首页 | 官方网站   微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
Yu D  Ponomarev A  Davis RL 《Neuron》2004,42(3):437-449
In the olfactory bulb of vertebrates or the homologous antennal lobe of insects, odor quality is represented by stereotyped patterns of neuronal activity that are reproducible within and between individuals. Using optical imaging to monitor synaptic activity in the Drosophila antennal lobe, we show here that classical conditioning rapidly alters the neural code representing the learned odor by recruiting new synapses into that code. Pairing of an odor-conditioned stimulus with an electric shock-unconditioned stimulus causes new projection neuron synapses to respond to the odor along with those normally activated prior to conditioning. Different odors recruit different groups of projection neurons into the spatial code. The change in odor representation after conditioning appears to be intrinsic to projection neurons. The rapid recruitment by conditioning of new synapses into the representation of sensory information may be a general mechanism underlying many forms of short-term memory.  相似文献   

2.
Classical conditioning of the gill withdrawal reflex can be demonstrated in two different in vitro Aplysia preparations. The data obtained show that as conditioning of the gill withdrawal reflex proceeds there are changes in synaptic efficacy at the central sensory-motor neurone synapse. These changes in synaptic efficacy, however, are not necessary nor are they sufficient for the observed changes in gill reflex behaviour. Changes must be occurring at other loci within the nervous system to mediate the associative learning. We hypothesized, based on data obtained from one type of in vitro preparation, that changes occur in the ability of the motor neurone to elicit a gill withdrawal response as a result of classical conditioning training. In order to test this hypothesis we depolarized an identified gill motor neurone before and after classical conditioning and found that the motor neurone's ability to elicit a gill movement was facilitated following classical conditioning training. In control preparations that received an explicitly unpaired stimulus paradigm (which does not lead to classical conditioning of the reflex) there was a decrease in the efficacy of a gill motor neurone to elicit a gill withdrawal response. There are a number of possible sites within the integrated central (CNS) and peripheral (PNS) nervous systems where changes could occur to bring about the alterations in motor neurone efficacy. Our results suggest that changes in neuronal activity which underlie learning occur at multiple sites within the nervous system and that a complete understanding of the mechanisms of associative learning can only be obtained when all of these sites are taken into account.  相似文献   

3.
Mushroom bodies are central brain structures and essentially involved in insect olfactory learning. Within the mushroom bodies γ-aminobutyric acid (GABA)-immunoreactive feedback neurons are the most prominent neuron group. The plasticity of inhibitory neural activity within the mushroom body was investigated by analyzing modulations of odor responses of feedback neurons during olfactory learning in vivo. In the honeybee, Apis mellifera, feedback neurons were intracellularly recorded at their neurites. They produced complex patterns of action potentials without experimental stimulation. Summating postsynaptic potentials indicate that their synaptic input region lies within the lobes. Odor and antennal sucrose stimuli evoked excitatory phasic-tonic responses. Individual neurons responded to various odors; responses of different neurons to the same odor were highly variable. Response modulations were determined by comparing odor responses of feedback neurons before and after one-trial olfactory conditioning or sensitisation. Shortly after pairing an odor stimulus with a sucrose reward, odor-induced spike activity of feedback neurons decreased. Repeated odor stimulations alone, equally spaced as in the conditioning experiment, did not affect the odor-induced excitation. A single sensitisation trial also did not alter odor responses. These findings indicate that the level of odor-induced inhibition within the mushroom bodies is specifically modulated by experience. Accepted: 9 September 1999  相似文献   

4.
Odors elicit spatio-temporal patterns of activity in the olfactory bulb of vertebrates and the antennal lobe of insects. There have been several reports of changes in these patterns following olfactory learning. These studies pose a conundrum: how can an animal learn to efficiently respond to a particular odor with an adequate response, if its primary representation already changes during this process? In this study, we offer a possible solution for this problem. We measured odor-evoked calcium responses in a subpopulation of uniglomerular AL output neurons in honeybees. We show that their responses to odors are remarkably resistant to plasticity following a variety of appetitive olfactory learning paradigms. There was no significant difference in the changes of odor-evoked activity between single and multiple trial forward or backward conditioning, differential conditioning, or unrewarded successive odor stimulation. In a behavioral learning experiment we show that these neurons are necessary for conditioned odor responses. We conclude that these uniglomerular projection neurons are necessary for reliable odor coding and are not modified by learning in this paradigm. The role that other projection neurons play in olfactory learning remains to be investigated.  相似文献   

5.
Recent studies using functional optical imaging have revealed that cellular memory traces form in different areas of the insect brain after olfactory classical conditioning. These traces are revealed as increased calcium signals or synaptic release from defined neurons, and include a short-lived trace that forms immediately after conditioning in antennal lobe projection neurons, an early trace in dopaminergic neurons, and a medium-term trace in dorsal paired medial neurons. New molecular genetic tools have revealed that for normal behavioral memory performance, synaptic transmission from the mushroom body neurons is required only during retrieval, whereas synaptic transmission from dopaminergic neurons is required at the time of acquisition and synaptic transmission from dorsal paired medial neurons is required during the consolidation period. Such experimental results are helping to identify the types of neurons that participate in olfactory learning and when their participation is required. Olfactory learning often occurs alongside crossmodal interactions of sensory information from other modalities. Recent studies have revealed complex interactions between the olfactory and the visual senses that can occur during olfactory learning, including the facilitation of learning about subthreshold olfactory stimuli due to training with concurrent visual stimuli.  相似文献   

6.
Davis RL 《Neuron》2011,70(1):8-19
Studies using functional cellular imaging of living flies have identified six memory traces that form in the olfactory nervous system after conditioning with odors. These traces occur in distinct nodes of the olfactory nervous system, form and disappear across different windows of time, and are detected in the imaged neurons as increased calcium influx or synaptic release in response to the conditioned odor. Three traces form at or near acquisition and coexist with short-term behavioral memory. One trace forms with a delay after learning and coexists with intermediate-term behavioral memory. Two traces form many hours after acquisition and coexist with long-term behavioral memory. The transient memory traces may support behavior across the time windows of their existence. The experimental approaches for dissecting memory formation in the fly, ranging from the molecular to the systems, make it an ideal system for elucidating the logic by which the nervous system organizes and stores different temporal forms of memory.  相似文献   

7.
The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables. Methyl eugenol (ME), a male attractant, is used to against this fly by mass trapping. Control effect may be influenced by learning, which could modify the olfactory response of the fly to this attractant. To collect the behavioral evidence, studies on the capability of this fly for olfactory learning are necessary. We investigated olfactory learning in male flies with a classical olfactory conditioning procedure using restrained individuals under laboratory conditions. The acquisition of the proboscis extension reflex was used as the criterion for conditioning. A high conditioned response level was found in oriental fruit flies when an odor was presented in paired association with a sucrose reward but not when the odor and sucrose were presented unpaired. We also found that the conditioning performance was influenced by the odor concentration, intertrial interval, and starvation time. A slight sensitization elicited by imbibing sucrose was observed. These results indicate that oriental fruit flies have a high capacity to form an olfactory memory as a result of classical conditioning.  相似文献   

8.
Honey bees are a key-model in the study of learning and memory, because they show considerable learning abilities, their brain is well described and is accessible to a wide range of physiological recordings and treatments. We use in vivo calcium imaging to study olfactory perception in the bee brain, and combine this method to appetitive olfactory conditioning to unravel the neural substrates of olfactory learning. Odours are detected by receptor neurons on the antennae. Each receptor neuron projects to the first-order neuropile of the olfactory pathway, the antennal lobe, connecting to projection neurons in one of its 160 functional units, the glomeruli. In calcium imaging experiments, each odour elicits a particular activity pattern of antennal lobe glomeruli, according to a code conserved between individuals. The antennal lobe is also a site where the olfactory memory is formed. Using optical imaging, two studies have shown modulations of odour representation in the antennal lobe after learning, with different effects depending on the type of conditioning used. While simple differential conditioning (A + B- training) showed an increased calcium response to the reinforced odour, side-specific conditioning (A + B-/B + A- training) decorrelated the calcium responses of odours between brain sides. This difference may owe to the formation of different memories, which will be addressed in future work. By specifically staining antennal lobe neuronal subpopulations, we hope to be able in the future to study synaptic plasticity in the honey bee.  相似文献   

9.
The peptide hormone adiponectin is secreted by adipose tissue and the circulating concentration is reversely correlated with body fat mass; it is considered as starvation signal. The observation that mature sensory neurons of the main olfactory epithelium express the adiponectin receptor 1 has led to the concept that adiponectin may affect the responsiveness of the olfactory system. In fact, electroolfactogram recordings from olfactory epithelium incubated with exogenous adiponectin resulted in large amplitudes upon odor stimulation. To determine whether the responsiveness of the olfactory sensory neurons was enhanced, we have monitored the odorant-induced expression of the immediate early gene Egr1. It was found that in an olfactory epithelium incubated with nasally applied adiponectin the number of Egr1 positive cells was significantly higher compared to controls, suggesting that adiponectin rendered the olfactory neurons more responsive to an odorant stimulus. To analyze whether the augmented responsiveness of sensory neurons was strong enough to elicit a higher neuronal activity in the olfactory bulb, the number of activated periglomerular cells of a distinct glomerulus was determined by monitoring the stimulus-induced expression of c-fos. The studies were performed using the transgenic mOR256-17-IRES-tauGFP mice which allowed to visualize the corresponding glomerulus and to stimulate with a known ligand. The data indicate that upon exposure to 2,3-hexanedione in adiponectin-treated mice the number of activated periglomerular neurons was significantly increased compared to controls. The results of this study indicate that adiponectin increases the responsiveness of the olfactory system, probably due to a higher responsiveness of olfactory sensory neurons.  相似文献   

10.
The temporal pairing of a neutral stimulus with a reinforcer (reward or punishment) can lead to classical conditioning, a simple form of learning in which the animal assigns a value (positive or negative) to the formerly neutral stimulus. Olfactory classical conditioning in Drosophila is a prime model for the analysis of the molecular and neuronal substrate of this type of learning and memory. Neuronal correlates of associative plasticity have been identified in several regions of the insect brain. In particular, the mushroom bodies have been shown to be necessary for aversive olfactory memory formation. However, little is known about which neurons mediate the reinforcing stimulus. Using functional optical imaging, we now show that dopaminergic projections to the mushroom-body lobes are weakly activated by odor stimuli but respond strongly to electric shocks. However, after one of two odors is paired several times with an electric shock, odor-evoked activity is significantly prolonged only for the "punished" odor. Whereas dopaminergic neurons mediate rewarding reinforcement in mammals, our data suggest a role for aversive reinforcement in Drosophila. However, the dopaminergic neurons' capability of mediating and predicting a reinforcing stimulus appears to be conserved between Drosophila and mammals.  相似文献   

11.
Flumethrin has been widely used as an acaricide for the control of Varroa mites in commercial honeybee keeping throughout the world for many years. Here we test the mortality of the Asian honeybee Apis cerana cerana after treatment with flumethrin. We also ask (1) how bees react to the odor of flumethrin, (2) whether its odor induces an innate avoidance response, (3) whether its taste transmits an aversive reinforcing component in olfactory learning, and (4) whether its odor or taste can be associated with reward in classical conditioning. Our results show that flumethrin has a negative effect on Apis ceranàs lifespan, induces an innate avoidance response, acts as a punishing reinforcer in olfactory learning, and interferes with the association of an appetitive conditioned stimulus. Furthermore flumethrin uptake within the colony reduces olfactory learning over an extended period of time.  相似文献   

12.
Learning and memory is not an attribute of higher animals. Even Drosophila larvae are able to form and recall an association of a given odor with an aversive or appetitive gustatory reinforcer. As the Drosophila larva has turned into a particularly simple model for studying odor processing, a detailed neuronal and functional map of the olfactory pathway is available up to the third order neurons in the mushroom bodies. At this point, a convergence of olfactory processing and gustatory reinforcement is suggested to underlie associative memory formation. The dopaminergic system was shown to be involved in mammalian and insect olfactory conditioning. To analyze the anatomy and function of the larval dopaminergic system, we first characterize dopaminergic neurons immunohistochemically up to the single cell level and subsequent test for the effects of distortions in the dopamine system upon aversive (odor-salt) as well as appetitive (odor-sugar) associative learning. Single cell analysis suggests that dopaminergic neurons do not directly connect gustatory input in the larval suboesophageal ganglion to olfactory information in the mushroom bodies. However, a number of dopaminergic neurons innervate different regions of the brain, including protocerebra, mushroom bodies and suboesophageal ganglion. We found that dopamine receptors are highly enriched in the mushroom bodies and that aversive and appetitive olfactory learning is strongly impaired in dopamine receptor mutants. Genetically interfering with dopaminergic signaling supports this finding, although our data do not exclude on naïve odor and sugar preferences of the larvae. Our data suggest that dopaminergic neurons provide input to different brain regions including protocerebra, suboesophageal ganglion and mushroom bodies by more than one route. We therefore propose that different types of dopaminergic neurons might be involved in different types of signaling necessary for aversive and appetitive olfactory memory formation respectively, or for the retrieval of these memory traces. Future studies of the dopaminergic system need to take into account such cellular dissociations in function in order to be meaningful.  相似文献   

13.
Molecular biology and anatomy of Drosophila olfactory associative learning.   总被引:5,自引:0,他引:5  
Most of our current knowledge of olfactory associative learning in Drosophila comes from the behavioral and molecular analysis of mutants that fail to learn. The identities of the genes affected in these mutants implicate new signaling pathways as mediators of associative learning. The expression patterns of these genes provide insight into the neuroanatomical areas that underlie learning. In recent years, there have been great strides in understanding the molecular and neuroanatomical basis for olfaction in insects. It is now clear that much of the association between the conditioned stimuli and the unconditioned stimuli in olfactory learning occurs within mushroom bodies - third order olfactory neurons within the central brain. In this review, we discuss the nature of the behavioral tasks, the molecules, and the neuronal circuits involved in olfactory learning in Drosophila.  相似文献   

14.
We established a classical conditioning procedure for the cockroach, Periplaneta americana, by which odors were associated with reward or punishment. Cockroaches underwent differential conditioning trials in which peppermint odor was associated with sucrose solution and vanilla odor was associated with saline solution. Odor preference of cockroaches was tested by allowing them to choose between peppermint and vanilla sources. Cockroaches that had undergone one set of differential conditioning trials exhibited a significantly greater preference for peppermint odor than did untrained cockroaches. Memory formed by three sets of differential conditioning trials, with an inter-trial interval of 5 min, was retained at least 4 days after conditioning. This conditioning procedure was effective even for cockroaches that had been harnessed in plastic tubes. This study shows, for the first time in hemimetaborous insects, that both freely moving and harnessed insects are capable of forming olfactory memory by classical conditioning procedure. This procedure may be useful for future electrophysiological and pharmacological studies aimed at elucidation of neural mechanisms underlying olfactory learning and memory.  相似文献   

15.
Lorenzetti FD  Baxter DA  Byrne JH 《Neuron》2008,59(5):815-828
Operant conditioning is a ubiquitous but mechanistically poorly understood form of associative learning in which an animal learns the consequences of its behavior. Using a single-cell analog of operant conditioning in neuron B51 of Aplysia, we examined second-messenger pathways engaged by activity and reward and how they may provide a biochemical association underlying operant learning. Conditioning was blocked by Rp-cAMP, a peptide inhibitor of PKA, a PKC inhibitor, and by expressing a dominant-negative isoform of Ca2+-dependent PKC (apl-I). Thus, both PKA and PKC were necessary for operant conditioning. Injection of cAMP into B51 mimicked the effects of operant conditioning. Activation of PKC also mimicked conditioning but was dependent on both cAMP and PKA, suggesting that PKC acted at some point upstream of PKA activation. Our results demonstrate how these molecules can interact to mediate operant conditioning in an individual neuron important for the expression of the conditioned behavior.  相似文献   

16.
What we see depends on where we look. This paper characterizes the modulatory effects of point of regard in three-dimensional space on responsiveness of visual cortical neurons in areas V1, V2, and V4. Such modulatory effects are both common, affecting 85% of cells, and strong, frequently producing changes of mean firing rate by a factor of 10. The prevalence of neurons in area V4 showing a preference for near distances may be indicative of the involvement of this area in close scrutiny during object recognition. We propose that eye-position signals can be exploited by visual cortex as classical conditioning stimuli, enabling the perceptual learning of systematic relationships between point of regard and the structure of the visual environment.  相似文献   

17.
The olfactory system discriminates a large number of odorants using precisely wired neural circuits. It offers an excellent opportunity to study mechanisms of neuronal wiring specificity at the single synapse level. Each olfactory receptor neuron typically expresses only one olfactory receptor from many receptor genes (1000 in mice). In mice, this striking singularity appears to be ensured by a negative feedback mechanism. Olfactory receptor neurons expressing the same receptor converge their axons to stereotypical positions with high precision, a feature that is conserved from insects to mammals. Several molecules have recently been identified that control this process, including olfactory receptors themselves in mice. The second order neurons, mitral cells in mammals and projection neurons in insects, have a similar degree of wiring specificity: studies in Drosophila suggest that projection neuron-intrinsic mechanisms regulate their precise dendritic targeting. Finally, recent studies have revealed interactions of different cell types during circuit assembly, including axon-axon interactions among olfactory receptor neurons and dendro-dendritic interactions of projection neurons, that are essential in establishing wiring specificity of the olfactory circuit.  相似文献   

18.
19.
There have been several studies on the role of circadian clocks in the regulation of associative learning and memory processes in both vertebrate and invertebrate species. The results have been quite variable and at present it is unclear to what extent the variability observed reflects species differences or differences in methodology. Previous results have shown that following differential classical conditioning in the cockroach, Rhyparobia maderae, in an olfactory discrimination task, formation of the short-term and long-term memory is under strict circadian control. In contrast, there appeared to be no circadian regulation of the ability to recall established memories. In the present study, we show that following operant conditioning of the same species in a very similar olfactory discrimination task, there is no impact of the circadian system on either short-term or long-term memory formation. On the other hand, ability to recall established memories is strongly tied to the circadian phase of training. On the basis of these data and those previously reported for phylogenetically diverse species, it is suggested that there may be fundamental differences in the way the circadian system regulates learning and memory in classical and operant conditioning.  相似文献   

20.
Snails become conditioned by a single feeding episode to locate foods which they were unable to locate prior to feeding. To identify which of the different stimulus parameters of the food mediate learning, snails were presented with isolated stimulus components during feeding and re-tested the next day for their ability to locate the food. None of the individual components was sufficient to promote conditioning. Odor combined with a bulk stimulus conditioned the animals, as indicated by their subsequently locating the food. Elimination of the olfactory sensory inputs from the anterior and/or posterior tentacles prior to conditioning revealed that the acquisition of the olfactory memory requires olfactory stimulation of the sensory epithelia on the anterior tentacles. Recall of memory during olfactory orientation requires functional epithelia on the posterior tentacles, which suggests that the same odor is processed by different input pathways under different situations. Animals with the olfactory epithelia functional on the same side during conditioning and food searching were able to locate the conditioned food. Animals with different epithelia functional during conditioning and food searching failed, which suggests that olfactory memory is stored within one side of the nervous system and cannot be accessed from the contralateral side. Accepted: 28 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号