热的试验方法和差减微分法,对其混烧特性曲线和混烧特性机理进行分析,计算出试样各种燃烧特性参数及燃烧动力学参数。结果表明:煤、油页岩、石油焦的质量比为1∶6∶3的混烧试样S7的DTG曲线先后出现挥发分的析出着火燃烧峰和剩余固定碳的着火燃烧峰;煤、油页岩、石油焦的质量比为6∶3∶1的混烧试样S4的可燃特性指数及着火特性指数均大于油页岩及石油焦的值,而且混合试样的燃尽指数均大于煤及石油焦的值,同时,混合样品的综合燃烧特性指数均大于油页岩的值;试样S4的活化能最小,该混合试样的燃烧反应最容易进行。只要煤、油页岩及石油焦混合比例适当,其混合燃烧特性将优于油页岩及石油焦单独的燃烧特性。  相似文献   

17.
可再生能源生物质清洁低碳、易于获取、利于着火,含硫、氮量少且属于碳中性物质,但其能量密度低。在煤粉中大比例掺混生物质(生物质/煤粉质量比大于5∶5)可有效改善煤粉着火特性,碳排放水平接近燃烧天然气,且污染物排放显著降低,进而达到节能减排目的。目前研究主要集中在低掺混比例(小于5∶5)下生物质与煤粉的混燃特性,针对北方常见的玉米秸秆、稻杆和玉米芯等生物质与煤粉在大掺混比例下的燃烧特性,尚有待深入。笔者利用热重分析技术分别研究了煤粉与不同生物质种类(玉米秸秆、稻杆及玉米芯)在不同掺混比例下(5∶5、6∶4、7∶3和8∶2)的混燃特性,分析生物质种类和掺混比例对混合燃料的着火温度、燃尽温度、交互反应以及燃烧特性指数等的影响,确定了不同生物质的最佳掺混比例。结果表明:掺混比例对混合样品失重曲线的影响从大到小依次为玉米秸秆、玉米芯和稻杆。随掺混比例增加,第1阶段最大质量变化速率逐渐增大且燃烧进程前移,第2阶段则逐渐减小,这是由于挥发分相对增加且焦炭相对减少的原因。混合样品的着火温度和燃尽温度比纯煤粉分别下降约100和60℃。随掺混比例的增加,玉米芯着火温度逐渐减小,玉米秸秆和稻杆则先减小后增大,且均在7∶3时达到最小;燃尽温度均呈现下降趋势,下降幅度由大到小分别为玉米芯、稻杆和玉米秸秆。玉米秸秆和稻杆在8∶2时燃尽性能较差。混合样品发生不同程度的交互作用,该交互作用正是生物质的促进和抑制的协同作用,使3种生物质均在5∶5时对煤粉燃烧抑制作用大;玉米秸秆和稻杆在7∶3时、玉米芯在6∶4、8∶2时促进作用大。同时,3种生物质的燃烧特性指数远大于煤粉,随掺混比例的增大,玉米芯的燃烧特性指数变化最大并在8∶2时达到最大值,6∶4和7∶3时几乎相同;稻杆的变化最小且在7∶3时达到最大值;玉米秸秆在7∶3和8∶2时几乎相同并达到最大值。小范围改变掺混比例时,燃烧特性指数变化不大。这可能是由于燃烧特性指数不仅与着火温度和燃尽温度有关,还与样品在其主要燃烧过程的反应速率有关,而煤粉在焦炭燃烧阶段的反应剧烈程度高于生物质挥发分析出阶段,使不同掺混比例的混合样品出现以上现象。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号